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Abstract 

A parallel message-passing implementation of a molecular dynamics (MD) program that is useful for bio(macro)mole- 
cules in aqueous environment is described. The software has been developed for a custom-designed 32-processor ring 
GROMACS (GROningen MAchine for Chemical Simulation) with communication to and from left and right neighbours, 
but can mn on any parallel system onto which a a ring of processors can be mapped and which supports PVM-like 
block send and receive calls. The GROMACS software consists of a preprocessor, a parallel MD and energy minimization 
p~ogram that can use an arbitrary number of processors (including one), an optional monitor, and several analysis tools. 
The programs are written in ANSI C and available by ftp (information: gromacs@chem.rug.nl). The functionality is based 
on the GROMOS (GROningen MOlecular Simulation) package (van Gunsteren and Berendsen, 1987; BIOMOS B.V., 
Nijenborgh 4, 9747 AG Groningen). Conversion programs between GROMOS and GROMACS formats are included. 

The MD program can handle rectangular periodic boundary conditions with temperature and pressure scaling. The 
interactions that can be handled without modification are variable non-bonded pair interactions with Coulomb and Lennard- 
Jones or Buckingham potentials, using a twin-range cut-off based on charge groups, and fixed bonded interactions of either 
harmonic or constraint type for bonds and bond angles and either periodic or cosine power series interactions for dihedral 
angles. Special forces can be added to groups of particles (for non-equilibrium dynamics or for position restraining) or 
between particles (for distance restraints). The parallelism is based on particle decomposition. Interprocessor communication 
is largely limited to position and force distribution over the ring once per time step. 

Keywords: Molecular dynamics; Parallel computing 

PROGRAM SUMMARY 

Title of program: GROMACS version 1.0 

Program obtainable from: University of Groningen by ftp, infor- 
mation by email to gromacs@chem.rug.nl. Manual obtainable 
in postscript format, from 
ftp ://ftp. eh~. rug. nl/dist/gr~acs/manual, ps 
or from 

http:/ /rugmd0, chela, rug. nl/'gmx/gmx, egi 
For those without intemet access a tape distribution will be avail- 
able. 

Hardware obtainable from: CHESS EngiBeerillg B.V., Nieuwe- 
gracht 39, 2011 NC Haarlem, The Netherlands, fax: +31-23- 
323302. 

Licensing provisions: The GROMACS source code is available 

0010-4655/95/$09.50 (~ 1995 Elsevier Science B.V. All fights reserved 
$SD10010-4655 ( 95 ) 00042-9 



44 H.J.C Berendsen et al. / Computer Physics Communications 91 (1995) 43-56 

for a nominal administration fee for non-commercial use. For 
commercial use a licensing fee is charged. To get access to the 
software a license agreement must be signed. To receive a license 
agreement and all other information needed to obtain GROMACS 
source code, as well as information on the licensing fee, please 
send an e-mail to g 'mx-l iconse~chem.rug.nl  with a message 
body of SEND LICENSE and an information sheet and license 
agreement form will be automatically sent to the from: address 
of the message. 

Computer for which the program is designed and others on which 
it has been tested: GROMACS processor ring; Convex C220, 
HP 735, Sun, Silicon Graphics single processors; SGI Power 
Challenge, Convex Exemplar, CRAY C90 and IBM CP-2 multi- 
processor systems. 

Operating system under which the program has been tested: 
UNIX 

Programming language used: C 

Memory required to execute with typical data: Depends on number 
and type of atoms and cut-off range; typically a system of 10000 
atoms will run on a 16 Mbyte single processor work station. 

No. of bits in a word: 32 (64 optional); some variables use 64 bit 

No. of processors used: up to 32; software allows n > 1 proces- 
sors; communication to neighbours in a ring architecture 

No. of lines in distributed program, including test data, etc.: 
approx. 80000 

Keywords: molecular dynamics, GROMACS, parallel computa- 
tion, particle decomposition 

Nature of physical problem 
Analysis and prediction of dynamic behaviour of (biological) 
macromolecules in solution; study of non-equilibrium processes 
under external driving forces; structural refinement using exper- 

imental constraints; optimization and regularisation of proposed 
structures. 

Method of solution 
Molecular dynamics simulation of (bio)macromolecules in a sol- 
vent, using classical equations of motion and force fields based on 
variable non-bonded interactions, and fixed bonded interactions. 
The system is coupled to an external bath of constant temperature 
and/or pressure. Rectangular periodic conditions are allowed. 
Bond lengths (and angles) can be constrained. External forces 
and force field terms related to experimental constraints can be 
added. 

Restrictions on the complexity of the problem 
The following restrictions apply to this version of GROMACS: 
system size limited by memory and number of processors and 
dependent on complexity of interactions; long-range electrostatic 
interaction is not explicitly treated and will restrict validity of ionic 
systems; classical dynamics limits validity if degrees of freedom 
are included with essential quantum character; non-polarisable 
force fields are used. 

Typical running time 
A typical small biomolecule (a peptide of 20 residues) in water 
(8600 atoms total) runs 100 time steps (0.2 ps) in one minute 
on a 32-i860 processor machine. This means 12 ps per hour or 1 
ns in 3 days. 

Unusual features of the program 
The program consists of a serial preprocessor that takes care 
of system decomposition and molecular topology definition, the 
parallel MD program kernel, and a number of post-processing 
analysis programs. The pre- and postprocessors are ANSI C pro- 
grams that can run on any workstation. The parallel MD program 
runs on any single-processor machine in its nproe-1  option and 
runs on parallel machines, on which a ring of processors can be 
mapped and which support PVM-like send and receive calls, in 
its nproc > 1 option. 

L O N G  W R I T E - U P  

1. Molecular dynamics of large molecular systems 

Class ica l  m o l e c u l a r  d y n a m i c s  s imu la t i ons  o f  m o l e c u l a r  sys tems  invo lves  the  so lu t ion  o f  N e w t o n ' s  equa t i ons  

o f  m o t i o n  in smal l  t i m e  steps,  ba sed  on  car tes ian  coord ina tes  o f  the  par t ic les  and  us ing  a conse rva t ive  fo rce  field. 

To avo id  adve r se  b o u n d a r y  effects,  pe r iod ic  (bu t  no t  necessar i ly  cub ic )  b o u n d a r y  c o n d i t i o n s  are e m p l o y e d .  T h e  

m e t h o d s  are w e l l - k n o w n  and  wil l  no t  be  desc r ibed  he re  [ 1 ,2] .  The  G R O M A C S  p r o g r a m  is essen t ia l ly  based  on  

the  sequen t i a l  G R O M O S  package  [ 3 ], w h i c h  was  deve loped  for  the  p u r p o s e  o f  s i m u l a t i n g  b i o ( m a c r o ) m o l e c u l e s  
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in solution. Descriptions of our prototype machine and of special software features incorporated in GROMACS 
have been published [4-6]. The design choices that were made for GROMACS include: 

(i) There are three types of forces: bonded forces based on fixed lists and including up to four-body in- 
teractions, non-bonded forces based on dynamic lists of particle pairs, and external forces allowing 
non-equilibrium driving forces. The force-field terms used are summarized in Section 3. 

(ii) The non-bonded force calculation is based on a pair list which is updated every n steps. Particles are 
grouped in charge groups containing one or a few particles. The criterium for inclusion in the list is 
whether the centers of the charge groups are within a given cut-off radius. This procedure avoids the 
'creation' of charges from neutral groups by applying a cut-off criterium to individual pairs of partially 
charged atoms [7]. The parallel pair list generation is decribed in Section 4. 

(iii) Optionally a twin-range cut-offcan be used: while making up the pair list with charge-group cut-off radius 
Rshort, the Coulomb forces between particles of charge groups at a distance between Rshort and Rlons are 
computed, accumulated per atom and stored. These long-range shell forces are kept constant over n time 
steps and added to the short-range forces. This represents the simplest form of the multiple time-step 
method of Street et al. [8]. 

(iv) The leap-frog algorithm [9], which is equivalent to the Verlet [10] algorithm, is used to solve the 
equations of motion. This involves positions at integer times (measured in time steps) and velocities at 
half-integer times. The system is coupled by a first-order response to a 'bath' of constant temperature 
and pressure [ 11] with adjustable time constants. This coupling is realized by scaling the velocities, 
resp. coordinates, based on temperature, resp. pressure, at the previous time step. The update algorithm is 
decribed in Section 2. 

(v) Covalent bond lengths and angles can be optionally constrained; the resulting constrained equations of 
motions are solved by the SHAKE algorithm. [12] SHAKE changes an unconstrained configuration 
{r'} into a constrained configuration {r} with displacement vectors in a direction given by a reference 
configuration {rref}; this is denoted by 

SHAKE(r'  --~ r ;  r r e f )  

SHAKE uses the coordinates of the previous step as reference. The correction r '  - r represents the con- 
straint forces acting on the particles, multiplied by (At)2/mi, and can be used to derive the contributions 
of the constraint forces to the pressure. 

2. The update algorithm 

The following algorithm for the update of velocities and coordinates is used [ 11 ]: 
Given at time t: velocities v = v i ( t  - l A t ) ,  coordinates r = r i ( t ) ,  box vectors b, velocity and coordinate 

scaling factors A and/z. 
The scaling factors are given by 

[ / /1 A= 1 +  At To 
r---~ T( t  --~At) 1 , /~ = 1 + /3{P(t) - P0} 

Here To and P0 are the reference temperature and pressure and/3 is an estimate for the compressibility. The 
program allows different temperature scaling for different groups of atoms. The scaling factor/z is a diagonal 
tensor in case an anisotropic scaling is used and the pressure is also expressed as a (diagonal) tensor. The 
coupling time constant rp may also be chosen to be anisotropic, thus even allowing pressure scaling in one 
dimension and constant size simulation in another. 

(i) Compute accelerations: a = F i ( t ) / m i ,  where F is the force disregarding constraints. 
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(ii) Update and scale velocities: v I = a ( v  + aAt) .  
(iii) Compute new unconstrained coordinates: r ~ = r + v ' A t .  

(iv) Apply SHAKE to coordinates: SHAKE(/  --~ r"; r). 
(v) Correct velocities for constraints: v = ( r"  - r)  /At .  

(vi) Scale coordinates and box: r =/zr" ;  b ---/zb. 
The particle position may drift outside the box. They are reset in the box before a new pair list is made up. 
There are provisions to "freeze" (prevent motion of) selected particles. 

3. Force field 

There are several choices for the three types of forces. We list the equations for the potential energy; the 
forces are simply derivatives with respect to particle coordinates. The choice of parameters is made by including 
appropriate files in the preprocessing stage; at present GROMOS and OPLS [ 13 ] force fields files are available. 
In this version of GROMACS analytical rather than numerical derivatives are implemented. Note that non- 
bonded forces are only considered for pairs of atoms that belong to charge groups within a given cut-off radius. 
This means that, although forces are derivatives of potentials, the potentials V are not equal to the integrals of 
the forces VI: 

V ( r )  ~ V ' ( r )  = f F ( r ' ) d r ' .  

- - 0 0  

We define: rij = r i  - rj  and r = [rl. 

3.1. Non-bonded forces 

Based on a pair list that also contains information on the image shift that must be made to obtain the nearest 
image of the considered pair, central force components are computed: 

Fi = - F j  = OV(rij) r O . 
3rij rij 

The possible interactions are 
• short-range repulsion: V ( r )  = Cl2/r  12 or V(r )  = A e x p ( - B r ) ,  
• dispersion interaction: V ( r )  = - C 6 / r  6 , 

• Coulomb interaction f q i q i / r ,  
The parameters Cl2, C6, A, B are dependent on the atomtypes of both atoms of a pair. The charges qi are at- 
tributes of each atom (not of atomtypes, thus allowing more flexibility in force field adjustments). The constant 
f is an electric factor equal to 1/47re0; for the units used in GROMACS: (mass: atomic mass units, length: 
nm, time: ps, charge: elementary charge e, and therefore energy: kJ/mol) f = 138.935485(4-9). 

3.2. Bonded forces 

Bonded forces are based on a fixed list of atoms per interaction. The following types are incorporated: 
Covalent bonds: This is a two-body harmonic potential V ( r )  = ½kb(r -- b) 2, which can be replaced by a 
constraint. 
Covalent bond angles: This is a three-body harmonic potential 

V ( r l , r 2 , r 3 )  = ½ka(O - -  0 0 )  2 , 
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where 0 is the angle between/'21 and r23. The bond angle potential can also be replaced by a constraint of the 
distance 2-3 if the two bonds 1-2 and 2-3 are constrained as well. 
Dihedral angles: This is a four-body potential 

V(r l ,  r2, r3, r 4 )  = 1V0[ 1 + cos(nt~ -- d~0) ] , 

where ~ is the angle between the planes defined by (r12, r31 } and {r32, r43}. In conjunction with this periodic 
potential a special pair interaction of the form C12/r 12 - C6/r 6 can be added between particles 1 and 4. An 
allowed alternative form is the Ryckaert-Bellemans potential [ 14] 

5 

V ( d~ ) = E an COSn c~ . 
n=O 

Improper dihedrals: These are four-body harmonic potentials used to keep groups planar or to prevent dihedral 
angles excursions that could lead to unwanted mirror images. 
Distance-restraining potentials: These are meant for the incorporation of experimental data on the distance 
between given atom pairs, such as can be derived from Nuclear Overhauser Effect measurements in nuclear 
magnetic resonance (NMR). They are based on a special fixed pair list and have the form of a continuous 
function with continuous derivative, with V = 0 for r < rl, increasing quadratically between rl and r2 and 
linearly beyond r2. 

3.3. External forces 

Position-restraining forces: Forces that represent an external potential 

V = ½ E k i ( r i -  r°) 2 , 
i 

where r ° is a given reference structure, can be added on the basis of a separate fixed list. Its purpose is 
to restrain a structure close to a given reference, e.g. in an outer shell for reduced systems, or during an 
equilibration to avoid unrealistic structural changes. 
External accelerations: There are provisions to add external forces in the form of additional accelerations that 
are applied to specified groups of atoms. They can be used in NEMD (Non-equilibrium molecular dynamics). 

4. Parallel concepts 

There are two basically different methods to parallelize an algorithm: data parallel and message passing 
methods. The former method allows the user to define arrays on which to operate in parallel; programming 
in this way is much like vectorising. Its advantage is that it is easier for the user; the parallelization is taken 
care of by the compiler. Its disadvantages are that standard data-parallel programming languages are still 
under development and that the level of parallelization can not always be optimized. With message-passing 
methods all parallelism is explicitly programmed by the user. The disadvantage of the latter is that it takes 
extra code and effort, but the advantage is that the programmer keeps full control over the data flow and 
can do optimisations that a compiler would never generate. For better efficiency, portability and for historical 
reasons we chose message-passing as the programming method. Our program was initially designed for a 
special-purpose machine with a ring architecture and without tools for data-parallel programming. 

The approach we took to parallellism was a minimalist one: use as few non-standard elements as possible 
and use the simplest processor topology that does the job. We therefore decided to use a standard language 
(ANSI-C) with as few non-standard routines as possible: Only five non-standard communication routines are 
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used. The simplest communication architecture, a ring of processors, provides all functionality that is needed; a 
ring can be mapped onto almost all commercial parallel computers (including hypercube and tree architectures) 
and a ring can be realized with a minimum of special hardware requirements. 

When using a message-passing scheme one has to divide particles over processors, which can be done in two 
ways, either by space (or domain) decomposition or by particle decomposition. Space decomposition divides 
real space over the processors, in the case of a ring architecture and homogeneous density of particles most 
logically in slabs of equal width. It has the advantage that neighbour search can be done locally (involving a 
limited number of neighbouring processors) rather than globally, and that coordinates and partial forces have to 
be communicated only locally to compute forces. But this advantage only works if the cut-off radius is small 
compared to system size. A disadvantage is that particles move between processors, so much bookkeeping is 
required to keep track of all complex data related to fixed interaction lists such as occur in macromolecules 
with 3- and 4-body interactions and with SHAKE. Particle decomposition means that particles are allocated 
to processors (thus each particle has its 'home processor') and each processor computes interactions for its 
'home particles', which do not exchange between processors. Programming with particle decomposition is more 
straightforward at the expense of more communication. The latter is not severe in our cases of interest where 
cut-off radii are not really small compared to system size. 

We have chosen for a simple particle decomposition and for a communication scheme that sends all coordi- 
nates and partial forces once per time step around ha/f the ring. Thus each processor keeps a copy of half of all 
coordinates. This seems a wasteful use of memory because only a fraction (maybe 20%) of these coordinates 
are really needed, but memory requirements are overwhelmingly determined by the storage of pair lists. Of the 
latter only the local part is made up and stored by each processor. 

The need to communicate only over half the ring is related to the use of action = reaction (Newton's third 
law). For every pair i , j  the force Fij needs to be calculated once; this means that the pair coordinates need to 
be present in only one processor. Communicating over half the ring implies that for every pair i, j either ri is 
transmitted to the home processor of particle j or rj is transmitted to the home processor of particle i. After the 
forces have been computed and partial sums (over each processor) have been made up, these partial sums are 
transmitted over half the ring (in a direction opposite the coordinate communication), after which the forces 
can be globally summed. 

The pairs should be evenly distributed over the processors for proper load balancing. The communication 
scheme mentioned above allows to assign an equal number of non-bonded neighbours to each particle in its 
home processor. The pairs ( i , j )  considered by the home processor o f / d o  not simply consist of all j : i < j < n 
(a shorter list for larger i) but rather of j = kmodn for all k : i < k <_ (i + n /2 )  (a list of constant length). 

A special method has been implemented to avoid determination of the nearest image each time forces are 
evaluated. While the pair list is made up, the nearest image is determined by a box displacement vector for 
each pair. The displacement vector is one of 27 possible vectors and is completely identified by an index 1...27. 
This index is kept in the pair list and remains valid until the pair list is updated. The use of the image identifier 
also enables an efficient summing of terms for the virial calculation, which is required to compute the pressure. 
The virial ~ from non-bonded pair interactions in a periodic system is given by 

~, = 1 Z rij ' Fij . 
pairs i,j 

The virial summation is normally carried out in the inner loop of the double (i, j )  loop, but this can be avoided 
and reformulated as a single sum. A full description of this method is given in Ref. [ 16]. 
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5. The GROMACS algorithm 

After loading the program and data, the MD program performs a preset number of time steps. After each 
specified number of steps output may be written. Every MD time step consists of the following phases: 

(i) Starting from its home processor, the position of each particle i is distributed anticlockwise over half the 
ring. 

(ii) If required (e.g., once every 20 time steps), a neighbour list is constructed and 'shell forces' from particles 
between Rshort and Rlong are computed. 

(iii) All forces are computed and partial sums of forces are accumulated in each processor. 
(iv) Partial sums of forces on every particle i are communicated, going in clockwise direction over half the 

ring. The forces are summed to net forces in each home processor. 
(v) Using the net forces, velocities and positions are updated for every particle on its home processor. If 

required, SHAKE is performed. 
The last point needs clarification. In the present version of GROMACS, SHAKE has not been parallelized 

yet. SHAKE is an iterative procedure, extending over a molecule, the parallelization of which needs special 
care. A parallelized version has been proposed by DeBolt and Kollman [15]. There is no need for a parallel 
version if SHAKE is only performed on molecules that are entirely situated on one home processor (as can be 
set in GROMACS), or if SHAKE is only applied to bonds or bond angles involving hydrogen. 

6. GROMACS preprocessor 

The gromacs software employs a preprocessor which has to be run before the simulations or minimization 
can be started. The preprocessor is not parallellized. The reasons to separate the preprocessing phase are the 
following: 

(i) Flexibility. A user can prepare GROMACS runs on a local system without occupying a parallel system. 
Parsing input files and processing the input takes time, proportional to the number of atoms. For a large 
system (e.g. 10000 atoms) this is in the order of a few minutes on a workstation. There is also a 
considerable amount of disk I /O necessary which can remain local: only one file communicates with the 
simulation engine. The required disk space is often prohibitive on our special purpose MD computers. 

(ii) Memory. As we use special purpose MD engines with a limited amount of RAM, preprocessing is not 
possible there on a single processor for large systems. 

(iii) Reusability. The binary file that is produced by the preprocessing software is also used as an input file in 
many analysis tools that require information about the molecular topology (e.g. the trajectory viewer) 

(iv) Clarity of the code. Because of the broad functionality of the preprocessor, the amount of code is large 
( >  10000 lines), separating this code from the MD code implies that bugs in the preprocessing software 
do not invalidate the MD software. 

The gromacs preprocessor (grompp) reads a molecular topology file, checks the validity of the file, and 
expands the topology from a molecular description to an atomic description. The topology file contains infor- 
mation about molecule types and the number of molecules, the preprocessor copies each molecule as needed. 
There is no limitation on the number of molecule types. Bonds and bond-angles can be converted into con- 
straints, separately for hydrogens and heavy atoms. Then a coordinate file is read and velocities can be generated 
from a Maxwellian distribution if requested, grompp also reads parameters for the mdrun (eg. number of MD 
steps, time step, cut-off), and others such as NEMD (Non-Equilibrium Molecular Dynamics) parameters, such 
as external accelerations, which are corrected so that the net acceleration is zero. Eventually a binary file is 
produced that can serve as the sole input file for the MD program (see Fig. 1 ) 

Another important program is pdb2g'mx, the pdb to gromacs converter. This program converts a Brookhaven 
Protein Data Bank file to a molecular topology, generates hydrogen positions and disulphide bridges. It uses a 
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xxx.gro xxx.mdp xxx.ndx xxx.top 

1 1 l 1 
grompp 

xxx.tpb 

mdrun 

yyy.log yyy.trl yyy.gro 

Fig. 1. Data flow scheme from preprocessor to mdrun. 

Table 1 
File formats: A stands for ascii, B for binary 

Name Ext. B / A Opt. Description 

grompp .mdp A -f 
traj .trj B 
conf .gro A -c 
run .log A -1 
index .ndx A °n 
topoi .top A -p 
topoi .tpb B -s 

grompp input file with MD parameters 
Trajectory file 
Coordinate file in Gromos-87 format 
Log file from MD run 
GROMACS indexfile 
GROMACS topology file 
Binary GROMACS topology 

database of  residues to build up lists of  bonds. From these bonds, angles and dihedrals are generated, dihedrals 
are compared to a list of  improper dihedrals from the residue database, and converted when necessary. From 
every possible description of  a torsion angle one is chosen, such that the number of  hydrogen atoms describing 
the torsion is minimal. The force constants in the Gromos forcefield are such that a torsion is modelled by 
a single potential. The program is not restricted to proteins, but can handle any residue type that is in the 
database. 

A number of  other programs and tools that we will not describe in detail here are available; among these are 
conversion utilities for Gromos and OPLS forcefield files. 

The files listed in Table 1 are in use. 

7. Communication primitives 

The communication scheme used in the GROMACS software is based on a ring architecture, so every 
processor only communicates with its nearest two neighbours (i.e., the processor on the left and the processor 
on the right). To implement the interprocessor communication structure we have designed a communication 
interface consisting of  six different routines. This communication interface is designed in such a way that 
the calls are easily mappable onto other message passing paradigms. The choice of  designing this propiarity 
communication interface instead of  using an existing paradigm is made with the background of  our own ring- 
based hardware. Implementing a so-called message passing 'standard' on this hardware would be too much 
effort for the simple ring-communication protocol the GROMACS software is using. 
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7.1. GROMACS implementation 

As stated before the message passing interface designed for GROMACS consists of 6 different routines. The 
implementation of these communication primitives is located in one single file, in order to minimize the effort 
needed for porting the software to another message passing paradigm. A brief overview of the primitives used 
is given here. 

void notwork_tx(int chan,void *buf,int bufsize) 
This routine asynchronously sends b u f s i z e  bytes from the buffer pointed to by the pointer buf  over the 
communication channel. The channel is identified by chart. 
void network_tx_wait(int chan) 
This routine implements a wait function until the asynchronous send operation associated with the communica- 
tions channel designated by chart has ended. 
void network_txs (int chart, void *bur, int bufsize) 
This routine synchronously sends b u f s i z e  bytes from the buffer pointed to by the pointer bur  to the processor 
or the process identified by chart. 
void network_rx(int chan,void *buf,int bufsize) 
This routine asynchronously receives bufsize bytes in the buffer pointed to by te pointer buf  from an commu- 
nication channel identified by chart. 
void network_rx_wait(int chain) 
This routine implements a wait function until the asynchronous receive operation, associated with the commu- 
nications channel designated by chart. 
void notwork_rxs(int chan,void *buf,int bufsizo) 
This routine asynchronously receives b u f s i z e  bytes from the buffer pointed to by the pointer bur  over the 
communication channel identified by chart. 
void network_init (int pid,int nprocs) 
This call initialises the network. On various machines one needs to for example define the network communi- 
cations and open the channels for use. This is being done in this routine. It sets the variable p i d  to a unique 
id for the processor it is executed on, and sets nprocs  to the number of processors allocated for this particular 
run. 
void get_loft_right (int nprocs, int pid, int *left, int *right) 
This routine maps the internal representation of the variables r i g h t  and l e f t  to the processor numbers of the 
processors that are virtually located on the 'left' and on the 'right' of the calling processor. The GROMACS 
program assumes a ring communication topology. Therefore it will only call the communication routines with 
a chart value of either l e f t  or r i g h t .  

The implementation of the synchronous send and receive calls can be done by calling the corresponding 
asynchronous call followed by a either rx  or tx_wai t  call. This reduces the number of message-passing 
paradigm specific calls to six. The message passing calls presented here are implemented directly onto the 
GROMACS hardware. 

7.2. PVM implementation 

To make the GROMACS program run on a machine that supports the PVM (Parallel Virtual Machine) [ 17] 
library as a message-passing paradigm one need to make an implementation of the C-routines described in 
ref [ 17] that makes use of the calls supplied by the PVM library. The C source code of such an implemen- 
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tation is given below mr the n e t w o r k ~ x , n e t w o r k ~ x s ,  and n e t w o r k ~ x _ w a i t  as an example. The complete 
implementation of all communication ~nctions can be ~und in the file pwaio,  c in the program code. 

#define network_tx pvmio_tx 
#define network txs pvmio_txs 
#define network_txwait pvmio_tx_wait 
#define DEFAULT_STRIDE i 

void pvmio_tx(int pid,void *buf,int bufsize) 
{ 

int bufid; 
bufid= pvm_initsend(PvmDataKaw); 
info = pvm_pkbyte( bur, bufsize, DEFAULT_STRIDE); 
info=pvm_send(pid,TAG); 

void pvmio_tx_wait(int pid) 
{ 

#ifdef PROFILING 
idlesend++ 

#endif 

} 

void pvmio_txs(int pid,void *buf,int bufsize) 
{ 

pvmio_tx(pid,buf,bufsize); 
pvmio_tx_wait(pid); 

} 

7.3. TCGMSG implementation 

GROMACS will support the tcgmsg message passing layer as well. Some vendors have special optimized 
versions of this library for their machines in addition to other libraries. GROMACS has a special routine 
t c g i o ,  c that can be used on machines that support this library. The implementation of the GROMACS 
message passing functions using the tcgmsg calls is straighttbrward. 

7.4. MPI  implementation 

Although in the current version GROMACS does not yet support the MPI (Message Passing Initiative) [ 18] 
as a communication paradigm it is as easy to implement as the PVM version of the program. MPI supports a 
number of extra features that will make the communication within the program more efficient, but when using 
these features one has to change the MD-kernel code as well as the message passing interface of GROMACS. 
This will result in less compatibility over the different soft- and hardware platforms with different (non-MPI) 
message passing layers. 
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8. Performance tests 

When comparing benchmark results for various machines running GROMACS a number of different quantities 
should be compared. At first we can compare the performance of GROMACS to another MD program running 
a simulation on the same molecular system with the same simulation parameters on the same computer. For 
the functionally similar GROMACS and GROMOS programs such comparisons have been made on a Convex 
C-220 single processor. GROMACS is roughly twice as fast as GROMOS, presumably due to optimizations in 
neighbour search and pair list structure. 

Secondly we can compare the performance of GROMACS running the same simulation on different com- 
puters, and thus comparing the computer performance. Several such tests have been made (on Cray C-90, 
IBM SP-2, Convex Exemplar, Silicon Graphics Power Challenge). We do not list the results here since a fair 
comparison is complicated by the effects of different individual optimizations. 

A comparison of our 32-processor prototype machine with CRAY Y/MP and NEC SX-3 (both single 
processor) on simulations of water, using optimized programs in all cases, has been published earlier [4]. Our 
32-processor system exceeds the Y/MP performance by a factor of 6 and the SX-3 by a factor between 3 and 
6. 

A third test concerns multi-processor runs with a varying number of processors on the same computer. We 
then can observe the scaling factor. The scaling factor depends highly on the time ratio between computation 
phases and the communication phases in a single simulation. 

Here we present a number of timings on a multi-processor i860 machine for different simulations, as well as 
different runs of the same system performed on an increasing number of processors. 

8.1. Test systems 

Three different test systems have been selected in order to form the GROMACS benchmark suite. 
• Water, 216 molecules; 1728 molecules. Update of the neighbourlist every 10 time steps, single cut-off .85 

r i m .  

• Box of Water with small peptide (20 residues), 8652 particles, Update of the neighbourlist every 10 time 
steps, single cut-off 1.0 nm, timings of 100 simulation time steps 
The results of the benchmarks can be found in Table 2. Scaling tests are performed on the same i860 

multi-processor system, running the peptide simulation for 100 steps on 6 - 32 processors. The results of this 
scaling experiment are displayed in Fig. 2 

8.2. Results 

Here we can see that the scaling performance is not optimal. The reason for this is partly that the 'peptide- 
in-water' problem is not very well balanced: the peptide is completely kept on one processor in order to allow 
SHAKE to be used, while the water molecules are distributed. Further optimisation will certainly be possible. 

9. Input and output conventions 

One of the key design initiatives of the GROMACS software was user-friendlyness. This is particularly 
important for the data formats used. The input files must be clear, readable ASCII text and comments must 
be possible. Also an interface to the standard file formats used in the field of biophysical chemistry (eg. The 
Brookhaven Protein Data Bank (PDB) format and eg. GROMOS) must be available. 
The output files have to be generic, to allow the user to write his own analysis programs in addition to the 
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Fig. 2. Scaling performance for peptide in water. 

Table 2 
Benchmark results with GROMACS on a multi-processor i860 machine; Mflops have been 'counted' in the program; non-floating point 
operations are not included (* : not enough memory) 

System Particles Steps CPU Mflop CPU-time (s) Mflop/s 

water216 648 1000 4 3098 154 20. ! 
water216 648 1000 28 3098 77 40.2 

water1728 5148 1000 4 25033 1294 19.3 
water1728 5148 1000 28 25033 299 83.7 

peptide 8652 100 4 5246 * 
peptide 8652 100 6 5246 194 27.0 
peptide 8652 100 28 5246 59 88.9 

analysis tools provided with the GROMACS software. A library of  C-functions to read the binary output files of  
the MD kernel, as well as a program to convert these files into a (human-readable)  ASCII  format is available. 

10. Hardware  

For running GROMACS at our laboratory, a special piece of  hardware has been constructed by CHESS 
Engineering B.V., located in Haarlem, the Netherlands. This multi-processor machine has a r ing  communication 
structure to fit the requirements of  the program without imposing routing overhead when using another topology. 
The GROMACS machine consists of  a number of  custom designed, VME-sized CPU-boards,  each holding two 
Intel i860 CPU's  running at 40 MHz. These CPUs are particularly suited for scientific calculations because of  
their dual vector-oriented floating point units. The theoretical peak performance of  the i860 CPU is 80 Mflop 

per second. 
Each VME board holds 8 Mbytes of  dynamic memory per CPU (this memory is expandable to 64 Mbytes  per 
CPU).  The CPUs on the board are totally independent of  each other. Per CPU a custom designed D M A  (Direct  
Memory Access) unit is used to drive the two 8-bit communication channels. The interprocessor communication 
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Fig. 3. Gromacs setup. 

speed over these DMA channels is 10 Mbytes per second when communicating sufficiently large blocks of  data 
(typically 100 Kbytes).  

Currently the machine in our laboratory holds 16 CPU boards, making a total of  32 CPUs on a single VME 
backplane. The machine is connected by means of  a VME-to-sbus coupler to a SUN-LX type workstation that is 
used as a host. Fig. 3 shows a the setup. The SUN machine provides a easily network-accessible programming 
environment (UNIX)  and the necessary disk storage. 

11. Future improvements 

The following improvements to the GROMACS software are intended: 
(i) Oblique (triclinic) box sizes and tensorial pressure coupling, thus allowing all kinds of  primitive cells. 

(ii) Long-range interactions by augmenting a modified short-range interaction with a Poisson solver. The need 
for charge groups and twin-range interactions will then become obsolete. 

(iii) Parallel SHAKE. 
(iv) Automatic load balancing by redistribution of  particles over processors. 
(v)  More flexible force field handling. 

(vi) Polarisable shell model [19].  
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