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Abstract

Our goal is to use physical simulation as an interactiv e
medium for building and manipulating a wide rang e
of models. A key to achieving this goal is the abil-
ity to create complex physical models dynamically b y
snapping simple pieces together, integrating the pro-
cess of model creation into the ongoing simulation .
We present a mathematical and computational for-
mulation for constrained dynamics that makes thi s
possible, allowing encapsulated objects, constraints ,
and forces to be combined dynamically and simulate d
efficiently . The formulation handles arbitrary objects ,
including nonrigid bodies . We describe an implemen-
tation for interactive dynamics, and discuss applica-
tions to mechanism construction, geometric model-
ing, interactive optimization data fitting, and anima-
tion .

Keywords — Constraints, Simulation, Animation

1 Introductio n

Physical simulation by computer has traditionall y
filled a niche as a useful, if cumbersome, tool for quan -
titative analysis and prediction . The skill and labo r
required to set up a simulation, followed by hours o r
days of run time, have restricted its practice to a har d
core of dedicated specialists .

The increasing availability of high-performanc e
computers with fast 3D graphics has for the firs t
time made it feasible to perform non-trivial physical
simulations—and see the results—at fully interactive
speeds . This development opens the door to a host o f

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage ,
the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association fo r
Computing Machinery . To copy otherwise, or to republish, requires a fe e
and/or specific permission .
© 1990 ACM 089791-351-5/90/0003/0011$1,50

new and exciting uses for the machinery of physics —
for example, virtual worlds in which a user perform s
physical experiments, or builds and tinkers with sim-
ulated machines, or even visualizes and manipulate s
abstract mathematical objects with physics serving
as the user interface . Such systems could be of valu e
to a broad range of users, who need not necessarily
understand the underlying mathematics . Because al l
of us are skilled at manipulating the physical world
around us, it makes sense to use simulated physic s
as a medium for interaction even where the physica l
model is just an analogy to something more abstract .

Raw performance is a prerequisite to interactiv e
physics, but creating a truly interactive physica l
medium entails much more than just making simu-
lations run faster . Traditionally, the model creation
phase is completely separate from the actual execu-
tion of the simulation . The former often involve s
manual derivation and coding of the system 's equa-
tions of motion . Speeding up the simulation can pro-
vide the ability to manipulate a pre-defined model .
but this capability is of limited use without the abil-
ity to dynamically create new models and modify ex-
isting ones . For example, a tinkertoy world for as-
sembling and experimenting with virtual mechanism s
would be of little interest if adding new pieces, mak-
ing and breaking connections, and so forth entaile d
exiting the program, writing code, re-compiling an d
re-linking . To maintain the virtual world illusion, th e
pieces must snap together and apart, transparentl y
and dynamically, while the simulation is running .

A key to dynamically creating virtual physical ob-
jects lies in the proper treatment of constraints . Con-
straints provide the glue that combines simple ob-
jects to form complex ones, by representing the bolts ,
joints, sliders, etc . that turn a bag of parts into a
mechanism. Constraints also permit a user to defin e
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objects' form and behavior by stating what is desired ,
rather than by explicit specification of shape or mo-
tion .

Incorporating constraints into an interactive set-
ting poses a difficult problem : the addition (or dele-
tion) of a constraint on a physical system structurall y
changes the system's equations of motion, reflectin g
the exchange of forces that causes the constraint to
hold . An interactive medium must respond to thes e
changes, forming and solving the new equations o f
motion, automatically and without noticeable delay .
The challenge becomes still more difficult if we insis t
on preserving the generality of the solution . In partic-
ular, we wish to avoid restricting its scope to collec-
tions of rigid bodies, as, for example, do [1, 12, 5, 11]) .

In this paper we present a solution to the prob-
lem posed above, describe its implementation, and
discuss several interactive applications . First, we de-
velop a mathematical formulation for constrained dy-
namics, similar to that of [9], and more loosely re-
lated to [3] . A constraint force that is a linear combi-
nation of constraint gradients is imposed, projectin g
the system's acceleration onto the subspace of "le-
gal " accelerations . Calculating the constraint force i s
a linear problem, even when the constraints are non -
linear . The general constraint equations are intrinsi-
cally global, dealing with all the objects, forces, and
constraints comprising the physical model . We next
develop a decomposition of these equations in terms
of the contributions of individual elements, withou t
loss of generality . This allows us to reconcile thei r
inherently monolithic nature to the requirements of
dynamic construction and encapsulation . We also
describe the more general system for dynamic func-
tion composition on which our implementation of thi s
structure is based .

We conclude by describing several applications of
interactive dynamics The first is a "tinkertoy world, "
a virtual 3-D environment in which the user is abl e
to create and manipulate pre-defined parts, dynami-
cally attach them using a variety of constraints, an d
experiment with the resulting structures and mech-
anisms . The second is a two-dimensional syste m
in which parametric curves are manipulated and at-
tached together using constraints . We then demon-
strate the use of dynamics as a medium for the inter -
active solution of non-linear problems in constraine d
optimization, image interpretation and model fitting.
Finally, we describe the use of interactive dynamics
as a medium for creating keyframe animation of char -
acters built by pinning together elastic pieces .

2 Constrained Dynamic s

In classical mechanics, constraints play a role as a
means of describing physical systems . Taking the
standard example of a bead sliding freely on a rigid
wire, an important aspect of the bead's behavior ca n
be summarized just by observing that "the bead stay s
on the wire, no matter what . "

Constraints such as the bead-on-wire have physica l
consequences. Treating the bead as a particle whos e
motion is governed by f = ma' gives a relation be-
tween its motion and the total force on it : the force
and acceleration lie in the same direction, with thei r
magnitudes scaled by m . But the bead-on-wire con-
straint implies that the bead will never accelerate i n
a way that moves it off the wire, whatever force is ap -
plied . In the special case of a straight wire, this just
means that the bead's acceleration, and therefore th e
total force, must lie tangent to the wire, even if the
force we apply to the bead points in some other direc-
tion. An immediate consequence is that the applied
force, fa , cannot be the total force. Rather, there
must also be some other force, a constraint force fe ,

such that the total force

f = fa + J. = ki,

	

( 1 )

where t is the wire's tangent and k is some scalar .
In words, the force Jr, is whatever force needs to b e
added to the applied one to make the bead accelerat e
in a manner consistent with the constraint).

Constrained dynamics is concerned with making
objects' behavior consistent with the forces of con-
straint . The mathematics of constrained dynamic s
are hardly new (see any standard classical mechan-
ics text, such as [6],) although they have begun t o
appear only recently in the Computer Graphics lit-
erature [2, 10, 9, 7, 3, 14, 13] . In this section w e
address the problem of constrained dynamics in ligh t
of the requirements of interactivity : that we be able
to freely add or delete constraints in an ongoing sim-
ulation, with minimal restrictions on the form of th e
constraints or the nature of the objects .

2.1 Restoring forces

Curiously, the constraint force of equation 1 depend s
on the applied force, as if the bead and wire wer e
somehow sensing the applied force and responding ac -
tively to our attempts to pull them apart . Obviously,
no such mechanism exists . We begin by understand-
ing where this dependency comes from .

1 Equation 1 obviously doesn't determine L uniquely. Thi s
will be dealt with later .
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Naturally, the bead-on-wire constraint is an ideal-
ized approximation . A more accurate physical de-
scription would show the bead and wire deformin g
a tiny bit as we tried to pull them apart, inducin g
a restoring force that cancels the applied force . To
simplify things, we can think of this restoring forc e
as a rubber band connecting the bead to the wire ,
with force —kc, where c is the displacement of the
bead off the wire, and k is the stiffness of the rubbe r
band . In order for the constraint to hold approxi-
mately at equilibrium, i .e . c < e, the stiffness k mus t
be sufficiently large that the restoring force —ke can-
cels any applied force, i .e . k = fma,/e, where fmax is
the largest force we plan to apply . To make e small ,
we must make k large .

The difficulty with making k large is that doing so
produces differential equations that are numerically
intractable, appropriately called stiff equations. To
understand the problem's origin intuitively, conside r
what happens when the bead is at rest on the wire
and you try to pull it off with constant force fmax .
The applied force begins to displace the bead, an d
the rubber band begins to exert a restoring force pro-
portional to the displacement . The restoring forc e
balances the applied one when c ` e . When we solv e
this system using simple numerical methods, the dis-
tance traveled by the bead accelerating from rest un-
der force fm. in a single timestep at must plainly b e
on the order of e to avoid substantial overshoot an d
instability . In short, the step size must be so smal l
that the largest permitted applied force fmax make s
objects move only a negligible distance e in a singl e
timestep, which means you never get anywhere . So ,
although stiff rubber bands may be a good descrip-
tion of what really happens, they are not a good wa y
to enforce constraints numerically .

2 .2 Constraint forces

Ironically, the problem of stiffness is avoided by let-
ting e go to zero (and the stiffness k to infinity.) In
this limiting case, the rule c = 0 really does gover n
the system exactly . Since there are no displacements ,
and hence nothing to restore, the restoring force i s
renamed a constraint force . In addition to depend-
ing on the state of the system and on time, as most
forces do, constraint forces depend on other forces . In
this section we develop a system of linear equations
that yield constraint forces which, added in to the or-
dinary applied forces, lead the system to accuratel y
satisfy the constraints .

To make this result general, we switch at this poin t
from the specific case of a bead on a wire to th e
generic one of a system whose equations of motion

have the form

Mij gj =Cj+Qj

	

(2)

where M is a mass matrix, q is the vector of th e
system's independent variables, Q is the vector o f
(known) applied forces, and C is the vector of (un-
known) constraint forces . 2 This equation is jus t
f = ma in generalized form. Ultimately, our goal is
to solve for q" , given q, and q, allowing us to integrat e
the differential equation forward through time .

Rather than a single constraint, we have a vector o f
constraint functions ci ( g j , t), depending on the stat e
q, and possibly directly on time . The constraints ar e
met when c i ( gj , t) = 0. The constraint equation itsel f
provides another condition on C. For c to remain a t
0 from some initial time to, it suffices that c(to) = 0 ,
c(to) = 0, and c = 0 from to on . If c depends on time
directly and also through the state q, we have fro m
the chain rule

c i = at c i( g j( t), t ) =
ac,

g j + atgj

and differentiating again give s

aci . .

	

aC i ,

	

a 2 c i
ci= .°°—gj+=--gj+ ®

aqj

	

aq j

	

at e

noting that
aci _ a 2 c i

aqj — ag jag k

see

	

qk .

If W is the inverse of mass matrix M, then equation
2 becomes

qj = Wjk(Ck + Qk) .

Substituting into 3 and setting

	

to zero yields th e
condition

aci

	

aci

	

d 2 ciaqj Wjk(Ck +Qt) +
aqa qj

+ dt2 = O .

	

(4 )

which is a system of linear equations with only the
constraint force vector C unknown . In words, equa-
tion 4 just says that the constraint force, added int o
the applied force, must cause the second time deriva-
tive of the constraints to be zero . This condition i s
generally too weak : if the system is underconstrained ,
as is usually the case (otherwise nothing can move a t
all!) we have fewer equations than unknowns, an d
there exist many values for C that satisfy equation 4 .

2 In index notation, an unsubscripted quantity is a scalar ,
one subscript denotes a vector, and two denote a matrix . Under
the summation convention, the appearance of any index twic e
in a term implies summation, so that M i j g j means E.? Mi j q j ,
which is matrix M times vector q .

(3)
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2 .3 Virtual work

The ambiguity of equation 4 is easy to understand .
The equation states that the system's acceleratio n
must not move the constraint functions from zero ,
but in an underconstrained system, a whole subspace
of such "legal" accelerations exist . Given a constrain t
force that satisfies equation 4, nothing said so far pro -
hibits us from adding to it any additional force w e
like, as long as the acceleration it induces lies in tha t
legal subspace. To remove this ambiguity it suffices
to add one reasonable restriction: that the constrain t
never add or remove energy from the system, whic h
is to say that it may do no work. To guarantee thi s
we require that the the work done by the constrain t
force vanish, under any small displacement of the sys-
tem consistent with the constraints . Thus, for ev-
ery legal displacement dq, C must satisfy Cj dgj = 0 ,
which simply requires the constraint force to poin t
in a direction in which the system is forbidden to
move . This requirement, known as the principle of
virtual work, is not derived from anything else . It i s
a restriction, albeit a reasonable one, on the class o f
constraints to be considered .

In the case of a single scalar constraint c, the "le -
gal" displacements are those lying in the tangen t
plane to the surface c = 0 . Because the gradien t
ac/aq is normal to the tangent plane, this means that
every legal displacement must satisfy (ac/aq)dq = 0 .
The forbidden displacements are those that satisfy
dq = A(ac/aq) for any scalar A . The multidimen-
sional generalizations of the tangent plane and th e
gradient direction are the null space and null spac e
complement of the constraint Jacobian matrix . The
null space contains the displacements satisfying

aci

aqj
dqj = 0 ,

while the null space complement contains those tha t
satisfy

aci
dqj = Ai ~jq .

for some vector A i . Viewing the constraint vector as
a collection of scalar constraints, the null space is th e
set of vectors which lie in every constraint 's tangent
plane, while the null space complement is the set o f
linear combinations of the constraint gradients .

To lie in the null space complement, the constrain t
force must therefore satisfy

aci
Ci=Ai —

aqj

for some vector A . Enforcing the virtual work princi-
ple is simply a matter of replacing C k by Aracr/aqk

in equation 4, and solving for A . The components of A
are known as Lagrange multipliers . This substitution ,
with some re-arrangement, yield s

	

aci

	

acr

	

aci

	

06i .

	

0 2 c i
W'k

	

A r = BWjkQk + —qj +aq;

	

aqk)

	

aq;

	

aq;

	

at
(5 )

in which the entire right hand side is known, and th e
matrix on the left hand side—a product of the con-
straint Jacobian, the inverse mass matrix, and the
Jacobian transpose—is a square matrix with the di-
mensions of the constraints . 3 Once the linear sys-
tem is solved, the constraint force is computed a s
C; = Aiaci/aqj , and the total force Cj +Qj is plugge d
into equation 2 to obtain the acceleration, 4j .

2 .4 Feedback

In principle, it suffices to begin with legal initial con-
ditions, in which c = 0 and c = 0, and ensure tha t
c = 0 thereafter by solving equation 5 for the con-
straint force . In practice, an extra feedback term i s
needed to bring the system into a legal state initially ,
and to inhibit drift . Including the damped feedbac k
term, the total force becomes

aci

	

aci
Qj +Cj +aciag

a
+fci

~g a
,

where a and Q are constants . This additional term is
effectively a damped spring pulling the system bac k
towards a legal state . Because it vanishes when the
system is in a legal state, with c = 0, and c = 0 the
feedback is not a true force . Feedback may be incor-
porated into the constraint force directly by makin g
a small modification to equation 4, as described i n
[9] . However, we have not found this to be advan-
tageous, particularly in obtaining least-squares solu-
tions to overconstrained systems .

2 .5 First order systems

When the machinery of constrained dynamics is to
be used as a tool for manipulating purely geometri c
or otherwise non-physical objects, it is often desirabl e
to replace the second order equations of motion wit h
a first order system of the for m

Qi = WijQj ,

in effect replacing f = ma by f = mv, approximatel y
modeling the behavior of a highly damped syste m

3 If it is not desired to invert the mass matrix explicitly, a
larger but sparser linear system may be formed that involves
the mass matrix M instead of W . See [9] .
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with negligible mass . The effect of this change is sim-
ply that things stop moving the moment forces ar e
withdrawn, which facilitates accurate positioning in
geometric modeling applications . One such applica-
tion will be described later . The form of equation 5
changes only slightly when first order equations ar e
adopted : the term 86/8q disappears, and instead of
the second direct time derivative, we have the first ,
ac/at . The derivation of the first-order constrain t
equation follows closely that of equation 5, excep t
that c rather than is being held at zero, and firs t
order equations of motion are used .

3 Decompositio n

Equation 2 and equation 5 of the previous section ar e
"universal," in the sense that the equations of mo-
tion and the constraints are represented in generic ,
anonymous form, rather than representing any par-
ticular constrained system. The equations are als o
intrinsically global : all the objects, constraints, an d
forces in a system are coupled, with each constraint
force generally depending on every other, as well a s
on the applied forces, and on the positions, velocities ,
and mass matrices of all the objects .

How are these monolithic equations to be applied
to specific systems of interacting objects and con-
straints? Tackling a toy problem by hand, as in
most textbook examples, we would simply use th e
generic equations as a template, filling in the blank s
with the problem specifics . One such toy problem
is a dumbbell, represented as two unit-mass particles
constrained to lie a distance r apart . This system ' s
state vector, q, holds six elements, representing th e
two particles' positions ,

4 = [x i, y i, z i, x 2,J2, z 2] ,

and its mass matrix is the identity. The equations of
motion, expressed in terms of the three component s
of force on each particle, are jus t

q = [fx l, fyl, fzl, fx2, fy2, fz2] .

The single scalar constraint, to be held at zero, can
be written

c = 1, " ((x1 — x2) 2 + (yl

	

y2) 2 + (zi

	

z2) 2 ) 1/2 ,

or, in terms of q-component s

r _' (( q l ° q4) 2 + (q2 ° q5) 2
+ (q 3 ` (16 )2)1/ 2

Having written out these expressions, and by elemen-
tary differentiation produced a moderately ugly ex-

pression for ac/aq, one may then flesh out the skele-
tal constraint equation 4 and solve for the constrain t
force, which is then plugged back into the equation s
of motion, along with the applied force and the feed -
back term .

On a small-scale example such as this, it would not
be difficult to complete and implement the exercise .
It should be obvious, however, that this kind of sub-
stitution and expansion is not the way to build large-
scale constrained models interactively. Each time a n
object or a constraint is added, modified or deleted ,
algebraic manipulations must be performed to derive
the new equations, and the results somehow put int o
a form that supports efficient numerical evaluation .
Obviously, a system in which attaching or detachin g
two objects triggers extensive algebraic manipulation ,
code generation, compilation, and linking would b e
unlikely to achieve interactive performance, even i f
the symbolic algebra and code generation could b e
automated .

Fortunately, the system of objects, constraints, an d
forces defining a model need not be allowed to dissolv e
into a massive unstructured algebraic expression . In
this section we will see that all of the global quantitie s
contained in equations 2 and 5 may be constructed
by composing a small, stylized set of local quantities ,
each depending only on a single object or a singl e
constraint . To exploit this mathematical regularity ,
we require each primitive object or constraint to com-
pute the local quantities for which it is responsible ,
performing the composition dynamically . In this sec-
tion we describe the mathematical decomposition o f
the global equations into local quantities . The struc-
ture we develop is illustrated schematically in figur e
1 . The next section describes the efficient implemen-
tation of dynamic composition .

3 .1 State vectors and mass matrices

The state, q, of a compound model is distribute d
over the objects it contains . The state of each ob-
ject may itself be heterogeneous, containing scalars ,
vectors, matrices, quaternions, or whatever, in an y
combination . In implementing an object it may b e
important to preserve this internal structure . From
outside, however, it may be hidden by collapsing th e
state into a single vector, and providing operations t o
determine the length of the flattened vector, to ge t
and set the state and its time derivative, etc, allow-
ing the object 's mapping between its internal stat e
and the external state vector to remain hidden . The

4 Note that in this instance 86/8q and 8 2 c/8 t 2 are both zero ,
and that the inverse mass matrix, IV, is the identity .
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global state vector is formed just by concatenatin g
the objects' state vectors .

Similarly, each object contributes a square block t o
the global mass matrix, situated on the diagonal . In
this special case of non-overlapping diagonal blocks ,
the inverse of the global mass matrix is obtained b y
inverting each object's matrix independently . The in-
verted diagonal blocks can then be combined to form
the global matrix W .

constraint vector

State Vector

Figure 1 : A schematized model . The three objects '
state vectors are concatenated to form the globa l
state vector, and the two constraints ' outputs form
the global constraint vector . The constraints depen d
on state through connectors, which represent out -
puts of the objects . The whole structure defines th e
global constraint function c ; (q j ) . Each constraint-
object pair defines a block in the constraint Jacobia n
matrix . The block may be non-zero only when th e
constraint depends on the object .

3 .2 Constraints and Connector s

The global constraint vector, like the state vector ,
is formed by concatenating the contributions of eac h
constraint . In order to evaluate the constraint func-
tions, and the Jacobian matrix that relates the con-
straints to the state, a new layer of structure must b e
introduced. In the global equations, the constraint
vector c was given as a function of the state q an d
of time. Generally, though, the dependence of con-
straints on state is indirect, mediated by quantities ,
such as coordinates of points on the surfaces of ob-
jects, that may be viewed as "outputs" of the ob-
jects, pieces of geometry that "move with" the ob-
ject in the sense that their values depend on state .
For example, a point on a circle, with coordinates
[r cos 9 + xo, rsin B + yo] for a constant 0, tracks
changes in the radius r and the center [xo, yo] . A
connector is any such fragment of geometry, encap-
sulated with any constant information (such as 0 for
the circle point) that is required to define it . In addi-
tion to representing points on surface, connectors ca n
also represent surface normals, areas and volumes, o r
anything that might be subjected to a constraint, o r
to which a force might be applied .

The benefit of introducing connectors is that they
allow us to formulate generic constraints—e .g . at-
taching two points together—without the need t o
know anything in advance about the objects bein g
constrained . Consider an arbitrary equality con-
straint c on a pair of points a and b, which could
be written

c t(g j) = f+(ak(q),bk(q,i) )

where f is whatever function defines the constraint s
(just subtraction in the case of an attachment con-
straint,) using whatever formulae determine a and b
as functions of their respective objects' state . From
the standpoint of decomposition and encapsulation, i t
is significant that the function f (a, b) is only a prop-
erty of the constraint, not the constrained objects ,
while the position functions a(q) and b(q) are prop-
erties only of the two constrained objects, not of th e
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constraint . We can write the constraint 's Jacobian as

Oci _ Oci Oak

	

Oci Ob k

NJ Oa k aqj + ab k aqj

by simple application of the chain rule, and again
each of the four derivative matrices appearing in ex-
pression belongs to exactly one object or constraint .
Each pairing of a constraint with an object generate s
a block in the global Jacobian matrix. Only if the
constraint depends on the object may the block b e
nonzero (figure 1) .

In a similar vein, the matrix Oci/Oqj appearing i n
equation 5 may be written

aci

	

06 i Oak

	

Oci aak

	

aci ab k

	

ac i ab k

aqj

	

aak aq j

	

aa k aqj

	

Obk aqj

	

ab k aq i

which once again preserves modularity . If the con-
straint depends directly on time, this dependenc e
is by definition encapsulated within the constraint ,
and so involves no composition . Finally, it remains
to evaluate the constraint vector itself and its tim e
derivative, as required in the feedback term. This is
a simple matter of function composition, given a s

fi(ak(gj), b k(q ;) )

aci

	

aci ,

	

Oc i
ci= + — ak+ ®bk .

at

	

Oa k

	

abk

The generalization to constraints with any number o f
inputs is straightforward—all the above expressions
become summations over the inputs .

3 .3 Forces

Finally, a force f may be applied to any connecto r
output x using the simple universal formul a

axi
Qj ° f:. a . ,

which is the formula for transforming an applied forc e
into a generalized force on the state . The total gen-
eralized applied force is obtained by summing each
applied force's contribution .

3 .4 Summary

The formulae given require that only a very few dis-
tinct quantities be computed by each object and each
constraint . An object must be able to report its stat e
length L, get and set its state q and velocity q, and
compute its inverse mass matrix W . A connector on
an object must be able to compute its output x, the

time derivative th, and the two derivative matrices
ax/aq and ax/Oq . A constraint must be able to eval-
uate its output, c, given its inputs, the direct time
derivatives ac/at and a2 c/ate , and, for each input x ,
the derivative matrices &lax, 06/Ox, and 06/0X .

Provided that each part is able to perform thes e
evaluations, constructing the constraint equations
and equations of motion governing an arbitrary sys-
tem of objects, constraints, and applied forces is a
comparatively simple operation, easily performed dy -
namically . The operations required to assemble th e
global equations are are just global index assign-
ment, function composition, and matrix multiplica-
tion . The next section addresses some aspects of th e
efficient implementation of the process .

4 Implementatio n

4 .1 Function blocks

The assembly of constraint equations is an instance of
a larger class of problems, involving the dynamic com-
position of mathematical functions, and evaluation o f
the outputs and of their derivatives with respect t o
inputs . Our implementation of constrained dynamic s
is built on a facility, called function blocks, designed
to handle this broader class .

A function block encapsulates a real-valued mathe-
matical function that maps some inputs to some out -
puts . Each block supports operations that evaluat e
its outputs given its inputs, and also its Jacobia n
matrix—the derivative of its outputs with respect to
its inputs .

The implementor 's task in creating a new bloc k
type is to provide code that computes the function
and its Jacobian, This task is sufficiently regula r
that we have automated the process to the degre e
that only the mathematical form a block embodie s
need be specified, the rest being generated by sym-
bolic differentiation, simplification, and conversion o f
the expressions to code .

Complicated functions are built by creating di-
rected acyclic graphs whose nodes are function blocks ,
and whose arcs, connecting inputs to outputs, denot e
function composition . At runtime, the function bloc k
library provides a variety of support services for creat-
ing and deleting connections, doing the bookkeepin g
associated with global indexing, etc .

Evaluation of an output of the graph can be a
simple recursive descent, each block instructing th e
blocks that provide its inputs to compute their out -
puts, then computing its own . The recursion bot-
toms out at special nodes that hold the system's state .

( 6 )

and

(8 )
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Caching is used to avoid the redundant computatio n
of shared quantities .

The evaluation of Jacobians involves a recursive ap -
plication of the chain rule . If a block implements a
function f;(xj ), then, by the chain rule, its derivativ e
with respect to a vector of variables q k , on which the
block's inputs presumably depend, is

afi _ afa &xi

aqk

	

axe a q k

which is just the product of the block's internal Jaco-
bian with the Jacobian of its inputs with respect to
the q's . Thus the Jacobian may be computed recur-
sively, each block instructing its inputs to comput e
their Jacobians, then multiplying the collected inpu t
Jacobian by its internal one. The recursion bottoms
out at the state nodes, where

axe

	

= a z ,
aqk

	

aq k

which is the identity matrix .

In practice, efficient Jacobian evaluation is far mor e
complicated than the recursive evaluation of the func-
tion itself, because the matrices are typically sparse ,
and it is vital that their sparsity be preserved an d
exploited . Other complications arise involving, fo r
example, issues of the allocation of storage for inter -
mediate matrices . The naive recursive descent algo-
rithm, even with caching, is therefore not necessaril y
the best . See [4] for a general discussion of spars e
matrix techniques .

4 .2 Physobs

Our implementation of interactive constrained dy-
namics employs a more specialized layer, calle d
physobs, built on the generic machinery of functio n
blocks. The classes that make up this layer corre-
spond to the elements described in the previous sec-
tion: physical objects, connectors, and constraints .
In addition, behaviors apply forces to connectors, im-
plementing springs, dampers, motors, and the like ,
and a world structure performs such global function s
as solving the linear system and the resulting con -
strained differential equation .

The function block machinery automatically han-
dles the maintenance of global coordinates for th e
state and constraint vectors ; the dynamic composi-
tion of the constraint functions and their derivatives
with respect to state ; and a variety of bookkeepin g
and support functions .

Figure 2 : The tinkertoy system is a 3D environmen t
for interactive model construction and manipulation .

5 Applications

We are developing a number of applications of inter -
active dynamics . In this section we describe severa l
of these . A major purpose in developing these ex-
perimental systems has been to explore the range of
problems to which interactive dynamics applies .

5 .1 Tinkertoys

A basic motivation of our research has been the desir e
to build and manipulate virtual 3D mechanisms . The
tinkertoy system (figure 2) allows the user to buil d
contraptions, using constraints to snap together pre-
defined parts, with no artificial distinction betwee n
model construction and simulation. The user of the
system need have no understanding of the underlyin g
mathematics and physics .

5 .2 Geometric Modelin g

Another experimental system is concerned with th e
interactive construction and manipulation of model s
composed of arbitrary parametric curves (figure 3 . )
The idea is to convert parametric curves, which are
purely geometric objects, into pseudophysical object s
that respond in an intuitive way to user input . The
user moves and reshapes curves by freely pushing an d
pulling on them, providing a consistent mode for di-
rect manipulation of all shapes .

Each curve drawn on the screen is interpreted as a
physical object by assigning it negligible mass, wit h
uniform viscous drag along its length . Under thi s
model, a curve responds to forces by changing shap e
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Figure 3 : A model consisting of parametric curve s
attached by constraints . By grabbing and pulling ar-
bitrary points on the curve, the user may move an d
reshape the model subject to the constraints .

and position in accordance with the equations that
define it . For example, a circle may change radiu s
and position . Because the user controls the objec t
directly through its appearance on the screen, th e
underlying parameterization is hidden, making it eas y
for the user to control curves whose parameters ar e
nonintuitive or interact nonlinearly .

Attachment constraints serve to nail curves to-
gether, while springs and other forces permit th e
user to express preferences that are weaker than con-
straints . Because they are dynamic simulations, th e
models created are more than static drawings : the
system is proving useful as a tool for experiment-
ing with planar mechanisms, as well as a tool for
constraint-based drawing .

The steps that go from the parametric equation s
that define the geometry of a curve or surface to th e
compiled code that allows a user to interact with i t
as a physical object involve rote differentiation, sim-
plification, and code generation . We have fully auto -
mated these steps as an off-line compilation process ,
allowing a user to add a new curve type to the sys-
tem just by entering the pure mathematical equations
that define it .

5 .3 Interactive Optimization

An additional area of interest is the use of dynamic s
as a medium for the interactive solution of non-linea r
problems in constrained optimization . The idea i s
to convert local minima in the objective function into

attractors, so that the model is continuously "pulled "
toward some local solution . The user exercises globa l
control by dragging the model toward the desired so-
lution, then letting go, allowing the local attractor t o
take over .

An earlier application of interactive optimization
to computer vision is described in [8] : a dynamic 2- D
curve, called a snake is superimposed on an image an d
attracted to points of high contrast . The curve's be-
havior approximates that of a springy, stretchy wire .
Placed near an edge, the curve locks on to it and i s
able to track its motion . At any time, the user ma y
grab the curve and pull it toward features of interest .

In addition to continuing the investigation of vi-
sion applications, we are exploring other tasks involv-
ing the manipulation of nonlinear models and opti-
mal data fitting. One experimental system allows th e
user to define a collection of variables, enter algebrai c
expressions representing constraints on the variables ,
functions to optimize, or user-accessible outputs . The
user may then directly manipulate the system subjec t
to the constraints, using sliders to pull on the outputs .
Related investigations include the dynamic fitting o f
parametric models to scatter data .

5 .4 Troid s

Troids are simplified linearly deformable bodies . A
2-D troid may be viewed as an affine transformabl e
sheet containing mass in some distribution . Troids
are imbued with internal elastic forces that mak e
them tend toward a rest state, and tend to preserv e
their original area . Because the deformations the y
undergo are linear, troids are extremely simple ob-
jects, simpler in fact than rigid bodies . In the case
of a collection of troids that are attached together
or nailed in place, the constraint matrix on the lef t
hand side of equation 5 is constant . This simplifi-
cation allows us to pre-invert the constraint matrix ,
eliminating the need to solve a linear system at eac h
evaluation of ,J . The simulation of models built fro m
troids is therefore very fast .

Because they are defined in terms of deformations ,
troids may be rendered by transforming arbitrar y
curves, drawings, etc . created in body coordinate s
(see figure 4) .

We are using troids as a means of rapidly creat-
ing physical keyframe animation . Control is accom-
plished by constraining specified points to move along
user-defined trajectories . The desired acceleration of
the control point along the trajectory appears as th e
0 2 c/Ot 2 term of equation 5 . Subject to the keyfram e
constraints, and the attachment constraints that hol d
pieces together, the system moves with passive non -
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rigid physics . The resulting behavior is best com-
pared to that of stretchy puppet whose hands, feet ,
etc ., are directly controlled . By adjusting the stiffness
and drag of the internal forces it is possible to cre-
ate behaviors ranging from highly non-rigid jello-lik e
motion to nearly rigid forms .
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