
A Comparative Study on Performance of XML parser APIs
(DOM and SAX) in Parsing Efficiency

DaYong Wu
Department of Electrical and

Computing Engineering
Xiamen University Malaysia, Jalan

Sunsuria Bandar Sunsuria
43900 Sepang, Selangor, Malaysia

dmt1609060@xmu.edu.my

Kien Tsong Chau
Centre for Instructional Technology

and Multimedia
Universiti Sains Malaysia

11800 USM, Penang, Malaysia

chaukientsong@usm.my

JingYi Wang, ChuTing Pan
Department of Electrical and

Computing Engineering
Xiamen University Malaysia, Jalan

Sunsuria Bandar Sunsuria
43900 Sepang, Selangor, Malaysia

doriswangjingyi@yahoo.com;
dmt1609021@xmu.edu.my

ABSTRACT

As a semi-structure language, XML is widely used in converting
unstructured data to structured data due to its simplicity,
extendibility and interoperability. There are numerous XML
parser APIs that perform the same function of parsing XML

document. This paper compares the performance between two
famous XML parser APIs, DOM and SAX, in terms of speed,
memory consumption and modifiability in parsing process. This
experiment concluded that DOM API takes more time, more
memory with higher level of modifiability while SAX API takes
less time, less memory with lower level of modifiability.

CCS Concepts

• Information systems → Open source software • Applied

computing → Document metadata

Keywords

Unstructured data; Extensible Markup Language; XML parsing

technique.

1. INTRODUCTION
Extensible Markup Language (XML) has become emerging data
representation and data exchange across the Internet in recent
years. Numerous XML parser Application Program Interfaces

(APIs) are available for choices in extracting data and creating
XML documents. However, there are a variety of specifications
and standards of XML parser APIs, and research on how to select
a XML parser API best suited for certain XML processing is
scarce. Therefore, researchers hereby conduct a comparative study
on the performance of two popular XML parser APIs, namely
Document Object Model (DOM) and Sample API for XML
(SAX).

2. RESEARCH OBJECTIVES
The research seeks to compare the performance between two
prominent XML parser APIs, namely DOM and SAX in terms of

speed, memory consumption and modifiability in parsing process,
and subsequently enables users to determine which is most
appropriate to be selected in certain situation. Improper choice of
parser will ruin the performance and subsequently leading to
degradation in productivity. Apart from that, such comparative
study is beneficial to web developer community in general
because the strength and weaknesses of different types of XML
parsers can be determined.

3. RESEARCH QUESTION
The research aims to answer the following question:

Does DOM perform better than SAX on parsing speed, memory
consumption and modifiability?

4. LITERATURE REVIEW
API stands for application program interface, which is a set of
routines, protocols, and tools for building software applications.
Basically, an API specifies how software components should
interact [1]. The parsing of XML documents is the process of
transforming an unstructured sequence of characters representing
an XML document into a structured component that conforms to

XML specifications. DOM is an API used for parsing XML
documents as well as accessing and manipulating documents (in
particular, HTML and XML Documents)” [2]. SAX, on the other
hand, is an event-based API for XML parsing. Through SAX, the
XML document is parsed sequentially from the beginning until
the end [3].

4.1 Past Research Works
Various research works had been performed which compare on
conformance to standards, speed, flexibility, and memory usage.
Mohseni’s [4] research works on XML parsers revealed that
Microsoft parser had the shortest loading time when it went
through a 92KB XML file compared to Oracle parser, Sun and
Xerces parser. Karre and Elbaum [5] indicated that Apache, IBM

and Xerces performed similarly in terms of accuracy. Deshmukh,
Bamnote, and Kale [6] compared XML parser APIs with respect
to time and memory usage for a set of XML documents ranging
from small-scale (below 1KB) to large-scale (above 6KB) file
sizes. It was found that DOM took less time than SAX for small
files, but has higher requirement for memory. The time taken by
SAX was 23-fold longer than DOM when processing large-scale
files. Despite consuming more memory when the document was

very large, DOM was a better choice for database application than
SAX. Lam, Ding and Liu [7] explored the performance features of
four parsing models, SAX, DOM, StAX and VTD. The result
showed that DOM tended to be memory intensive. In contrast,
lower memory space was required by SAX. Holm & Gustavsson

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICCSP 2019, January 19–21, 2019, Kuala Lumpur, Malaysia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6618-2/19/01…$15.00

https://doi.org/10.1145/3309074.3309124

88

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3309074.3309124&domain=pdf&date_stamp=2019-01-19

[8] concluded that the performance of the parsers was varied with
the changes of XML document structure. Overall, DOM
performed the worst, and SAX had similar performance with VTD.
Specifically, SAX had the best adaptability, closely followed by
VTD. DOM had a relatively lower complexity on the code, but

the longer parsing time compared to SAX. Other relevant studies
included Shanmugasundaram et al. [9], Wan [10], Holm and
Gustavsson’s [11] comparative study on XML Parsers with
respect to adaptability, Saxena & Kothari’s [12] empirical
analysis of XML parsing using various operating systems, Haw
and Rao's [13] comparative study on Benchmarking XML Parsers.
Oliveira, Santos and Belo [14], Zhao and Laxmi [15], Li [16] and
Ruchita and Deshmukh [17]. Nevertheless, there lacks researches

about displaying the performance of DOM and SAX progressively
with changing sizes of XML files. A more thorough and dynamic
experiment formulated for the purpose of testing the performance
of DOM and SAX is illustrated in the following sections. The
motivation for this comparison on parsing speed, memory
consumption and modifiability is to create a guideline for
choosing an XML parser that is most suitable in certain situation.

5. RESEARCH METHODOLOGY
The researchers consumed two hours per day for online search in
the first two weeks of the overall three-week research. The
researchers proceed to Google Scholar, Web of Science, and
China Academic Journals database to study articles related to
XML parsing. Meanwhile, the researchers employed three Search

Engines, namely Google, Baidu, and Bing to identify updated
news on XML parsing. The keywords adopted for searching were
DOM parser, SAX parser, XML parsing. Incredible websites
namely Wikipedia and blogs would not be searched.

5.1 Experiments
An experiment formulated for the purpose of testing the
performance of DOM and SAX is illustrated in the following
sections.

5.1.1 Process Description
The experiment was designed in two consecutive steps (Figure 1).
First, data from the Internet was stored into Excel sheet tables in
XLS foramt before they were converted into XML files. Second,
XML files were then transferred to structured data. First
conversion was accomplished by using Apache POI, the Java API
for Microsoft Documents, to read and write Excel tables. Parsing
was a process of sequentially scanning the documents. Defined
functions would be called to process the beginning and end of

documents and elements.

Figure 1. Experiment Process

5.1.2 Algorithm
While converting Excel tables to XML files, an algorithm was
used to read Excel files through Java API. Traversing XLS files

and obtaining cell location were involved to generate and export
XML files. Another algorithm was deployed as well to parse
XML files by utilizing SAX and importing the result to a database.
This algorithm called XML Parser directly to parse the documents
and sent each event to corresponding handlers. A class was

needed to inherit the ContentHandler class which was provided by
Android system. The algorithm included the beginning and end of
reading the document, parsing an element, and processing
character data. A sample of how algorithms worked was
illustrated in Appendix.

5.1.3 Environment
The experiment was conducted on a laptop with an intel(R)
Core(TM) i7-7700HQ CPU @ 2.80GHz and 8G memory while
the software environment was under Microsoft windows10
operating system. The website crawler tool was Octoparse, which
was free and powerful in extracting data from websites. Java was

used as the developing language and Eclipse was used as the
integrated development environment. The database server was
SQL Server 2017. Researchers chose the software they were
familiar with, which were also widely used in doing the
corresponding tasks.

5.1.4 Data
All experiment data were taken from Amazon.com. Researchers
randomly chose ten goods under Woman’s Fashion Department
and collected information of customers’ comments on each
product, which included Comment’s Title, Stars, Author, Date,
Content, and Purchase Model. Table 1 shows the number of
comments and size of corresponding XML files converted from

Excel files.

Table 1. Number of Comments &Size of XML files

5.1.5 Experimental Methods
Researchers used a website crawler tool to extract information of
online shopping comments on ten goods, storing results in Excel
tables. Next, Excel files were converted into XML files in Eclipse

by using Java language. Later, researchers parsed XML files by
using DOM and SAX separately and imported the results into a
database. In the database, the final result was well organized and
clear, making it convenient for users to obtain information.

Principles of experimental designs were applied. Randomization
on the choices of goods was to remove bias and other resources of
extraneous variation. For each product, the treatment was repeated
a number of times in order to increase the precision. During the

experiment, operating time was recorded for successive analysis
on parsing efficiency. By applying treatments uniformly and
under standardized conditions, local control was exerted as well.

6. FINDINGS
It has been a trend that industries use XML documents to store
large files nowadays. Whenever these files are used, data from

these files need to be extracted frequently and the XML parser
serves as the tool to read the document. The XML document tree
is often divided by those XML parsers into different parts such as
elements and roots. Then the extracted information will be passed
to the applications that require it. In some scenarios, if the

89

document is not formed legally, errors will be sensed by the parse
and the parsing process would be pending.

If errors occur, parsers will only display the information regarding
to the errors rather than the contents of the document. XML
parsing tools can significantly affect the overall performance of a
project. Hence it is of great importance to be familiar with the
advantages and shortcomings of different types of XML parsers

and choose wisely when it comes to parse XML documents in real
projects.

6.1 Summary of Experiment Results

6.1.1 Parsing Speed
The contrast of the parsing time between DOM and SAX could be
utilized to demonstrate the performance of the two parsers in
terms of speed, memory consumption and modifiability.

Experiment on speed of parsing time was based on 10 converted
XML file in different sizes and finally generated the following
outcomes.

Table 2. Parsing Time Comparison

In table 2, files within 500 KB could be considered as relatively
small, namely the file number from one to seven, and large was to
define those outranged this size interval but were under 1 MB,
which indicated the following two files. The one and only file,
No10, which exceeded 1024 KB, was regarded as outrageous.

Table reveals that when the file size was small, namely between
61 KB and 207 KB, the parsing time of both DOM and SAX was
kept incrementing and formed a positive correlation. However,
within the whole file size interval, SAX performed much more

efficient than DOM. The gap of parsing speed became
exaggerated as the file size went up. Initially the gap was only 19
milliseconds, as the size reached 207 KB, the gap was enlarged to
54 milliseconds.

In the section of file size starting from 260 KB and ending at 523
KB, the time consumption of DOM demonstrated a surprisingly
ebb compared with the former case. The biggest time requirement
in this section was 137 milliseconds, far less than the 144 in the

previous case. Nevertheless, the similarity between the two was
that the positive correlation was reserved.

On the other hand, within the file size interval of 206 KB and 887
KB (from relatively small to large), SAX first performed a
negative correlation concerning with the file size and the parsing
speed, then it recovered the original relation. When the file size
went beyond the boundary defined as outrageous, both DOM and

SAX reached its peak respectively, namely 161 milliseconds and
111 milliseconds.

The experiment results clarify that SAX performed surprisingly
stable and efficient among all cases in the process. Its parsing
speed was faster than that of DOM in every file size interval.

Despite similarities, the two parsing APIs performed noticeably
divergent. Data showed that SAX is significantly more time-
saving in parsing large files than DOM. Instead of preloading,
SAX is capable of scanning the document while parsing it. In this
way huge amount of time is saved. Naturally, SAX usually
requires less system memory allocation since it allows developers
to decide what kinds of tags to use by themselves. This
customized attribute is dramatically beneficial for developers

when they only need to process part of the data, in this case the
extensibility is well-reflected.

However, DOM’s merits are not negligible as well. DOM
implements the Tree data structure to parse a file. Due to DOM is
preloaded, the structure of the entire document is literally
persistent in the system memory. Therefore, DOM is flexibly to
be modified at any time with its life cycle so that applications are
granted to make changes to data and structures. DOM also has the

abilities to navigate up and down through the entire Tree structure
and thus DOM parser is relatively friendly to use compared with
SAX.

There is an existing formula to calculate API’s parsing efficiency.
The efficiency P is derived by letting the size of the file M divided
by the parsing time T. In the following table, it is very prone to
perceive that the parsing efficiency of SAX is higher than DOM
in every file size interval. It was true that they had almost same

parsing efficiency at the beginning when the file size was too
small. As the size went higher, the gap between the two also
enlarged and the rate of growth is increasing sharply.

Figure 2. Parsing Efficiency of DOM and SAX

6.1.2 Memory Consumption
Besides parsing speed, DOM and SAX also differentiate in terms
of consuming system resources. In this dissertation an XML file
has been used to test the memory consumption of the two parsing
methods.

A XML parser can be constructed by extracting the start and end
tags from a document. With the assistance of data structure
(mainly trees), we can parse it. Firstly, a XML document must be
parsed at one time if DOM is implemented, namely the entire

XML tree must be read into memory and parsed in sequence, as in
Figure 3.

90

Figure 3. The structure of a XML tree

On the other hand, as for SAX, handlers are used successively to
perform the parsing task. SAX is driven by events, which is a
program operating method based on a callback mechanism. Its
parsing process is carried out concurrently together with file

loading. As a result, SAX serves as a light-weight solution
compared with DOM when it comes to parse XML files.

For SAX, the size of the document usually is not that noteworthy
since the parsing process is mainly done by extracting data in
order. However, since the tree of the XML document is created in
the memory, the bigger the XML file, the bigger the tree
document is generated. Therefore it can become noticeably when
the file size becomes extremely large and the size of the XML file

serves as the crucial part in choosing any kind of parser methods
in terms of memory consumption.

Figure 4. Parsing Example of SAX

6.2 Comparison with Previous Research
Deshmukh’s [6] disclosed that DOM performed faster than SAX
when file size was below 1 KB but memory consumption was
bigger. In this research, DOM did require larger time blocks to
finish parsing. However, the size interval of the file is not just
narrowed under 1 KB. It has been proved through rigorous

experiments that the finding is also true within the file size
ranging from 1 KB to 1024 KB (1 MB). The range of limitation of
the research result found by Deshmukh could be further expanded
at present since new and robust evidence has been testified.

In general, SAX consumes less system memory than DOM in
most scenarios. Therefore, in real project the choice of selecting
XML parsers should be made wisely since resources and time are
limited. There should be a trade-off between resources and time.

How to achieve an equilibrium is also a challenge to engineers. In
the case of parsing files within 1 MB, DOM may serve as a better
choice since the file size is not outrageous while the parsing speed
is still fast. DOM is particularly useful when it comes to parse

relatively small files. Nevertheless, when the size of file goes far
beyond than 1 MB, DOM stops serving as the best selection due
to SAX is both efficient and memory-saving.

6.3 Comparison with Previous Research
Deshmukh’s thesis in 2014 disclosed that DOM performed faster
than SAX when file size was below 1 KB but memory
consumption was bigger. In this research, DOM did require larger
time block to finish parsing. However, the size interval of file is
not just narrowed under 1 KB. It has been proved through
rigorous experiment that the finding is also true within the file

size range from 1 KB to 1024 KB (1 MB). The limitation of the
research result found by Deshmukh could be expended at present
since new and robust evidence has been testified.

In general, SAX consumed less system memory than DOM in
most scenarios. Therefore, in real project, the choice of selecting
XML parsers should be made wisely since resources and time are
limited. There should be a trade-off between resources and time.
How to achieve equilibrium is a challenge to engineers as we. In

the case of parsing files within 1 MB, DOM may serve as a better
choice since the file size is not outrageous and the parsing speed is
time-saving. DOM is particularly useful when it comes to parse
relatively small files. Nevertheless, when the size of file goes far
beyond than 1 MB, DOM stops serving as the best selection since
SAX is both efficient and memory-saving.

7. CONCLUSION
This experiment concluded that DOM API takes more time, more
memory with higher level of modifiability while SAX API takes
less time, less memory with lower level of modifiability. As a
consequence, DOM API will be helpful in modifying files and is
not suitable for operation on files of big size. SAX API is capable
of operating on files of big size, especially in reading specific

content, and it also allows users to create their own object models.
Nevertheless, performance is not the only decisive factor; while
choosing an XML parser, other criteria should be considered as
well, such as user’s demand, license fees, and technical
competence. The only limitation of the research is the researchers
solely utilised XML documents to evaluate DOM and SAX. Any
future research is recommended to be expanded on alternative
types of APIs and files with varying size.

8. REFERENCES
[1] Beal, V. 2017. What is API - Application Program Interface?.

Retrieved from https://www.webopedia.com/TERM/A/API.h

tml

[2] DOM. 2018. Introduction to the DOM. Retrieved from

https://dom.spec.whatwg.org/#introduction-to-the-dom

[3] Brownell, D. 2002. SAX2. Sebastopol, CA, USA: O’Reilly

& Associates, Inc.

[4] Mohseni, P. 2001. Choose Your Java XML Parser. Retrieved

from http://www.devx.com/xml/Article/16921

[5] Karre, S. and Elbaum, S. 2002. An Empirical Assessment of

XML Parsers, 6th Workshop on Web Engineering, 2002, pp.

39-46.

[6] Deshmukh, V. M., Bamnote, G.R., Kale, P. V. April 2014. A

Comparative Study of XML Parsers across Application.

International Journal of Computing and Technology, vol. 1,

no. 3, pp.4-6.

91

[7] Lam, T. C., Ding, J. J., and Liu, J. C. September 2008. XML

document parsing: Operational and performance

characteristics. IEEE Computer, vol. 41, no. 9, pp. 30-37.

[8] J. Holm & M. Gustavsson. 2018. XML Parsers - A

comparative study with respect to adaptability. Retrieved
from http://www.diva-

[9] Shanmugasundaram, J., Shekita, E., Barr, R. et al. 2001.

Efficiently publishing relational data as XML documents.

Proceedings of the 26th International Conference on Very

Large Databases, Cairo, Egypt, 2000.

[10] L. Wan. May, 2013. Research and Implementation of the

Transformation from Unstructured to Structured Data.

Retrieved from http://www.doc88.com/p-

9435446778415.html

[11] Holm, J. and Gustavsson, M. (2018). XML Parsers: A
comparative study with respect to adaptability. Bachelor
Degree Project in Information Technology.

[12] Saxena, A. & Kothari, S. 2015. An Empirical Analysis of
XML parsing using various operating systems. International

Journal of Engineering and Applied Sciences (IJEAS).
Volume-2, Issue-2, February 2015. pp 37-40. ISSN: 2394-
3661.

[13] S. C. Haw and Rao, R. K. (2007). A Comparative Study and
Benchmarking on XML Parsers. Advanced Communication
Technology, The 9th International Conference (Volume:1, pp.
321-325).

[14] Oliveira, B., Santos, V. and Belo, O. 2013. Processing XML
with Java – A Performance Benchmark. International Journal
of New Computer Architectures and their Applications. 3.
72-85.

[15] Zhao, L., Laxmi B. 2006. Performance Evaluation and
Acceleration for XML Data Parsing.

[16] Chengkai Li. 2017. XML Parsing, SAX/DOM.

[17] Ruchita, A. K., V. M. Deshmukh. 2014. Performance
Evaluation of XML Parsing for Tree-Branch Symbiosis
Algorithm. International Journal of Advance Engineering and
Research Development (IJAERD) (Volume 1, Issue 6).

Appendix

92

