
Project Report

Christopher Lang

March 30, 2023

Summary

This report accompanies the ‘Raspberry Pi Operating System From Scratch
Guide’ (PIFS Guide). It is intended to explain the purpose, motivation and
technical decisions of the guide.

Contents

1 Introduction 1

2 Motivation 2

3 Intended Audience 2

4 Building a Cross Compiler 2

5 Build Isolation 3

6 Package Management and Installing Software 4

7 Software Used in the OS 5

8 Build Process 6
8.1 Preparing for the Build . 7
8.2 Building Core Software . 7

References 7

1 Introduction

The PIFS Guide is a complete set of instructions for building an operating
system ‘from scratch’ - meaning that the user will manually configure, (possibly
compile) and install each program into a drive they formatted and partitioned
themselves. The operating system is intended for ‘Raspberry Pi’ 1 hardware,

1‘Raspberry Pi’ is a brand of single board computers.

1

specifically the ‘Raspberry Pi Zero 2 W’.

2 Motivation

Bundled operating systems, graphical installers and pre-configured operating
system ‘distributions’ have made it easier than ever to install an operating
system. However, this convenience is at the cost of the users understanding of
their system. The PIFS guide teaches how to build and install an operating
system from scratch, so that the user will better understand how operating
systems work.

3 Intended Audience

In order to keep the guide concise and focused, some prerequisite knowledge is
assumed 2. The guide is therefore written for the user who is already familiar
with how to use a Linux based operating system, but is curious as to what parts
the system consists of, how each part interacts and how to install these parts
independently from a pre-existing distribution.

The ‘suckless’ developers believe that ‘In contrast with the usual proprietary
software world or many mainstream open source projects that focus more on
average and non-technical end users, we think that experienced users are mostly
ignored’3. After spending much time researching for the PIFS guide, I have come
to the realisation that the neglect for experience users extends to online software
documentation and learning resources 4. For this reason, I have committed to
building the guide for experienced users who meet the prerequisites defined in
the guide.

4 Building a Cross Compiler

Constructing all the programs in a cross-toolchain is no easy task as many
of them depend on each other resulting in a ‘chicken and egg problem’. For
example, GCC (the compiler) can not be built before Glibc (the standard c
library) but Glibc must be built with GCC! Breaking this dependency loop can
be done by building the toolchain in multiple passes, each successive pass adding

2PIFS Guide Section 1.2.
3Suckless Philosophy. ‘https://suckless.org/philosophy/’.
4One particular frustration I had was when searching ‘HOW does X work?’ - where X is

a piece of software or technical concept. Almost all results that claimed to explain ‘HOW X
works‘ actually only explained ‘WHAT is X’ or ‘HOW to use X’. Some will attempt to provide
a very basic overview of ‘HOW X works’ but rarely delve into any technical detail or refer to
resources which do. Try searching ‘How does the GRUB bootloader work’. On google.com, the
top results are ‘GRUB and the x86 Boot Process’, ‘An introduction to GRUB2 configuration’
and ‘What is GRUB Bootloader and What Does it Do?’.

2

more functionality5. This is a complex process and is tangential to my guide’s
main goal of teaching how an operating system works.

The ‘Cross Linux From Scratch’ guide teaches how to build a cross-toolchain6.
However, this process consumes a significant portion of the guide - making it
less focused and take more time to follow.

I have decided to download pre-built toolohain binaries from ‘toolchains.bootlin.com’7.
This will make my guide easier to follow and to maintain.

5 Build Isolation

Usually, when software is compiled, the build system will adapt the package
based on the features of the host operating system8. However, when compiling
software for a different (in this case new) system, precaution must be taken to
compile using the new system’s libraries. This is known as build isolation.

As the guide compiles software to a foreign target architecture, it must
make use of a cross-compiler. The Linux From Scratch project demonstrates an
approach to build isolation where cross-compilation is faked to prevent the build
system from adapting the package based on features of the host9. This suggests
that using a cross compiler is sufficient for build isolation but is it necessary?

Some level of build isolation is required for creating binary package archives
as the binaries must run on a system other than the host. Cross-compilation
can not be used because the target-triplet is the same on the host and target. I
posted a question onto the ‘Unix & Linux’ section of Stack Exchange, enquiring
about this topic10. As was explained in the responses to my question, the level of
build isolation required for building binary packages is lesser than that required
to build a new operating system. This response seems to be correct as the
‘Creating Packages’ page of the arch wiki11 has no mention of build isolation -
suggesting it is not a significant issue in this context. Specifying dependencies
and following a file hierarchy standard is sufficient for build isolation of binary
package.

A GNU ‘GCC help’ email thread discusses the possibility of full build iso-
lation without a cross-compiler12. This correspondence came to the conclusion
that cross-compilation is the only rational way to achieve full build isolation.

5crosstool-NG Documentation. ‘https://crosstool-ng.github.io/docs/’.
6Cross-Compiled Linux From Scratch, Version 3.0.0-SYSTEMD-x86. ‘http://www.clfs

.org/view/CLFS-3.0.0-SYSTEMD/x86_64/’. 2014.
7toolchains.bootlin.com. ‘https://toolchains.bootlin.com/’.
8GNU Autoconf. ‘https://www.gnu.org/software/autoconf/’.
9Linux From Scratch 11.1. ‘https://www.linuxfromscratch.org/lfs/view/11.1/’. 2022.

10Stack Exchange - Unix & Linux - How are binary packages isolated from host system?
‘https://unix.stackexchange.com/questions/723006/how-are-binary-packages-isolated
-from-host-system’.

11Arch Linux Wiki - Creating Packages. ‘https://wiki.archlinux.org/title/Creating
_packages’.

12GCC Help - host-isolated gcc without faking cross-compiling. ‘https://inbox.sourcewa
re.org/gcc-help/fd96fa42-450a-db81-c128-9b0d03058c58@falsifiable.net/T/’. 2021.

3

This is likely to be true, if there were another reliable method it probably would
have been mentioned by the LFS project13.

In conclusion, cross compilation is sufficient and (for all practical purposes)
necessary for absolute build isolation. So for this project, build isolation should
not be an issue.

6 Package Management and Installing Software

Installing cross compiled basic system software is conventionally done with a
make install command14. This autoconf generated Makefile command will au-
tomatically copy the required files from the build directory into the final direc-
tory in the new system. This is convenient as the user does not need to worry
about what files must be installed and where they should be located. However,
because the files are automatically copied into an already populated directory
tree, it is difficult to know what files each package installs. This can make it
hard to understand what each package does. This is why the guide will run
make install to install into an empty staging root directory. The user can in-
spect what files were installed into the staging root, modify them if desired,
then copy them into their final directories in the new system. This way the
package can choose what files to install and where to put them and the user
can see what each package installs before the files are copied into a common
filesystem. This solution was partially inspired by symlink style package man-
agement15 where packages are installed into separate directories and linked into
a common filesystem.

After the user has compiled basic system software, how can they install
and manage additional software packages on the new system? Not all packages
support installing into a non-root directory, making the staging root method
difficult. Symlink style package management16 suffers the same problem. Many
modern Linux distributions often ship with a package manager which can in-
stall and manage package archives - most notably: rpm17 and deb18. However,
as these utilities install files automatically, the user will not have a thorough
understanding of what exists on their system. This is contradictory to the goal
of the guide - to teach the user how an operating system works.

Packages could be installed by using the make install command provided by
Autoconf19. However, as described earlier, using this method it can be difficult
to know what files each package installs. As a result, uninstalling a specific
package is not easy. This method may be viable if only a few packages are
required and if no packages are uninstalled.

13Linux From Scratch 11.1. ‘https://www.linuxfromscratch.org/lfs/view/11.1/’. 2022.
14GNU Autoconf. ‘https://www.gnu.org/software/autoconf/’.
15Linux From Scratch 11.1. ‘https://www.linuxfromscratch.org/lfs/view/11.1/’. 2022.
16Linux From Scratch 11.1. ‘https://www.linuxfromscratch.org/lfs/view/11.1/’. 2022.
17RPM Package Manager. ‘https://rpm.org’.
18Debian Package. ‘https://wiki.debian.org/deb’.
19GNU Autoconf. ‘https://www.gnu.org/software/autoconf/’.

4

Nix20 builds each package into a unique, immutable directory without any
side-effects that modify the rest of the system. Then, a ’profile’ is used to sym-
bolically link package binaries to common lib and bin directories. This approach
has a number of advantages: multiple versions can be installed simultaneously,
packages can be upgraded or installed without fear of breaking the system and
the clear separation between package files can make the responsibilities of each
packages clearer to the user. However, most package’s build systems are not
built with this unusual package management technique in mind21. As a result,
it can be difficult to install packages without causing side-effects. In addition,
the per-package install directories may confuse users who are accustomed to
traditional Linux file system’s where binaries from all packages are placed in
the same directory.

I have decided to install additional software using make install because the
guide only installs a few packages. If the user wishes to use a different method,
they may, but it is not the responsibility of the guide.

7 Software Used in the OS

This section explains the purpose of all software included in the guides operating
system. The reason for selecting each piece of software over alternatives is also
discussed.

Raspberry Pi Firmware. The official Raspberry Pi Firmware Github repos-
itory contains ‘pre-compiled binaries of the current Raspberry Pi kernel and
modules, userspace libraries, and bootloader/GPU firmware.’22. Using this reg-
ularly updated firmware is important to ensure the latest critical bug fixes are
included23. However, I decided not to use the repository’s user space libraries
because I consider the process of building ones own libraries to be a critical step
in learning what an operating system consists of.

The GNU toolchain. GNU’s close relationship with Linux24 makes it the
natural choice of toolchain. Its use In Linux systems is near unerversial so
becoming familiar with it will be benifficial to the user. However, its complexity
can make it difficult to understand. GCC was released in 1987 and has since
accumulated over 14 million lines of code 25. This makes problems very difficult
to diagnose. For example, when I tried to compile GCC 12.1.0, make failed and
reported that a number of __LIBGCC_SF_* macros were undeclared. Due to the
size and complexity of the codebase, I was unable to resolve the issue on my

20Nix. ‘https://nixos.org/’.
21Nix Reference Manual. ‘https://nixos.org/manual/nix/stable/’.
22Raspberry Pi Firmware. ‘https://github.com/raspberrypi/firmware’.
23Raspberry Pi Docs. ‘https://www.raspberrypi.com/documentation/computers/raspber

ry-pi.html’.
24Linux and the GNU System. ‘https://www.gnu.org/gnu/linux-and-gnu.en.html’.
25Found by running tokei in GCC’s 12.2.0 source tree after downloading prerequisites.

5

own so I posted a question on Stack Overflow26. I did not receive any replies
to this question, which suggested that knowledge of GCC’s complex codebase
is not widespread. I was able to work around the issue by upgrading to GCC
12.2.0, but if GCC’s source code was more simple, I may have been able to
understand the cause for the error and solve the problem properly. In addition,
GCC is partially written in C++27, meaning that it can not be compiled on a
machine without a C++ compiler. This means I am unable to natively compile
GCC on the guides operating system because, for the sake of simplicity, I have
decided not to include a C++ compiler.

Other C toolchains do exist28293031. However, many programs are written
with non POSIX compliant, Glibc specific features. Support for these features
in smaller standard C libraries is limited32. In addition, the smaller C compilers
are known to produce less optimised code33.

Custom Init System. The guide includes the source code for a simple init
system written especially for the guide. By reading the code, the user can under-
stand exactly what the init system does and therefore will have a conceptually
complete overview of what is invoked in user-space. This would be more difficult
with a larger, more complex init system.

Busybox. As far as the guide is concerned, what core-utils are used is irrel-
evant as it does not have any significant effect on the overall structure of the
operating system. Busybox was selected as it is easy and fast to compile from
source. This reduces unnecessary time and complexity of the guide.

Make. ‘Make’ is a simple build automation tool that does not have any soft-
ware dependencies not already satisfied by the guide’s system. With this tool,
the user can install software build with the common combination of Make and
C.

8 Build Process

This section outlines and justifies the guide’s build process.

26Stack Overflow - Failed to cross compile GCC. ‘https://stackoverflow.com/questions
/73582427/failed-to-cross-compile-gcc-libgcc-sf-undefined’.

27GCC’s move to Cpp. ‘https://lwn.net/Articles/542457/’.
28musl libc. ‘https://musl.libc.org/’.
29uClibc. ‘https://uclibc.org/’.
30Simple C Compiler. ‘https://www.simple-cc.org/’.
31Tiny C Compiler. ‘https://bellard.org/tcc/’.
32musl libc faq. ‘https://www.musl-libc.org/faq.html’.
33A Performance-Based Comparison of C/C++ Compilers. ‘https://colfaxresearch.co

m/download/7129/’.

6

8.1 Preparing for the Build

A new user (‘pifs’) is created on the host to ensure a clean build environ-
ment 34. Cross-toolchain binaries are installed into a directory in the ‘pifs’
user’s home directory 35. Environment variables are created and set to the
full path of the cross-toolchain binaries 36. Now, cross-toolchain tools can be
executed by using the appropriate environment variable at the beginning of a
shell command: $CC --version. Installing and running the cross-toolchain bi-
naries in this way ensures they do not overwrite or are mistaken for binaries
that happen to already exist in the user’s host system’s global path such as
/usr/bin/arm-buildroot-linux-gnueabihf-gcc.

The guide does not require the use of any particular partitioning tool. The
user can use whatever tool they are comfortable with. A 256M FAT32 boot
partition and an ext4 root partition filling the remaining disk space is suggested.
This allocated more than enough space for the boot files and uses a modern but
sturdy root filesystem. No swap partition is used. Advanced partition tables are
tangential to the guides main goal of teaching a user how an operating system
works.

Files from the official Raspberry Pi’s firmware repository’s boot directory37

are copied into the boot partition. cmdline.txt is added to pass appropriate
command line options to the kernel 38.

8.2 Building Core Software

Each software is generally installed by the following procedure:

1. Extract the archive.

2. Configure the source.

3. Compile the source.

4. Install the package into a staging root: /home/pifs/staging-root.

5. Copy important files from the staging root into the new root file system.

The guide explains the compilation options used for each package. The
staging root allows the user to inspect what files the package is trying to install
before copying them into the final directory. This helps the user understand
what part of the operating system each package is responsible for.

34PIFS guide - Section 2.1
35PIFS guide - Section 2.2
36PIFS guide - Section 2.1.5
37Raspberry Pi Firmware. ‘https://github.com/raspberrypi/firmware’.
38PIFS guide - Section 2.4

7

References

A Performance-Based Comparison of C/C++ Compilers. ‘https://colfaxre
search.com/download/7129/’.

Arch Linux Wiki - Creating Packages. ‘https://wiki.archlinux.org/title
/Creating_packages’.

Cross-Compiled Linux From Scratch, Version 3.0.0-SYSTEMD-x86. ‘http://w
ww.clfs.org/view/CLFS-3.0.0-SYSTEMD/x86_64/’. 2014.

crosstool-NG Documentation. ‘https://crosstool-ng.github.io/docs/’.
Debian Package. ‘https://wiki.debian.org/deb’.
GCC Help - host-isolated gcc without faking cross-compiling. ‘https://inbox

.sourceware.org/gcc-help/fd96fa42-450a-db81-c128-9b0d03058c58

@falsifiable.net/T/’. 2021.
GCC’s move to Cpp. ‘https://lwn.net/Articles/542457/’.
GNU Autoconf. ‘https://www.gnu.org/software/autoconf/’.
Linux and the GNU System. ‘https://www.gnu.org/gnu/linux-and-gnu.en

.html’.
Linux From Scratch 11.1. ‘https://www.linuxfromscratch.org/lfs/view/1

1.1/’. 2022.
musl libc. ‘https://musl.libc.org/’.
musl libc faq. ‘https://www.musl-libc.org/faq.html’.
Nix. ‘https://nixos.org/’.
Nix Reference Manual. ‘https://nixos.org/manual/nix/stable/’.
Raspberry Pi Docs. ‘https://www.raspberrypi.com/documentation/comput

ers/raspberry-pi.html’.
Raspberry Pi Firmware. ‘https://github.com/raspberrypi/firmware’.
RPM Package Manager. ‘https://rpm.org’.
Simple C Compiler. ‘https://www.simple-cc.org/’.
Stack Exchange - Unix & Linux - How are binary packages isolated from host

system? ‘https://unix.stackexchange.com/questions/723006/how-ar
e-binary-packages-isolated-from-host-system’.

Stack Overflow - Failed to cross compile GCC. ‘https://stackoverflow.com
/questions/73582427/failed-to-cross-compile-gcc-libgcc-sf-unde

fined’.
Suckless Philosophy. ‘https://suckless.org/philosophy/’.
Tiny C Compiler. ‘https://bellard.org/tcc/’.
toolchains.bootlin.com. ‘https://toolchains.bootlin.com/’.
uClibc. ‘https://uclibc.org/’.

8

