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An analytical algorithm, called SETTLE, for resetting the positions and velocities to satisfy the holonomic 
constraints on the rigid water model is presented. This method is still based on the Cartesian coordinate 
system and can be used in place of SHAKE and RATTLE. We implemented this algorithm in the SPASMS 
package of molecular mechanics and dynamics. Several series of molecular dynamics simulations were car- 
ried out to examine the performance of the new algorithm in comparison with the original RATTLE method. 
It was found that SETTLE is of higher accuracy and is faster than RATTLE with reasonable tolerances 
by three to nine times on a scalar machine. Furthermore, the performance improvement ranged from fac- 
tors of 26 to 98 on a vector machine since the method presented is not iterative. 0 1992 by John Wiley & Sons, Inc. 

INTRODUCTION 

Molecular dynamics (MD) simulations have become 
an important tool in the field of computational 
chemistry.' This approach has been applied to in- 
vestigate relatively simple systems,2 as well as 
complex macromolecular systems." Because of re- 
cent advances in computing power, longer simula- 
tions with larger systems have been used to obtain 
robust results for slowly converging statistical me- 
chanical  average^.^ These systems often include 
thousands of solvent molecules either in a periodic 
box or in a spherical cap using a relatively small 
integration time step of 1 fs. 

The solvent models most frequently used are 
those of TIP3P and SPC water proposed by Jorgen- 
sen5 and Berendsen,' respectively. In the MD simu- 
lations with these water models, holonomic con- 
straints are usually employed to keep the bond 
lengths at their equilibrium values. This is done for 
TIP3P because this water model has been parame- 
terized based on Monte Carlo simulations using 
rigid molecular geometries. Another practical rea- 
son for using these constraints is that they provide 
the possibility of using a larger time step size, and, 
hence, the ratio of simulation time to computa- 
tional time is improved. If the number of water 
molecules is large, the computation time spent on 
the satisfaction of bond constraints is significant. 
Our experience with simulations using the TIP3P 
water model shows that typically 10-20% of the 
total calculation time is due to this part of the sim- 
ulation. Mertz et aL7 reported that 25% of compu- 

*Author to whom all correspondence should be addressed. 

tation time is spent on the constraint procedure for 
a pure solvent system. In addition, in the case of 
recent intensive simulations with a time increment 
of 1 fs, no constraints appear to be necessary for 
the solute molecules. Therefore, constraining rigid 
water molecules quickly and effectively will speed 
MD simulations. 

For rigid models, either Euler angles' or quater- 
nionsg can be used to represent the configuration. 
An alternative is to use the methods SHAKE and 
RATTLE devised by Ryckaert et al.'" and Ander- 
sen," respectively. These methods retain the sim- 
plicity of using Cartesian coordinates and avoid 
many of the complications of Euler equations and 
quaternions, while incorporating the effects of the 
restrained geometry of the molecule. 

In this paper we present an analytical algorithm 
for resetting the positions and velocities to satisfy 
the holonomic constraints on rigid water mole- 
cules. Since this method is still based on the Carte- 
sian coordinate system, it can be used in place of 
SHAKE and RATTLE incorporated in the Verlet al- 
gorithmI2 and the velocity Verlet a lg~r i thm, '~  re- 
spectively. Thus, the approach described here can 
be straightforwardly integrated into most standard 
MD packages, which employ the SHAKE or RAT- 
TLE algorithm in their constraint routines. In fact 
we have implemented this algorithm, referred to 
as "SETTLE", in the SPASMS package of molecu- 
lar mechanics and dynamics.14* Several series of 
MD simulations on a VAX8650 and an FPS500 were 

a SPASMS is an acronym for San Francisco Package of Appli- 
cations for the Simulation of Macromolecular Systems, a collec- 
tion of computer programs to be distributed by the University of 
California at San Francisco. 
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carried out to examine the performance of the new 
algorithm. 

ALGORITHM FOR SETTLE 

In this section we will discuss the procedure for in- 
tegrating the equations of motion of a system with 
holonomic constraints. Then we derive SETTLE, 
leaving more detailed equations to the appendices. 

We restrict our attention to the case of bond 
length constraints, which are expressed as 

where rU = rj - ri is the vector associated with 
the rigid bond between atoms i and j whose posi- 
tion vectors are ri and rj ,  respectively, and d, is 
the constraint value. In addition, the time deriva- 
tives of the above equation give constraints on the 
velocities, that is, 

(2) r . .  . v . .  - 0 v Y - 

where vij = vj - vi is the relative velocity acting 
on the atoms i a n d j  constituting the rigid bond and 
vi is the velocity of atom i. In a geometrical sense, 
this means the net velocity acting on the rigid bond 
must be perpendicular to that bond. In other words, 
the component of the relative velocity along the 
bond should be zero. The above constraint eq. ( 2 )  
can be applied to the velocity Verlet algorithm 
while the position constraint is applicable to all al- 
gorithms using the Cartesian coordinate system. 

The coordinate constraints are usually imple- 
mented into an MD algorithm by first taking an 
integration step in the absence of any constraint 
forces and then fulfilling these constraints by add- 
ing displacement vectors. When integrating the 
equations of motion in Cartesian coordinates, the 
solution of equation for the constrained motion is 
written as 

ri(to + 6 t )  = r!(to + s t )  + 6ri(to) (3) 
where .!(to + 6 t )  is the position vector after an 
unconstraint step ( 6 t )  and 6ri( to)  is the displace- 
ment vector required to satisfy the distance re- 
straints, 

6ri(to) = 1/2 * (6t)'/mi . Egij(to) 
= 112 * (&)'/mi * Chij(to)rij(to). (4) 

In the above equation, Lagrangian multipliers, 
Ai j ( t0)  (Ai j  = Aji)  are to be chosen so that the con- 
straint eq. ( 1 )  are satisfied at time to  + 6 t .  A physi- 
cal picture of this is that constraint forces [gij(to)] 
of equal magnitudes and opposite orientations are 
applied to the atoms i and j and are directed along 
the bond vectors [ru(to)] at time to. In the conven- 
tional method a set of quadratic equations for h, is 
obtained by substitution of eqs. (3) and (4) into eq. 
(1). The solution to the quadratic equations is given 

by first solving them in their linear form and subse- 
quently iterating them until all the constraints are 
fulfilled to within an acceptable tolerance. The lin- 
ear equations are solved by either matrix inversion 
or by the well-known SHAKE method.'O The com- 
puting time required for these procedures depends 
on the tolerance. 

The velocity constraints are also implemented 
into the velocity Verlet algorithm by first calculat- 
ing unconstrained velocities and then satisfying 
the restraints by adding correction velocities. The 
solution of the constrained velocity is therefore 
written as 

vi(to + 6 t )  = v;(to + 6 t )  + 6v i ( to  + st )  ( 5 )  
where v!(to + 6 t )  is the velocity which would have 
resulted in without the constraints at time to  + 6t  
while those constraints at time t o  are already taken 
into account. * 6vi(to + 6 t )  is the correction veloc- 
ity necessary to satisfy the constraints, 

6vi(to + 6 t )  = 6t/2mi * Cg_Lj((to + 6 t )  
= 6t/2mi * Chij(to + Gt)rij(to + 6 t )  (6) 

The constraint forces [gu(to + st)] are directed 
along the bond vectors [rV(to + 6t ) l  at time to  + 6 t  
and are chosen so that the velocities fulfill the con- 
straint eq. ( 2 )  exactly at time to  + 6t .  The iterative 
solution of these equations, RATTLE, has been 
given by Andersen. l 1  

One of the characteristics of the new algorithm 
SETTLE is to directly determine ri(to + 6t) by use 
of quasi-Euler angles without calculating con- 
straint forces, gij(to) explicitly. In the case of the 
rigid water molecule, three bonds are constrained, 
i.e., two real 0-H bonds with equal lengths and 
one fictitious H-H bond. In the following we ex- 
plain the SETTLE algorithm by taking a water mol- 
ecule H'O as a triangle ABC. Oxygen and hydro- 
gens corresponds to A ,  B, and C,  respectively, with 
the mass of ma and mb = m,. (In the case of HOD, 
mb is not equal to m,, resulting in simple modifica- 
tions of the equations given in the appendices.) 
The canonical triangle with three sides of fixed 
lengths is uniquely determined and we define such 
a unique triangle as AaoboCo, referring to its center 
of mass as do. 

Suppose AAoBoCo is a triangle at time t o ,  
AAIBIC1 is the triangle that would have been 
reached at time to  + 6 t  in the absence of any con- 
straints, AA3B3C3 is the corresponding one after 
applying constraints and v;~, vg3, and vE3, and V A ~ ,  

*Vi( t"  + 6 t )  = v?(to + 6 t )  + 6Vi( t0  + 6 t )  
= Vi(t0 + 112 ' 6 t )  + 112 . Gtf(t0 + 6 t )  

= v,(to) + 112 . Gtf(t0) + 112 . (6t)Zirni . Cgi,(t,) 

+ Sv,(to + 6 t )  

+ 112 . 6tf(to + 6 t )  + 6Vi(t0 + 6 t )  

where 112 . (6t)2/mi . Cgij(tO) is the velocity correction term due 
to  the constraint forces at time to. 
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vB3, and vc, are velocities of vertices before and 
after adding correction velocities at time to + 6 t ,  
respectively, as shown in Figure la .  If we define 
the plane that includes AAoBoCo as TO, three 
planes that are parallel to ?ro and include one of 
each apex of AAIBIC1 can be designated as T A ,  TB, 

and rC, respectively (Fig. lb). Since the constraint 
forces are directed along the bond at time to ,  each 
of the displacement vectors is on T A ,  TB,  and TC, 
respectively, with the resulting positions of the 
vertices A,, B,, and C3 lying on each of those 
planes, as shown in Figure lb.  The centers of mass 
of AAIBIC1 and AA,B3C,, D1 and D,, coincide with 
each other because the sum of the constraint 
forces is zero by definition. Aaoboco can be over- 
lapped with AA3B3 C3 through the proper rotation 
if the center of mass of Aaoboco, do is located in 
that of AA3B3C3, D3. 

Here, as shown in Figure lc,  let us introduce an 
alternative orthogonal coordinate system X’Y’Z’ in 
which the origin coincides with D1 = 0, = do, the 
X’Y‘ plane is parallel to ?ro, and the Y’Z’ plane in- 
cludes A l .  Since ro and Al are available after an 
unconstrained step, the matrix of orthogonal 
transformation is uniquely defined. If we place 
AaobOco on the X’Y’ plane so that do is situated at 
the origin of X’Y’Z’ system and a. is on the Y’  axis 
(Fig. 2a), then AA3B3C3 can be expressed as a rota- 
mer of Aaoboco relative to the origin using the fol- 
lowing procedure: After the initial rotation of 
Aaoboco by $ around the Y’ axis, Aalblcl is ob- 
tained as shown in Figure 2b. Aalblcl is then ro- 
tated by $ around the X‘ axis to produce Aa2b2c2 
(Fig. 2c), followed by the final rotation by 8 around 
the 2’ axis to give Aa3b3c3 which should overlap 
with AA,B,C, (Fig. 2d). Our approach is to deter- 
mine $, $, and 6 instead of X. Notice that the 2’ 
coordinates do not change after the rotation by 8 
(Z& = Z&, . . .) and that the 2’ coordinates of verti- 
ces Al,  B1 and C1 are the same as those of A3, B,, 
and C,, respectively (ZL3 = ZL,, . . .). Based on the 
above, as will be shown in Appendix A, $ and $ can 
be determined uniquely from the 2’ coordinates of 
Al,  B1, and C1. That is, the positions of a2, b2, and 
c2 can be obtained. 

In the next step, 8 can be calculated analytically 
by using the condition that constraint forces di- 
rected along the bond at time to are of equal magni- 
tudes and opposite orientations, and the detailed 
derivation will be presented in Appendix A. 8 can 
be then used to obtain the coordinates of Aa3b3c3 
E AA3B,C,, which can be used to calculate the 
constraint forces as appropriate. Although three 
Euler-like rotation angles are used in the above, 
the position of each apex is expressed explicitly in 
the way shown in Appendix A and, hence, this 
method is considered to be fully based on the Car- 
tesian coordinate system. 

In the case of velocity constraints, the constraint 
forces are directed along the bonds defined by 
AA3B3C3 at time to + 6 t .  Since only AA3B3C3 and 
time = to + 6 t  are involved in the argument on the 
velocity constraints, subscripts of vertices and in- 
dications of time will be omitted in the following. 
Let e A B ,  eBc, and ecA be the unit vectors of Z, 
E, and m. Then, bond vectors and constraint 
forces are written as 

~ A B  = ~ A B ~ A B ,  ~ B C  = ~ B C ~ B C ,  ~ C A  = ~ C A ~ C A  

g A B  = - g B A  = X A B r A B  = X A B r A B e A B  = T A B e A B  

gBc = - 6 C B  = hBcrBc = h B c r R C e B c  = T B C ~ B C  

g C A  = - g A C  = ACArCA = XCArCAeCA = TCAeCA 

where rij is the length of side ij and TAB = XABTAB,  

rBc = XBCTBC, and rCA = XCArCA are Lagrangian 
multipliers (Fig. 3 ) .  Equation ( 5 )  can be expressed 
as 

V A  = V: + 6t/2ma . g A  

= v: + 6 t / 2 m a  . ( g A B  + g A C )  

= v i  + 6t/2m, ’ ( T A B e A B  - TCAeCA) ( 7 - 1 )  

v g  = v; + 6 t / 2 m b  * g ,  

= v; + 6 t / 2 m b  * ( g B C  + g B A )  

= v$ + 6 t / 2 m b  * (TBCeBC - T A B e A B )  ( 7 - 2 )  

vc = v! + 6t/2mC . g c  
= v: + 6t/2mC . (&A + gcs)  

= v! + 6t/2m, * ( T C A e c A  - TOCeBC).  ( 7 - 3 )  

Substituting eq. ( 7 )  into eq. ( a ) ,  we can write the 
constraint relation applied to the bond AB as 

TAB ‘ V A B  

= r A B e A B  * [vi + 6 t / 2 m b  ‘ (TBCeBC - T A B e A B )  

- v; - 6 t / 2 m a  ’ ( T A B e A B  - T c A e c A ) ]  

= r A B e A B  * [vg - v; - 6 t / 2  ’ ( 1 h a  + l / m b ) T A B e A B  

+ 6t/2mb r B c e n c  + 6t/2ma * r c ~ e c ~ ]  

= r A B [ e A B  * vi - 6t /2  ’ ( lh ,  + l / m b ) r A B  

- 6 t I 2 m b  * rBc cos B - 6t/2m, * TCA cos A] 

= o  
:. 6t(m, + m b ) r A B  + 6 t  * marBCcosB 

where cos A and cos B are cosines of the apex an- 
gles of A and B. Similarly, denoting a cosine of the 
apex angle of C by cos C we obtain 

+ 6t * m h T C A  COS A = 2 m a m b e ~ ~  . V i s  (8-1) 

6t(mh + m C ) r B c  + 6 t  ’ m b r C A  cos c 
+ 6t - m c T A B  cos B = 2mbmceBC vgc ( 8 - 2 )  

+ 6t * marBC cos C = 2mCmaecA * vEA (8-3)  
Since the constraint relations of eq. (8) are simulta- 
neous linear equations with respect to the varia- 
bles, TAB, TBC, and TCA,  they can be solved by use of 

6t(m, m a ) T C A  + 6t * m C r A B  COS A 
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Figure 1. Schematic drawing of the geometric basis of the SETTLE method. 
(a) AAoBoCo is a triangle at time to, AAIBIC1 is the triangle that would have been 
reached at time to + 6t  in the absence of any constraints, and AA3B3C3 is the 
corresponding one after applying constraints. vS3, via, and vEa and vA3, vB3, and 
VC, are velocities of vertices before and after adding correction velocities at time 
to + 6 t ,  respectively. (b) The plane a0 includes AA,B&. Three planes, aA, as, 
and ac, are parallel to ao. Each of them includes one of the apexes of A l ,  B1, and 
C1, respectively. The constraint forces, g i j ,  are directed along the bond at time 
to. Each of the displacement vectors, 6ri, is therefore on aA, aB, or T ~ ,  respec- 
tively, with the resulting positions of the vertices As, B3, and C3 lying on each of 
those planes. D1 and D3 are centers of mass of AAIBIC1 and AA3B3C3, respec- 
tively. They coincide with each other because the sum of the constraint forces is 
zero by definition. (c) An alternative orthogonal coordinate system X'Y'Z' with 
its origin at D1 = D3 = do. The X'Y' plane is parallel to a. and the Y'Z' plane 
includes A l .  Since a. and A1 are available after an unconstrained step, the ma- 
trix of orthogonal transformation is uniquely defined. 

Cramer's rule, as shown in Appendix B. Substitut- 
ing the TAB, 7BC, and TCA into eq. (7), we get the 
constrained velocities, vA, vB, and vc. 

RESULTS AND DISCUSSION 

We incorporated the above described algorithm for 
rigid TIP3P water into the SPASMS package which 

uses RATTLE with the velocity Verlet scheme as 
its standard constraint algorithm. Since RATTLE 
includes SHAKE, a comparison between SETTLE 
and RATTLE were carried out. Several series of 
MD simulations mainly on a pure water system 
were performed to confirm the correct behavior of 
the algorithm, as well as to examine its perform- 
ance in comparison with that of conventional RAT- 
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Figure 2. Pseudo-Euler angle definition for a canonical triangle. (a) 
Aaoboco indicates the initial location of a canonical triangle in the X'Y'Z' 
system. Aaoboco lies on the X ' Y '  plane with its center of mass, do in the origin 
of X'Y'Z' system, and a. in the positive part of the Y' axis. r,, rb, and r, > 0. 
(b) The rotation of Aaoboco by $ around the Y' axis gives Aalblcl .  (c) 41 is a 
rotation angle about the X '  axis. (d) 0 gives a rotation of Aazb2cz around the 
2' axis, resulting in Aa3b3c3. 

TLE. In all the simulations a constant dielectric of 
1.0 and a nonbonded cutoff of 8.0 A were used. 

First, a periodic box of 216 TIP3P water mole- 
cules was warmed up to 300 K for 5 ps at constant 

g A C  = -ZCAeCA 

g C A  = TCAeCA 

g c B  = - f B C e B C  

time = to + 6t 

Figure 3. Schematic drawing for the velocity reset- 
ting. vi3,  v!&, and v& and V A ~ ,  vB,, and vc3 are velocities 
of vertices before and after adding correction velocities 
at time to + 6 t ,  respectively. In the case of velocity con- 
straint, the constraint forces, g,, are directed along 
the bonds defined by AA3B3C3 at time:to 6 t .  s t  
e A B ,  eBc, and ecA be the unit vectors of A B ,  BC, and CA. 
Then, constraint forces are written such that = 
T A B e A B  and g B A  = - 7 A B e A B .  

pressure (1 atm), followed by the equilibration for 
5 ps at constant volume. Switching to the NVE sim- 
ulation after warming was done to test energy con- 
servation, as will be described below. In the above 
calculations the original RATTLE method was used 
with a value of 5 x lop4  A for both position and 
velocity tolerance. Additional equilibrations for 
1 ps were performed with a variety of position and 
velocity tolerances from 5 x 1 0 - ~  to 1 x 1 0 - ~  A as 
well as with SETTLE. An integration time step of 
1 fs was used to obtain the set of equilibrated sys- 
tems (El). Table I lists the absolute accuracies of 
the constraints, i.e., bond length differences be- 
tween the equilibrated structures (El) and the ca- 
nonical geometry, the components of relative ve- 
locities along the bond directions, and the angles 
between the net velocities and the normals of the 
corresponding bonds. As one can see in Table I,  the 
SETTLE method gives very good accuracies, with 
less than 1.0 x lo-' A deviations for both position 
and velocity constraints, which correspond to 
those of a tolerance of less than 1 x l ows  A for the 
RATTLE approach. It seems that the errors in SET- 
TLE are only dependent on machine accuracy. Al- 
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Table I. Absolute accuracies obtained by SETTLE and RATTLE algorithms. 
~~~ 

RATTLE tolerance ( A )  
SETTLE 1 x 10-7 1 x 1 0 - 6  1 x 10-5 1 x 10-4 5 x 10-4 

Position ( A )  Averagea <1.0  x 4.3 x lo-* 4.8 x 5.1 x 5.0 x 2.5 x 
rmsh <1.0 x 5.6 x lo-* 6.3 x 6.4 x 6.4 x 3.2 x 

Velocity ( A )  Averagea < l . O  x lo-’ 5.0 x 5.0 x 5.0 x 5.1 x 2.4 x 
(bond comp.)C rmsh <1.0 x 6.4 x 6.4 x 6.5 x l op6  6.4 x 3.2 x 

(angle)d rmsb 7.5 x 10-5 4.3 x 10-4 4.9 x 10-3 4.5 x 10-2 3.8 x 10-1 2.3 
Velocity (”) Averagea 7.5 x 2.5 x 2.8 x 2.6 x 2.3 x lo-’ 1.2 

aAverage = [C(r, - di j ) ] /n .  
hrms = {[C(rij - dij)z]/n}1’2.  
‘The component of the relativ? velocity along the corresponding constraint bond multiplied by the time step of 6 t .  It 

therefore has the dimension of A .  
dThe angle between the relative velocity and the normal of the corresponding constraint bond. 

though not shown in Table I, the conventional 
method results in the imbalance of the errors of 
bond distances. In the case of the tolerance of 5 x 
l op4  A ,  for example, the 0 -H bond length is 
longer than the equilibrium one by 3.8 x A 
on average while H-H distances are shorter than 
the target value by 1.5 x A in general. A 
similar imbalance is also observed for the velocity 
restraint. 

Next, another equilibration was done using the 
same water box system. After warming to 300 K 
for 5 ps at 1 atm, the system was equilibrated for 5 
ps under a constant volume condition using the 
new method with a step size of 1 fs. The SETTLE 
algorithm is naturally applicable to any type of 
simulation such as the NTP and NVE types. Em- 
ploying the system thus obtained (E2) as the start- 
ing structure, two sets of MD simulations of the 
NVE type were carried out applying both the new 
method and the original approach with a variety of 
tolerances. One set consisted of 1 step MD runs 
while the other was constituted of 100 step runs. A 
time step of 1 fs was used in both cases. The com- 
parison of the structure obtained by SETTLE to 
those of RATTLE gives another kind of accuracy, 
i.e., relative accuracy, which is shown in Table 11. 
The tighter the tolerance is, the smaller the differ- 
ences are. In other words, the configurations of 
the system based on both methods converge as the 
error tolerance becomes smaller. This indicates 
that the new algorithm works correctly and is 
equivalent to RATTLE. Interestingly, the magni- 
tudes of velocity differences in 100 steps do not 
change at all compared to those of 1 step although 
the positions naturally deviate much more after 
100 steps. 

We then did NVE-type MD simulations of 200 
steps with time increments of 1 and 2 fs based on 
the equilibrated structure (E2). The rms fluctua- 
tions of the total energy were derived from the last 
100 steps; instabilities in the first several steps for 
the different tolerances might have biased the 
analysis. Since the residue-based switching func- 

tion for the calculation of nonbonded interaction 
energies was used, the total energy should be con- 
served in the above simulations without coupling 
to the heat bath. The magnitude of the fluctuation, 
therefore, might be used as one indication of the 
accuracy of the trajectory, as it was used by van 
Gunsteren et al.15 If the tolerance is smaller than a 
certain value, no significant change in the fluctua- 
tion of the total energy is observed, as shown in 
Figure 4, while the value itself is dependent on the 
time step. This feature had been reported by van 
Gunsteren et al. in their study on a small protein, 
bovine pancreatic trypsin inh ib i t~r . ’~  The new 
method naturally gives the smallest fluctuation 
values. Figure 4 suggests that the tolerance values 
of 1 x and 1 x A are reasonable for use 
with the conventional approach for the step sizes 
of 1 and 2 fs, respectively. More conservative val- 
ues such as 1 x A were used, however, in 
some studies. 7 , 1 5  

As the final analysis, the computation time spent 
for satisfying the constraints was examined. Using 
the initial structure of E l ,  100 step MD runs were 
performed twice for each configuration with time 
steps of 1 and 2 fs, respectively. Table I11 reports 
the averaged timings. The computer time for RAT- 
TLE increases roughly proportional to the negative 
logarithm of the tolerance value. In the case of the 
VAX8650 scalar machine, SETTLE is at least three 
to seven times faster than RATTLE with the allow- 
ances of 5 x lop4  and 1 x A ,  which are 
commonly used in conventional MD simulations. 
When the computation time is compared for the 
tolerances of 1 x and 1 x l o p 4  A, which give 
reasonably small fluctuations of the total energy, 
the performance increase over the original version 
ranges from factors of seven to nine. As one can 
see from the data listed for the 1 fs time step, the 
speed-up ratios are almost the same for both posi- 
tion and velocity constraint routines. With respect 
to the FPS500 vector machine, the performance 
improvement for the time increment of 2 fs 
amounts to a factor of 98. If RATTLE is used with a 
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MIYAMOTO AND KOLLMAN 958 

Table 11. Relative accuracies (rmsa) between SETTLE and RATTLE algorithms. 

No. of 
steps 

1 Position (4) 

100 Position (A )  
Velocity ( A )  (bond comp.)b 
Velocity (:) (angle)’ 

Velocity ( A )  (bond comp.)b 
Velocity (”) (ang1e)c 

RATTLE tolerance ( A )  
1 x 10-7 1 x 10-6 1 x 10-5 1 x 10-4 5 x 10-4 

8.3 x 10-8 9.4 x 10-7 9.4 x 10-6 9.5 x 10-5 4.7 x 10-4 
9.4 x 10-8 9.4 x 10-7 9.4 x 10-6  9.2 x 10-5 4.6 x 10-4 

9.3 x 10-8 9.5 x 10-7 9.4 x 10-6 9.5 x 10-5  4.7 x 10-4 

4.6 x 10-4 4.4 x 10-3 4.6 x 1 0 - 2  4.3 x 10-1 2.1 

4.1 x 10-4 4.3 x 10-3 4.2 x 10-2  4.3 x 10-1 2.2 

3.2 x 3.6 x 3.6 x 3.6 x 1.8 x 

arms = { [ ~ ( r ,  - dij)2]/n}”2. 
bThe component of the relativ? velocity along the corresponding constraint bond multiplied by the time step of 6 t .  It 

has therefore the dimension of A .  
“The angle between the relative velocity and the normal of the corresponding constraint bond. 

O . 1  

(kcaVmol) 

0 03 
O o 6 1  t l i  J” 

O + I { I  
1 0 ~ ~  10.’ , 0 ~ 3  

RATTLE 
tolerance (A) 

t 
SETTLE 

Figure 4. Relationship between the rms fluctuation of 
total energy and the tolerance. The rms fluctuation of 
the total energy obtained by the SETTLE method is 
shown in addition to those produced by the RATTLE 
approach with a variety of tolerances. Solid circles and 
open diamonds correspond to time steps of 1 and 2 fs, 
respectively. 

reasonable tolerance of 1 x A ,  the speed-up 
ratio is 39. This is due to the noniterative nature of 
the new algorithm. Since the computation time 
spent on RATTLE amounts to nearly 20%, in the 
case of the conventional method with a typical tol- 

erance, the reduction of the time obtained by SET- 
TLE is important. In fact, when applied to  practi- 
cal systems we have studied, i.e., calixspherand 
(166 atoms) in a periodic box of 11 10 TIP3P water 
molecules’6 and biotin (31 atoms) in a 502 TIP3P 
water box, the ratio spent on holonomic con- 
straints during the MD simulations was reduced 
from 28.5 to 28.9% (tolerance of 1 x l op5  A )  to 
4.1 and 4.4%, respectively, on the scalar computer 
with a step size of 1 fs. Significant reductions of 
the computation time from 43.1 and 45.2 to 1.4 
and 1.6% for the corresponding systems, respec- 
tively, were observed on the vector machine. In 
those simulations with SETTLE, no constraints 
were used for the solute molecules while the con- 
straints on the TIP3P water solvent were applied 
automatically. This kind of strategy for the inter- 
nal constraints seems to be suitable for coming out 
intensive simulations with the smaller time step of 
1 fs. 

As was shown in the previous section, the 
method presented here retains the simplicity of us- 
ing Cartesian coordinates. It can be used in place of 
the standard SHAKE and RATTLE routines for 
rigid water molecules. In addition, the new al- 
gorithm is applicable to other three-point rigid 

Table 111. Comparison of computation time (s) spent for constraints during MD simulations of a periodic box of water.a 

Time Machine 
step type 
1 fs Scalarb Position 

Velocity 
Total‘ 
Ratiod 

2 fs Scalarb TotalC 
Ratiod 

VectoP TotalC 
Ratiod 

SETTLE 

9.6 (2.9%) 
5.2 (1.5%) 

14.8 (4.4%) 
1.0 

14.9 (4.3%) 
1.0 

0.8 (1.8%) 
1.0 

RATTLE tolerance ( A )  
1 x 10-7 

153.1 (26.8%) 
90.8 (15.9%) 

243.9 (42.7%) 
16.5 

278.5 (45.8%) 
18.7 

78.6 (61.0%) 
98.3 

1 x 10-6 

187.6 (36.8%) 
12.7 

222.3 (40.0%) 
14.9 

63.3 (57.6%) 
79.1 

1 x 10-5 1 x 10-4 5 x 10-4 
31.4 (8.4%) 
14.8 (4.0%) 

136.5 (29.7%) 78.4 (19.1%) 46.2 (12.4%) 
9.2 5.3 3.1 

166.3 (33.6%) 110.9 (25.2%) 75.6 (18.6%) 
11.2 7.4 5.1 

46.9 (46.4%) 31.4 (40.7%) 21.1 (30.2%) 
58.6 39.3 26.4 

aValues in parentheses show the percentage of computational efforts with respect to entire computation time. 
bVAX8650 running under the VMS5.4 operating system. 
Ctotal = position + velocity. 
dRatio of total computation time spent for RATTLE to that of SETTLE. 
“FPS500 running under UNIX operator system. 
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SETTLE 959 

models by simple modifications of the equations. 
The MeOH model which employs the united atom 
approach for the methyl group is a good example. 
The SETTLE can be applied to a four-point water 
model like TIP4P5 which has the fourth point with 
a certain charge and no mass if the force acting on 
the fourth point is distributed onto the other three 
points with masses in a reasonable manner. 

Since SHAKE or RATTLE are widely employed 
in existing MD programs, SETTLE seems to be 
straightforward to implement in those programs, 
as we have done for the SPASMS package. Fur- 
thermore, this method is suitable for vector and 
parallel machines since it is not iterative and there- 
fore the computation time spent is constant. Mertz 
et al. used a matrix inversion method for SHAKE in 
their study on vector and parallel algorithms for 
MD  simulation^.^ Their approach, however, could 
not avoid the use of an iterative method, resulting 
in a decline of the speed-up ratio due to load im- 
balance while successful behaviors were attained 
for other parts of the MD calculation. Better 
results upon parallelization may be expected for 
water molecule constraints using SETTLE. 

CONCLUSION 

In this article we described an algorithm for satis- 
fying constraints of the rigid water model and dis- 
cussed its performance using the simulation pack- 
age SPASMS. The main and subsidiary advantages 
of the method introduced here are: 

1. SETTLE is quite accurate. The constraints are 
fulfilled exactly at each step of integration. This 
feature is ideal for the TIP3P and SPC water 
models, which have been parameterized using 
rigid geometries. 
1‘. One need not worry about the choice of the 

tolerance value for rigid water, although 
reasonable numbers to be used with the 
conventional RATTLE are presented here. 

2. SETTLE is fast. With respect to scalar ma- 
chines, it is at least three to seven times faster 
than RATTLE. If used with reasonable toler- 
ances mentioned above, the speed-up factor 
amounts to seven to nine. On vector machines, 
significant improvement of performance has 
been obtained, up to a factor of 98 over RAT- 
TLE. 
2’. SETTLE is also suitable for parallelization 

of the code because it is not iterative. 
3. SETTLE can be easily implemented in standard 

MD packages. Since this algorithm is still based 
on Cartesian coordinates, it is straightforwardly 
incorporated into those packages in place of 
SHAKE or RATTLE on rigid water models. 

Copies of FORTRAN subroutines SETTLE are 
available on request. 

The authors acknowledge research support from the 
National Science Foundation (CHE-91 to P.A.K.). 

APPENDIX A: DETAILS OF POSITION 
RESETTING OF SETTLE 

Let us denote the coordinates of point A in X’Y‘Z‘ 
coordinate system by primes, i.e., A’ = (s,  t ,  u) or 
A = ( X i ,  YA, Zk). As is shown in Figure 2a, the 
coordinates of AaobOcO are given by 

ab = (0, r u ,  0) 

cb = ( r c ,  - r b ,  0) 

bb = ( - r e ,  - r b ,  0)  

(Al l  
where r,, q,, and r, > 0. 

Aulblcl is obtained by the rotation $ (-  n/2 5 
$ 5 n/2) about Y’ axis as illustrated in Figure 2b: 

a’, = ab = (0, ?-,, 0) 

b’, = ( - rr  cos $, - r b ,  r, sin $) 

C i  = (r, cos $, - r b ,  -r, sin $) (A2) 

As indicated in Fig. 2c, 4 ( - T  < 4 5 n) gives a 
rotation of Aalblcl around X‘ into Aazbzc2 

a& = (0, rc cos 4, r, sin 4) = ( X & ,  Y&, 26,) 

bh = ( - r ,  cos $, -rb cos 4 - rc sin $ sin 6, 

c& = (r, cos $, - r b  cos 4 + r, sin $ sin 4, 

- r b  sin 4 + r, sin $ cos 4) = ( X & ,  YA,, Z&) 

-rb sin 4 - rc sin $ cos 6 = (XL,, Y:,, Z;,) 

Aa3b3c3 is produced by the rotation 8 ( -  n < 8 I 
n) about 2’ axis as shown in Figure 2d. Although 
the coordinates of Aa3b3c3 might be expressed in 
the similar way as eq. (A3), the expression is rather 
complicated. In addition, 8 could be determined 
separately from $ and 4. Therefore we write the 
coordinates of Aa3b3c3 based on those of Aaz bzcz 

(A31 

a$ = ( X &  cos 8 - Y;, sin 8, X;, sin 8 

b$ = (X;,  cos 8 - YL, sin 0,  Xh2 sin 8 

c$ = (XL2 cos 0 - Y& sin 8, X;, sin 8 

+ Kz cos 0, Zb,) = W b , ,  y;,, Z6,) 

+ yhz cos 8, ZA,) = (xA,, y;,, z;,) 

+ K, cos 0, ZLJ = (XL,, Y&, Z&) (A41 
The 2‘ coordinates do not change after the rotation 
of 8 and the 2’ coordinates of AAIBIC1 are the 
same as those of AA3B3C3, as discussed in the ex- 
planation of the algorithm. Those relations as well 
as AA3B3C3 = Aa3b3c3 leads to 

ZAl = Z i ,  = Z;, = Z;, = r, sin 4 (A5) 
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960 MIYAMOTO AND KOLLMAN 

Equation (A5) gives 

where lZi( I r,. This is almost always true be- 
cause lZkl 4 r, in the practical MD simulations.* 
Adding eq. (A6) and eq. (A7), we also obtain the 
alternative expression 

which is shown to be identical to eq. (A8) by a 
simple transformation. Subtracting eq. (A7) from 
eq. (A6), we find 

2rc sin rl, cos 4 = Zhl - Z;l, 

If cos 4 # 0 (as is the case in general MD simula- 
tions) 

Zh1 - Zb1 sin rl, = 
2rc cos 4 

where IZhl - Zbl[ < 2rclcos 41. By use of the basic 
relation of sin2 o + cos2 w = 1, we obtain 

cos 4 = 41 - sin2 4, 

where the positive sign of the square root is chosen 
for cos 4. Substituting eqs. (AB), (A9), and (A10) 
into eq. (A3), coordinates of Aa2b2c2 are calcu- 
lated. t Since the time consuming calculation of 
sine and cosine functions are not performed, this 
approach is fast as well as accurate. 

In the next step 8 can be calculated analytically 
by using the condition that constraint forces di- 
rected along the bond of AAOBOCO are of equal 
magnitudes and opposite orientations as expressed 
in eq. (4) (Fig. lb). Suppose AA3B3C3 is deter- 
mined; then the displacement vectors are given by 

6rA = A1A3, 6rB = BIB3, 6rc = C,C3 ( A l l )  

According to eq. (4) the displacement vectors are 
given by 

cos $ = J1 - sin2 + 
(A101 

*In the typical simulations with a time step of 1 to 2 fs at  300 
K ,  the maximum values of $ and @ are about 7". They are small 
enough to guarantee cos 4 > 0, cos $ > 0,  lZil d ra and IZb, - 
Zbl\ d Zr,/cos $ 1 .  In the case of a longer step size of 5 fs and a 
higher temperature of 1500 K,  maximum values are about 38". 
Still, they are small enough to satisfy cos 4 > 0, cos $ > 0 ,  
lZLl d r, and IZh, - ZkJ, d 2rclcos 41. 

?Because of the numerical error in the calculation of cos $, 
the coordinates of hydrogens (b2 and cz)  might be adjusted to 
obtain the canonical geometry of the triangle. 

Substituting eq. (All)  into (A12), we obtain the 
following expressions 

2m, - 
-AI& = ~ A o B o  + ~ A C A O C O  (W2 

-- 
Since AoBO, BOCO and COAO are not parallel to each 
other, X, in eq. (A13) are uniquely defined. In the 
case of hBc and XcB, they can be written as 

xh1B3 yhoAo - X h ~ A ~ Y h , B 3  
ABC = 

XhoC~YhoAo - XhoAoYhnCo 

Since hBc should be equal to Xcs, we obtain 

After the rearrangement 

(Xh3 - XhlXYhO - Y k J  + (Xbs - Xbi)(Y;ln - YLo) 
= (Yh3 - Yh1)(Xk0 - XL0) + (Yb3 - Yb,)(Xb[) - xi,,> 
Substitutions of eq. (A4) and X &  = XL, into the 
above relation gives 

[X&(Xho - XbJ + (Yhn - Yko)Y& 
+ (Y& - Yk,)Y;2] sin 8 
+ [X&(Yko - Yb0> + (Go - XL0)Yb, 
+ (Xb0 - Xi")Y&] cos 8 

+ (Xb0 - XLJYb,  - XbI(YbO - Yk")  (A141 
= Who - XkO)Yh1 - Xb,(Yh0 - Xk,) 

The other relations of AAB = XBA and hCA = 
provide the more complicated equations. Since 
these equations are equivalent to eq. (A14), we 
develop the discussion of only eq. (A14). Defining 
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SETTLE 961 

This is transformed into 

P tan E = - sin(8 + E )  = y, 
(Y 

The solution of the above trigonometric equation is 
given by * 

- tan-'- P (A16) 
J 7 T p  (Y 

e = s i r 1  

On the other hand, applying sin' 6' + cos' 6 = 1 , eq. 
(A15) is expressed as 

(a2  + p2)sin2 6 - 2ay sin e + y2 - p2 = 0 

The solution of this quadratic equation is given by 
the root's rule 

where the sign of the square root is chosen so that 
eq. (A15) is satisfied. From either eq. (A16) or 
(A17), sin 6 and then cos 6 can be calculated while 
the latter might be preferable due to avoiding the 
calculations of trigonometric functions. Finally, 
the coordinates of AA,B3C3 are calculated by sub- 
stitutions of sin 0 and cos 6 with the numbers ob- 
tained above into eq. (A4). 

APPENDIX B: DETAILS OF VELOCITY 
RESETTING OF SETTLE 

Equation (8) can be written as 

&(ma + mb) . TAB + 6 t  * m, cos B . rBc 
+ 6 t  * mb cos A - rCA = 2m,mbviB 

6t . m, cos B . TAB + 6t(mb + m,) * TBC 

+ 6 t  . mb cos C - TCA = 2mhmcvgC 

+ 6t(m, + m,) - TCA = 2m,m,v0cA (Bl) 

where v iB = eAB * viB, v& = eBc vie, and vEA = 
ecA are the components of relative velocities 

6 t  * m, cos A . TAB + 6t * ma cos C * TBC 

*In the typical simulations with a time step of 1 to 2 fs at 
300 K, the maximum value of 0 is about 1". In the case of a 
longer step size of 5 fs and a higher temperature of 1500 K, the 
maximum value is about 9". These values are small enough to 
satisfy - 1 1 2 ~  < 0 < 1 1 2 ~  or sin B Q 1 .  

along the bonds. The solution of the above simulta- 
neous linear equations is given by 

TAB = m,{viB[2(m, + mb) - m, cos2 C ]  
+ vgc[mb cos C cos A - (ma + m,)cos B ]  
+ vOCA(m, cos B cos C - 2mb cos A ) } / d  

TBC = {vic[(m, + mb)' - mf cos' A] 
+ v$Ama[mb cosA cos B - (m, + mb) cos C ]  
+ viBm,[mb cos C cos A 
- (ma + m,)cosB]}/d 

+ viB(m, cos B cos C - 2mb cos A) 
+ ?&c[mb cos A cos B - (ma + m,)cos C ] } / d  

- 2mg cos2 A - m,(m, + mb) 

TCA = m,{4A[2(ma + mb) - m,cos2B] 

d = 6 t  [2(m, + mb)' + 2mamh cos A cos B cos C 

x (coS'B + cos2 C)]/2mb 032) 

based on the Cramer's rule 

Di 
= 5- 

where D is the system determinant and D, is the 
determinant obtained on replacing the respective 
coefficients of i t h  column [&(ma + mb), 6tm, cos B 
. . .] of D by 2mamhviR, 2mbm,vgc . . . . Substitut- 
ing thus calculated TAB,  T ~ ~ ,  and rCA into eq. (7), we 
get the constrained velocities, vA, vB, and vc. 
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