PIFS Guide

Christopher Lang

March 30, 2023

Contents

1 Preface

1.1 Imtroduction L

1.2 Prerequisites

1.3 Terminology

1.4 Typography

2 Preparing for the Build

2.1 Creating the PIFS User
2.1.1 Why aNew User?
2.1.2 Add the New User
2.1.3 Add the New User to Sudoers
2.1.4 Switching to the New User and Creating .bash_profile
2.1.5 Creating .bashrc

2.2 Installing a Cross-Toolchain

2.3 Preparing the Storage Medium
2.3.1 Partitioning oo
2.3.2 Create Filesystems
2.3.3 Mounting
2.3.4 Creating Target Directory Structure

2.4 TInstalling Firmware

2.5 Downloading Core Software

3 Building Core Software

3.1 GHbe.
3.2 Busybox
3.3 Init System
34 ZUHb .o
3.5 Binutils
3.6 GCC e
3.7 Make.
4 Final Notes
4.1 How to Boot Into the New System
4.2 Installing Additional Software

4.3 Other Raspberry PI Hardware 19

4.4 What Now? 20
4.5 Thanks 20
Bibliography L 20

Chapter 1

Preface

1.1 Introduction

‘PIFS’ stands for ‘(Raspberry) Pi (Operating System) From Scrach’ This guide
describes how to build a Linux based OS for the ‘Raspberry Pi 2 Zero W’. An
x86-64 Linux host will be used to cross compile software for the ARM Raspberry
Pi.

The OS will consist of the kernel, a shell, core command line utilities and a
native toolchain.

1.2 Prerequisites

You must be familiar with basic Linux system administration. You must be
confident using a unix shell and compiling C software. You must be able to use
vi to edit text files. Knowledge of the C programming language is recommended
but not required.

The following hardware is required:

e Raspberry Pi 2 Zero W

x86-64 computer with a working Linux OS installed

Power Supply for Raspberry Pi

Monitor that can connect to the Raspberry Pi’s HDMI mini port

US keyboard that can connect to the Raspberry Pi’s USB micro port

Micro SD card 8GB or larger

1.3 Terminology

‘system’; ‘OS’ and ‘operating system’ are used interchangeably. The x86-64
system that this guide be compiling from is referred to as the ‘host’. The
Raspberry Pi and the OS to be built for the Raspberry Pi is referred to as the
‘target’.

1.4 Typography

In this guide, bash commands are written in the following form:

echo "run this command as root user"
$ echo "run this command as pifs user"
P

The first line is prepended with a ‘#’ (hashtag), meaning that the following
command, echo "run this command as root user", should be run as root. The
second line, prepended with a ‘¢’ (dollar sign), should be run as the pifs user -
a user created later in the guide.

If your host has sudo® installed, you can use it to conveniently run commands
as root.

L Sudo. ‘https://wuw.sudo.ws/’.

Chapter 2

Preparing for the Build

2.1 Creating the PIFS User

2.1.1 Why a New User?

This section will create a new user on the host. Users already in your host
system may set environment variables that affect the build process. Creating
a new user helps to ensure a clean environment®. By modifying the new user’s
.bash_profile and .bashrc files, the shell can be prepared for cross-compilation.

2.1.2 Add the New User

groupadd pifs
useradd -g pifs -m -k /dev/null pifs

Relevant options for useradd?:
-g, --gid GROUP
The group name or number of the user’s initial login group.
-m, —--create-home
Create the user’s home directory if it does not exist.
-k, --skel SKEL_DIR
The skeleton directory, which contains files and directories to be copied
in the user’s home directory, when the home directory is created by user-
add.

Set a password for the new user using passwd?.

passwd pifs

! Linuz From Scratch 11.1. ‘https://www.linuxfromscratch.org/lfs/view/11.1/°. 2022.
2useradd(8) Linur Manual Page. ‘https://linux.die.net/man/8/useradd’.
3passwd(1) Linux Manual Page. ‘https://linux.die.net/man/1/passwd’.

2.1.3 Add the New User to Sudoers

This subsection may be skipped if you do not wish to use sudo to make running
commands as root more convenient.

To give the pifs user privilege to use the sudo command, we must add the
user to the sudoers file. Editing the sudoers file with visudo will ensure the
modifications made do not lock the main user out of the system?.

The following command will open the editor specified by the EDITOR envi-
ronment variable.

visudo

In the editor, add the line:

pifs ALL=(ALL) ALL

This means: allow the pifs user to, on all hosts, as all users, run all com-
mands®.

2.1.4 Switching to the New User and Creating .bash_profile

To switch to the newly created pifs user:

$ su - pifs
Relevant options for su®:
-, -1, --login
Start the shell as a login shell with an environment similar to a real
login.

A login shell must be used as this will cause .bash_profile to be executed.
Create /home/pifs/.bash_profile with the content:

exec env -i HOME=${HOME} TERM=${TERM} PSi1=’\u:\w\$ ’ /bin/bash

This creates a new (clean) environment when we enter a login shell. exec
replaces the shell with the specified command. env creates a new shell environ-
ment.

Relevant options for env

-i, --ignore-environment
Start with an empty environment.
After entering our new environment, the .bashrc file will be run.

7.

visudo(8) Linuz Manual Page. ‘https://linux.die.net/man/8/visudo’.
sudoers(5) Linux Manual Page. ‘https://linux.die.net/man/5/sudoers’.
su(1) Linur Manual Page. ‘https://linux.die.net/man/1/su’.

4
5
6
Tenv(1) Linuz Manual Page. ‘https://linux.die.net/man/1/env’.

2.1.5 Creating .vashrc

Create /home/pifs/.bashrc with the content:

.bashrc

set +h
umask 022

TARGET _TRIPLET=arm-buildroot-linux-gnueabihf
CROSS_TO0LS=/home/pifs/cross-tools
PIFS_ROOT=/mnt/pi-root
PIFS_BOOT=/mnt/pi-boot
STAGING_ROOT=/home/pifs/staging-root

LC_ALL=POSIX # localization
PATH=${CROSS_TOOLS}/bin:/bin:/sbin:/usr/bin:/usr/sbin

CC="${TARGET_TRIPLET}-gcc"
CXX="${TARGET_TRIPLET}-g++"
AR="${TARGET_TRIPLET}-ar"
AS="${TARGET_TRIPLET}-as"
RANLIB="${TARGET_TRIPLET}-ranlib"
LD="${TARGET_TRIPLET}-1d"
STRIP="${TARGET _TRIPLET}-strip"

unset CFLAGS CXXFLAGS

export PATH LC_ALL CC CXX AR AS RANLIB LD STRIP \
CROSS_TOOLS PIFS_ROOT PIFS_BOOT TARGET_TRIPLET \
STAGING_ROOT

Explanation of .bashrc commands:

set +h

Do not remember the location of binaries found in PATH.
umask 022

Files this user creates can be read by every user.
TARGET_TRIPLET=arm-buildroot-linux-gnueabihf

The target triplet that prepends the cross-toolchain binaries. A target
triplet ‘describes the platform on which code runs’®. They are in the for-
mat: machine-vendor-os. In the case of arm-buildroot-linux-gnueabihf
the os part is two fields: linux-gnueabihf.
CROSS_TO0LS=/home/1fs/cross-tools

Where the cross-toolchain will be located.
PIFS_ROOT=/mnt/pi-root

Where the target’s root partition will be mounted.
PIFS_BOOT=/mnt/pi-boot

Where the target’s boot partition will be mounted.

80S Dev - Target Triplet. ‘https://wiki.osdev.org/Target_Triplet’.

STAGING_ROOT=/home/1fs/staging-root

An intermediate location where packages will be installed before they
are copied to the root partition. This is useful for selecting what parts of
a package’s installation will be included in the target OS.

CC="${TARGET_TRIPLET}-gcc"

STRIP="${TARGET_TRIPLET}-strip"

Cross-toolchain binaries which may be read by build scripts.
unset CFLAGS CXXFLAGS
Unset environment variables that may affect build process.
Change into the new environment by executing the .bash_profile script in
the current shell.

$ source ~/.bash_profile

Create folders in the new home directory which will be used in future chap-
ters.

$ mkdir ~/{cross-tools,staging-root,src,tarballs}

2.2 Installing a Cross-Toolchain

The cross-toolchain will be generated by ‘https://toolchains.bootlin.com™.

Open the link in a browser, select architecture: armv7-eabihf, libc: glibc and
copy the stable download link. At time of writing, the package versions used
are:

e binutils 2.36.1

e gcc 10.3.0

e gdb 10.2

e glibc 2.34-9-g9acab0b...
e linux-headers 4.9.291

Use the link to download the archive and extract it. Move its contents into
the cross-tools directory. In the following commands, replace <LINK> with the
link to the archive download you just copied.

$ cd”

$ wget <LINK>

$ tar -xf armv7-eabihf--glibc--stable-2021.11-1.tar.bz2

$ rm armv7-eabihf--glibc--stable-2021.11-1.tar.bz2

$ mv armv7-eabihf--glibc--stable-2021.11-1/* cross-tools/
$ rm -r armv7-eabihf--glibc--stable-2021.11-1/

9toolchains.bootlin.com. ‘https://toolchains.bootlin.com/’.

The cross-toolchain binaries are now located in ~/cross-tools/bin. This
directory was added to your PATH in the .bashrc created earlier so the shell
should be able to locate the new binaries. Verify this by running the compiler,
$cc, specified in .bashrc.

$ ${CC} --version

2.3 Preparing the Storage Medium

2.3.1 Partitioning

This guide partitions the SD card using cfdisk but alternative partition tools
are available. This table shows common partition tools for Linux.

Package | CLI TUI GUI
fdisk!® fdisk cfdisk | partitionmanager
parted!! | parted | - gparted, gnome-disk-utility

Using your preferred partition tool, with a DOS partition table, create a 256 MiB
FAT32 boot partition followed by a Linux root partition that fills the rest of the
SD card. The boot partition will contain Raspberry Pi firmware including the
kernel but not kernel modules. It is a FAT32 filesystem because the bios may
not be able to read more complex types.

If using cfdisk, the partition table should appear similar to the following
(though the size of the second partition may be different to fill the capacity of
the storage device):

Device Boot | Start End Sectors Size Id | Type
/dev/sdX1 | * 2048 526335 524288 256M | b | W95 FAT32
/dev/sdX2 526336 | 30930943 | 30404608 | 14.5G | 83 | Linux

Determine the device files name of your boot and root partition. This can
be done using the 1sblk!'? command which will list block devices. /dev/sdbil
and /dev/sdb2 are common device file names for a secondary disk. In the fol-
lowing examples, this guide will use /dev/sdX1 to refer to the boot partition and
/dev/sdX2 to refer to the root partition. But you must replace these with your
device file names.

2.3.2 Create Filesystems

To use the partitions, they must be formatted with filesystems. This guide uses
FAT32 for the boot partition and ext4 for the root partition.

mkfs -t vfat /dev/sdX1l
mkfs -t ext4 /dev/sdX2

121sblk(8) Linuz Manual Page. ‘https://linux.die.net/man/8/1sblk’.

Relevant options for mkfs!?:

-t, --type type
Specify the type of filesystem to be built.

2.3.3 Mounting

Root and boot filesystems are now ready to be mounted. They must be mounted
into the paths specified in .bashrc created earlier: /mnt/pi-boot and /mnt/pi-root.
First, create these directories if they do not already exist.

mkdir -p /mnt/pi-{boot,root}

Mount the two partitions.

mount /dev/sdXl /mnt/pi-boot
mount /dev/sdX2 /mnt/pi-root

2.3.4 Creating Target Directory Structure

Create essential directories in our target system’s filesystem. This directory
structure is loosely based of the Linux Filesystem Hierarchy Standard'.

mkdir -p ${PIFS_ROOT}{/dev,/proc,/sys,/1lib,/bin,/sbin,/usr/1lib,\
/usr/bin, /usr/sbin, /usr/include, /usr/libexec}

Explanation of unobvious directories:

/dev

Virtual filesystem populated by the kernel for device files.
/proc

Virtual filesystem populated by the kernel where information about
running processes can be found.'?
/sys

Virtual filesystem populated by the kernel where information about
kernel components can be found.!®
/libexec

Where binaries that do not belong in PATH are installed.’” GCC uses
this directory.
/sbin and /usr/sbin

‘special’ binaries. For example, busybox’s poweroff. These directories
are in PATH.

Bmkfs(8) Linuz Manual Page. ‘https://linux.die.net/man/8/mkfs’.

14 Rilesystem Hierarchy Standard Version 3.0. ‘https://refspecs.linuxfoundation.org
/FHS_3.0/fhs/index.html’. 2015.

B yroc(5) Linuz Manual Page. ‘https://linux.die.net/man/5/proc’.

16 sysfs(5) Linux Manual Page. ‘https://man7.org/linux/man-pages/man5/sysfs.5.html’.

Yncoghlan. Stack Exchange — What is the purpose of /usr/libexec? ‘https://unix.stac
kexchange.com/a/386015’.

10

2.4 Installing Firmware

In the home directory of the pifs user. Run the following command to download
the latest Raspberry Pi firmware!®. This may take some time.

$ git clone https://github.com/raspberrypi/firmware

Copy the contents of the firmware’s boot folder into the boot partition.

cp -dr “/firmware/boot/* ${PIFS_BOOT}

Relevant options for cp':
-d
Preserve links during copy. Same as --no-dereference --preserve=links.
Determine the Part-UUID of the root partition of the new system (/dev/sdX2).
The following command lists devices Part-UUIDs.

$ 1s -1 /dev/disk/by-partuuid/

An example Part-UUID is a82b43£76-02.

Create a file owned by root: $PIFS_BOOT/cmdline.txt. This file is read by
Raspberry Pi firmware and configures the command-line parameters passed to
the kernel on boot. Set the content of the file to the following, replacing <PUUID>
with the Part-UUID of the root partition:

cmdline.txt

root=PARTUUID=<PUUID> rootfstype=ext4 rw rootwait init=/init

Explanation of unobvious cmdline.txt options:2°

root=PARTUUID=...
The Part-UUID of the partition to use as root.

rw
Mount root device read-write on boot

rootwait
Wait (indefinitely) for root device to show up.
init=/init
Run specified binary instead of /sbin/init as init process.
Copy kernel modules into the root partition.

sudo cp -dr “/firmware/modules ${PIFS_RO0T}/lib

18 Raspberry Pi Firmware. ‘https://github.com/raspberrypi/firmware’.

Yep(1) Linuz Manual Page. ‘https://linux.die.net/man/1/cp’.

20 The Linuz Kernel Documentation — Command-line Parameters. ‘https://www.kernel
.org/doc/html/v4.14/admin-guide/kernel-parameters.html’.

11

2.5 Downloading Core Software

Download the required source code tarballs.

cd “/tarballs

wget https://wuw.busybox.net/downloads/busybox-1.35.0.tar.bz2
wget http://zlib.net/zlib-1.2.12.tar.gz

wget https://ftp.gnu.org/gnu/binutils/binutils-2.39.tar.gz
wget https://ftp.gnu.org/gnu/gcc/gec-11.3.0/gcc-11.3.0.tar.gz
wget https://ftp.gnu.org/gnu/make/make-4.3.tar.gz

SN B N hH H hH

If a link no longer works, find an alternative download link using a search
engine.

12

Chapter 3

Building Core Software

3.1 Glibc

Glibe is GNU’s standard C library. A compilers output binaries must link with
the same standard C library that was specified during the compilation of the
compiler!. So the cross-compiled software must link against the glibc from the
$CROSS_TOOLS directory. Copy the important glibc files into the new system’s
root.

cd ${CROSS_TOOLS}/arm-buildroot-linux-gnueabihf/sysroot/
cp -dr lib/* ${PIFS_RO0T}/1lib

cp -dr sbin/* ${PIFS_RO0OT}/sbin

cp -dr usr/lib/* ${PIFS_ROOT}/usr/lib

cp -dr usr/include/* ${PIFS_RO0T}/usr/include

cp -dr usr/bin/* ${PIFS_RO0T}/usr/bin

cp -dr usr/sbin/* ${PIFS_RO0T}/usr/sbin

H O H O H HH

3.2 Busybox

Busybox ‘combines tiny versions of many common UNIX utilities into a single
small executable’?. Extract and configure the busybox source.

$ cd “/src

$ tar -xf ~/tarballs/busybox-1.35.0.tar.bz2
$ cd busybox-1.35.0

$ make defconfig

make defconfig creates a default configuration file. The configuration can
be modified using make menuconfig but this is not required for the guide.

! Linux From Scratch 11.1. ‘https://www.linuxfromscratch.org/1fs/view/11.1/’. 2022.
2busybox 1.35.0. ‘https://www.busybox.net/’. 2021.

13

Compile and install busybox into $STAGING_ROOT. CROSS_COMPILE sets the
prefix for toolchain binaries to use.

$ make CROSS_COMPILE=${TARGET_TRIPLET}-
$ make CROSS_COMPILE=${TARGET_TRIPLET}- CONFIG_PREFIX=${STAGING_ROOT} \
install

Inspect the files in $STAGING_ROOT to see what busybox installs. Copy the
required files from the staging root into the new system’s root.

cp -dr ${STAGING_ROOT}/bin/* ${PIFS_RO0T}/bin

cp -dr ${STAGING_ROOT}/sbin/* ${PIFS_ROOT}/sbin

cp -dr ${STAGING_ROOT}/usr/bin/* ${PIFS_ROOT}/usr/bin
cp -dr ${STAGING_ROOT}/usr/sbin/* ${PIFS_RO0T}/usr/sbin

H OB OH R

Busybox uses symbolic links to contain multiple command line programs
within a single binary®. Therefore the -d option is required.

Clean the staging root so that subsequent software can be installed into a
clean directory.

$ rm -r ${STAGING_ROOT}/*

Create a file ${PIFS_RO0T}/.profile with content:

.profile

PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

This file is run when entering busybox’s shell in login mode. The commands
will set the PATH environment variable for the new system.

3.3 Init System

This guide will provide the source code for a simple init binary. Create a direc-
tory for the source.

$ mkdir ~/init
$ cd ~“/init

Create a file /home/pifs/init/init.c with the following content.

init.c

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/mount.h>
#include <unistd.h>

3busybox 1.35.0. ‘https://www.busybox.net/’. 2021.

14

void tryProc() {
if (mount("none", "/proc", "proc", 0, NULL)) {
printf(
"INIT: failed to mount proc (%d) %s\n",
errno,
strerror(errno));
return;
}
printf ("INIT: mounted proc\n");
}

void trySys(O) {
if (mount("none", "/sys", "sysfs", 0, NULL)) {

printf(
"INIT: failed to mount sys (%d) %s\n",
errno,
strerror (errno)) ;
return;
}
printf ("INIT: mounted sys\n");

}

void tryDev() {
if (mount("none", "/dev", "devtmpfs", MS_DIRSYNC, NULL)) {

printf(
"INIT: failed to mount dev (%d) %s\n",
errno,
strerror (errno));
return;
}
printf ("INIT: mounted dev\n");

}

int main() {
printf ("INIT: start\n");

tryProc();
trySys();
tryDev();

printf ("INIT: shell\n");

char *args[] = {"/bin/sh", NULL};
execv(args[0], args);

for (;;);
return O;

The init program is the first process the kernel starts in user space. It is the

15

root of all other user space processes. This init program mounts the dev, sys
and proc virtual filesystems then executes /bin/sh.
Cross compile the init program.

$ ${CC} init.c -o init

Copy the init binary into the root directory of the new system. The location
of the init binary was specified earlier in the cmdline.txt file.

cp init ${PIFS_ROOT}

3.4 Zlib

Zlib is a compression library required by bintuils and GCC.
Extract the archive.

$ cd “/src
$ tar -xf “/tarballs/zlib-1.2.12.tar.gz
$ cd zlib-1.2.12/

z1ib uses environment variables to find compilation tools. These were set in
.bashrc. Compile z1ib and install into the staging root.

$./configure --prefix=${STAGING_ROOT}
$ make
$ make install

Copy required files into the new system’s root filesystem.

cp -dr ${STAGING_ROOT}/include/* ${PIFS_ROOT}/usr/include/
cp -dr ${STAGING_ROOT}/lib/* ${PIFS_RO0T}/usr/lib/

Clean the staging root.

$ rm -r ${STAGING_ROOT}/*

3.5 Binutils

Binutils is part of the toolchain. It is a collection of tools for interacting with
binary files including a linker (1d) and an assembler (as).
Extract the archive.

$ cd “/src
$ tar -xf ~/tarballs/binutils-2.39.tar.gz
$ cd binutils-2.39/

Configure and compile bintuils, disabling unnecessary features.

16

$./configure --prefix=${STAGING_ROOT} --host=${TARGET_TRIPLET} \
--target=${TARGET_TRIPLET} --disable-nls --disable-multilib

$ make

$ make install

Copy the required files into the new system’s root filesystem.

cp -dr ${STAGING_ROOT}/bin/* ${PIFS_RO0T}/usr/bin/
cp -dr ${STAGING_ROOT}/include/* ${PIFS_ROOT}/usr/include/
cp -dr ${STAGING_ROOT}/lib/* ${PIFS_RO0T}/usr/lib/

**

Clean the staging root.

$ rm -r ${STAGING_ROOT}/*

3.6 GCC

GCC is the GNU C compiler. It will be used to compile software on the new
system.
Extract the archive.

$ cd “/src/
$ tar -xf ~/tarballs/gcc-11.3.0.tar.gz
$ cd gce-11.3.0/

To compile GCC, the cross-compiler needs access to some libraries and
header files that currently exist in the new system’s root filesystem. Copy these
files into the cross-compiler’s system root so that they can be found.

$ cp -dr ${PIFS_ROOT}/usr/include/* \
${CROSS_TOOLS}/arm-buildroot-linux-gnueabihf/sysroot/usr/include

$ cp ${PIFS_RO0OT}/usr/lib/libz.a \
${CROSS_TOOLS}/arm-buildroot-linux-gnueabihf/sysroot/usr/lib

Download GMP, MPFT and MPC automatically. These are floating point
arithmetic libraries that GCC depends on.

./contrib/download_prerequisites

4

Configure and compile GCC.

$./configure --prefix=${STAGING_ROOT} --host=${TARGET_TRIPLET} \
--target=${TARGET_TRIPLET} --disable-multilib --disable-nls \
--with-system-zlib --enable-languages=c --with-arch=armv7 \
--with-float=hard --with-fpu=vfp

$ make

$ make install

4Free Software Foundation. GCC Installation Manual. ‘https://gcc.gnu.org/install/’.

17

Copy the required files into the new system’s root filesystem.

cp —-dr ${STAGING_ROOT}/bin/* ${PIFS_RO0T}/usr/bin/
cp -dr ${STAGING_ROOT}/1lib/* ${PIFS_ROOT}/usr/lib/
cp -dr ${STAGING_ROOT}/libexec/* ${PIFS_ROOT}/usr/libexec/

Clean the staging root.

$ rm -r ${STAGING_ROOT}/*

3.7 Make

GNU Make is a build tool that will assist in compiling software in the new
system. Extract the archive.

$ cd “/src/
$ tar -xf ~/tarballs/make-4.3.tar.gz
$ cd make-4.3/

Configure and install the package into the staging root.

$./configure —-prefix=${STAGING_ROOT} --host=${TARGET_TRIPLET}
$ make
$ make install

Copy the required files into the new system’s filesystem.

cp -dr ${STAGING_ROOT}/include/* ${PIFS_RO0T}/usr/include/
cp -dr ${STAGING_ROOT}/bin/* ${PIFS_RO0T}/usr/bin/

5Free Software Foundation. GCC Installation Manual. ‘https://gcc.gnu.org/install/’.

18

Chapter 4

Final Notes

4.1 How to Boot Into the New System

Unmount the new system’s partitions.

umount /dev/sdX1 /dev/sdX2

Remove the micro SD card from the host and insert it into the Raspberry
Pi. Connect the Raspberry Pi to a keyboard, monitor and power supply. The
system should boot into a busybox shell.

4.2 Installing Additional Software

Copy source code to the SD card and use the native GCC installation to compile
additional C programs. make can be used to automate compilation if the package
supports the build system. If you wish to install a large program, consider
downloading a pre-built binary or cross-compiling using the tool-chain created
in section 2.2. This is because the Raspberry Pi’s limited hardware can take a
long time to compile large packages.

4.3 Other Raspberry PI Hardware

The ‘Raspberry Pi 2 Zero W’ is the only device this guide has been tested on.
However, it is likely to function on other Raspberry Pi devices. Other ARM
processor with hard floating point support may be compatible.

The ‘Raspberry Pi 2 Zero W’ uses the BCM2837 chip. The same chip is
used in the ‘Raspberry Pi 3 Model B’ and ‘Raspberry Pi Compute Module 3’
meaning that these devices are very likely to work with the guide. The ‘Rasp-
berry Pi 2 Model B’ also uses a similar chip.!

L Raspberry Pi Processors. ‘https://www.raspberrypi.com/documentation/computers/pr
ocessors.html’.

19

4.4 What Now?

By following this guide, you have created a very minimal system. This section
will give some general advice on how you can use and add features to the OS.

Many applications of the Raspberry Pi require automatically running pro-
grams on boot. This can be configured either by modifying the .profile file
created in the root directory or by updating the init program to fork-exec into
the desired process.

Users that need many packages installed with complex dependencies may
want a package management system. Because most Linux distributions come
with it built in, there is little information online about installing a package
manager. In addition, package formats often require the system to be configured
in a particular way, which this OS is not. For these reasons, I warn against trying
to install pre-packaged software.

4.5 Thanks

Thanks to the Linux From Scratch Project for inspiring and for being an in-
valuable resource in the creation of this guide. Thanks to my EPQ supervisors
for useful advice and guidance.

20

Bibliography

IO

busybox 1.35.0. ‘https://www.busybox.net/’. 2021.

ep(1) Linux Manual Page. ‘https://linux.die.net/man/1/cp’.
env(1) Linux Manual Page. ‘https://linux.die.net/man/1/env’.
fdisk(8) Linuz Manual Page. ‘https://linux.die.net/man/8/fdisk’.

Filesystem Hierarchy Standard Version 3.0. ‘https://refspecs.linuxf
oundation.org/FHS_3.0/fhs/index.html’. 2015.

Free Software Foundation. GCC' Installation Manual. ‘https://gcc.gnu
.org/install/’.

Linux From Scratch 11.1. ‘https://wuw.linuxfromscratch.org/lfs/v
iew/11.1/°. 2022.

Isblk(8) Linuxz Manual Page. ‘https://linux.die.net/man/8/1sblk’.
mkfs(8) Linuz Manual Page. ‘https://linux.die.net/man/8/mkfs’.

ncoghlan. Stack Exzchange — What is the purpose of /usr/libezec? ‘http
s://unix.stackexchange.com/a/386015".

OS Dev - Target Triplet. ‘https://wiki.osdev.org/Target_Triplet’.
parted(8) Linux Manual Page. ‘https://linux.die.net/man/8/parted’.
passwd(1) Linux Manual Page. ‘https://linux.die.net/man/1/passwd

proc(5) Linuz Manual Page. ‘https://linux.die.net/man/5/proc’.
Raspberry Pi Firmware. ‘https://github.com/raspberrypi/firmware’.

Raspberry Pi Processors. ‘https://www.raspberrypi.com/documentati
on/computers/processors.html’.

su(1) Linuz Manual Page. ‘https://linux.die.net/man/1/su’.
Sudo. ‘https://www.sudo.ws/’ .
sudoers(5) Linuz Manual Page. ‘https://linux.die.net/man/5/sudoe

rs’.

sysfs(5) Linux Manual Page. ‘https://man7.org/linux/man-pages/ma
n5/sysfs.5.html’.

21

The Linux Kernel Documentation — Command-line Parameters. ‘https
://www.kernel.org/doc/html/v4.14/admin-guide/kernel-paramete
rs.html’.

toolchains.bootlin.com. ‘https://toolchains.bootlin.com/’.
useradd(8) Linuz Manual Page. ‘https://linux.die.net/man/8/usera
dad’.

visudo(8) Linux Manual Page. ‘https://linux.die.net/man/8/visudo’.

22

