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A new method for molecular dynamics computer simulations, called the 
multiple time-step (MTS) method, is described, in which two or more time 
steps of different lengths are used to integrate the equations of motion in 
systems governed by continuous potential functions. With this method 
computing speeds have been increased by factors of three to eight over 
conventional molecular dynamics methods in simulations of monatomic and 
polyatomic fluids, with only marginal increases in computer storage. 

1. INTRODUCTION 

In computer simulations of fluids by the molecular dynamics (MD) method, 
the N ewtonian equations of motion of N molecules (where, typically, 102 ~< N < 103) 
are solved numerically, progressing in small increments of time, At, called the 
time step. Detailed descriptions of molecular dynamics for systems of spherical 
[1-3] and non-spherical [3-8] molecules have been published, and the reader is 
assumed to be familiar with the conventional framework of these methods. 

For systems of molecules governed by moderately long-ranged potentials, 
such as the Lennard-Jones (LJ) potential, as much as 95 per cent of the com- 
puting time is spent in examining the complete set of N(N- 1 )/2 pair interactions, 
and summing the forces and torques over some well-defined subset, which we 
shall call the cardinal set. The cardinal set is usually defined as all pairs of 
molecules separated by distances less than a cut-off distance re, beyond which 
interactions are neglected. The inessential set is the complete set less the 
cardinal set. The lists of particles comprising the cardinal and inessential sets 
change with time. 

In simulations of LJ systems rc is usually taken to be 2.5a, and the size of the 
cardinal set at liquid-like densities is ~40N. Thus, for systems containing 
200 or more particles, the task of identifying and rejecting pairs in the inessential 
set can consume a large part of the computing time ; however, several book- 
keeping methods have been devised [2, 9, 10], which reduce this time to virtual 
insignificance. The essential task of calculating the intermolecular forces for all 
pairs in the cardinal set, at every time step, remains as the principal time- 
consuming task, and dramatic increases in computing speed can be achieved only 
by reducing the time devoted to this task, 
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We report here a new method, the multiple time-step (MTS)  method, which 
reduces by an order of magnitude the average number of pair interactions 
explicitly calculated in each time step, resulting in increases in computing speed 
by factors of three to ten, with only marginal increases in computer storage. The 
method is particularly appropriate when using a time step of 5 x 10 -15 s or less, 
and has been applied with equal success to systems of spherically symmetric LJ 
molecules and systems of diatomic and tetrahedral molecules governed by atom- 
atom potentials. 

2. T H E  MULTIPLE TIME-STEP METHOD 

2.1. General 

In the interest of clarity we describe" here the application of the M T S  
method to a system of molecules governed by the spherically symmetric LJ 
potential function : 

[( a)~2- ( ~ '~61, (1) 
,,r./ j 

where ~(rij ) is the potential energy between molecules i and j ,  separated by 
distance rlj , and E and a are the usual energy and length parameters. The method 
is easily extended to systems of non-spherical molecules. 

The instantaneous force on molecule i is a vector ; 

F= E-[r"ar (2) 
j#i ~ drij Jr,j~ro" 

Here ri: = r , -  rj, where r i is the position vector of molecule i and ri: = ]r O [. The 
summation is over all neighbours, j ,  lying within a sphere of radius r o centred on 
L that is, over all i j  pairs that are members of the cardinal set. We call these 
the cardinal neighbours of molecule i. If the sphere of radius r c centred on i is 
divided in two by a smaller sphere of radius ra, also centred on i (figure 1), 
the cardinal neighbours of i are divided into two sets : primary neighbours, whose 
centres lie inside the smaller sphere, and secondary neighbours, whose centres 
lie between the two spheres. Then the total force F on molecule i, given by 
equation (2), can be separated into a primary force Fp and a secondary force Fs, 
produced by these two sets of neighbours : 

F=Fp+Fs= 
~j" rij drij _Jr.<.r~ + k rik dr.ik _lra~r,~<-~o" 

(3) 

We have calculated these components of the force for LJ systems at liquid- 
like densities, with ro = 2.5 ~ and a ~< r a ~< 1-5 a (thus treating as primary neigh- 
bours most of the pairs responsible for the first peak in the radial distribution 
function) and have found that, on average, 

IF~I > IF~l. (4) 

Similar inequalities hold for the time derivatives of these quantities. Indeed, 
this is precisely what the physics of the problem suggests: the motion of a 
molecule is dominated by a rapidly changing primary force resulting from 
collisions with a cage of nearest neighbours, the primary neighbours. The 
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longer-ranged secondary force is smaller, and changes more slowly with distance 
and time. 

Figure t. Primary and secondary neighbours of molecule i. In this diagram the ' diameter ' 
of each molecule is (7, and the radii ra and re are 1.5 a and 2"5 a respectively. Below 
is a graph of the potential function drawn to scale using the same value of a as in the 
figure above. 

It  is the rapidly changing pr imary force that imposes an upper  limit on the 
time step in M D  simulations. If the t ime step is too long, the algorithm used to 
solve the equations of motion predicts unrealistic overlaps between molecules in 
successive t ime steps, leading to progressive, often catastrophic, numerical  
failure. In conventional M D  methods no distinction is made between pr imary 
and secondary forces ; the intermolecular forces for all pairs in the cardinal set 
are recalculated at every t ime step. In  the M T S  method,  however, only the 
pr imary force is recalculated at every step, while t ime steps ten to twenty times 
longer are used to calculate the time evolution of the secondary force. T h e  average 
computing t ime per step is thereby greatly reduced. 

2.2. Outline of the M T S  method 
At time t o the pr imary and secondary forces on molecule i, Fp(t0) and Fs(to) , 

are calculated from equat ion (3). Concurrent ly  the t ime derivatives Fs'(t0) , 
F~"(to), . . . ,  of the secondary force are calculated (the expressions are given in the 
Appendix),  and a list is compiled of the pr imary neighbours.  At each of the 
next n - 1  t ime steps, the primary force is determined in the usual way, by 
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calculating and summing the forces exerted on i by its primary neighbours ; how- 
ever, the secondary force is calculated from a Taylor series expansion, using 
information available at t o : 

(KAt)m 
Fs(t o + KAt)  = F~(to) + Fs'(to) +""  Fs(m)(t~ m t 

�9 �9 

+ K - - l ,  2, ..., n - 1 .  (5) 

We refer to the series truncated after m terms as the ruth-order Taylor series. 
The list of primary neighbours compiled at t o is used to calculate the primary 
force at each of the succeeding n -  1 time steps. The boundary between primary 
and secondary neighbours is gradually distorted from its original shape ; how- 
ever, at step n + 1 the list of primary neighbours is recompiled and the primary 
and secondary forces are recalculated from equation (3). The time derivatives 
of the secondary force are also recalculated, and that step becomes the new t o . 
In this way time steps of length At and nAt are used for the primary and 
secondary forces, respectively ; hence the name multiple time-step method. 

To calculate the contributions to the configurational internal energy U, and 
the total virial W (used to calculate pressure) at each time step, the expressions 
for these properties must be separated into contributions from primary and 
secondary neighbours and calculated in an analogous way. The necessary 
equations are given in the Appendix. 

The use of the M T S  method requires additional computer storage of the 
order of 10N to 15N words of memory. 

2.3. Time evolution of the secondary force in a system of LJ  molecules 

We have made a detailed study of the time evolution of the primary and 
secondary forces on several molecules in a 256-molecule LJ system. (In this 
work we used a modified LJ potential, called the shifted force potential [11], 
which eliminates the step discontinuity in the force associated with the cut-off in 
the potential at r = ro.) Figure 2 shows how the secondary forces estimated from 
first, second, and third-order Taylor series depart from the true secondary force 
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Figure  2. Examples  of differences be tween  the  exact  secondary  force, Fs  and  the  value FE 
es t imated  f rom several versions of the  M T S  method �9  iLegend : - x - : f i r s t -order  
Tay lo r  series ; - - A - -  ; s econd-orde r  Tay lo r  series ; - - � 9  : t h i r d - o r d e r  Tay lo r  
series ; - - D - -  ; l inear  p red ic to r  m e t h o d  (Appendix ,  A 3). 
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over ten time steps, for a state at liquid-like density. Also included is a compari-  
son with an alternative f irst-order method,  called the linear predictor  M T S  
method, described in the Appendix. T h e  linear predictor  method  is of margin- 
ally bet ter  accuracy than the f irst-order Taylor  series. It  is important  to point 
out that the secondary force is typically about an order  of magni tude smaller 
than the pr imary force under  these conditions ; hence the maximum errors shown 
in figure 2 are less than 1 per cent of the total force on a molecule. Errors  of 
this magnitude are averaged out in this simulation, and do not significantly affect 
the energy conservation. (They  are the same order  of magni tude as the dis- 
continuity in force associated with t runcat ion of the potential at ro = 2.5 a.) T h e  
second-order  Tay lor  series leads to errors almost an order of magnitude smaller, 
while the third order is exact to five significant figures. 

2.4. Comparison with results from conventional MD programs 

A program with a th i rd-order  Taylor  series has been used to calculate more 
than 50 state points in the Lennard-Jones  system, at reduced densities 
0.35~< p * <  1.20, and reduced temperatures  0.6 < T * <  6.0 [11]. As a check on 
the accuracy of the M T S  method,  several points were also calculated using a 
conventional M D  program. A comparison of reduced pressures and energies 
for these points is shown in the table below. 

Comparison of pressures and energies for several state points in the LJ system, calculated 
from conventional and MTS molecular dynamics programs. 

Conventional MD MTS  method 

o* T* P* U* P* U* 
0.9 4.66 21-08 - 2.904 20.92 - 2.908 
1.0 3.50 24-46 - 3.480 24.43 - 3.471 
1.05 2.50 23.21 - 4.278 23.14 - 4.283 

Radial distribution functions calculated from two programs agree to within 
three significant figures. 

3. INCREASES IN COMPUTING SPEED 

The  increase in computing speed over conventional M D  methods is a function 
of the lengths r~ and r c (figure 1) and the parameters m and n (equation (5)). In  
most of our work on LJ  systems we have used m =  3, n =  10, r c = 2 . 5 0  a, and 
r~= 1.1 a. At a reduced density p a ~  0"8, the average numbers  of pr imary and 
secondary neighbours in this case are 1-4 and 24, respectively ; at pa~= 1-05 (a 
high density) the numbers  are 3.1 and 29. Thus  at these two densities, for 
nine out of ten steps the average numbers  of pair interactions evaluated per 
molecule are reduced by factors of 24/1 .4= 17.1 and 29/3.1 =9.4,  respectively, 
compared to conventional M D  simulations. We have found that for systems of 
256 molecules, our program using the M T S  method is three to five times faster 
than a conventional M D  program that uses Verlet neighbour lists [2], and seven 
to ten times faster than one that does not. 
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The limiting values of r~, m, and n are strongly interdependent, and are 
mildly dependent on density, temperature, and the length of the time step. We 
have successfully carried out simulations for a system of 256 LJ molecules, with 
ro=2 .Sa ,  a~<r~<l 'Scr,  l~<m~<4, and 5<n~<20. A run was considered 
successful if the resulting particule trajectories were essentially the same as those 
obtained in a conventional M D  run started from the same point in phase space. 
In most cases the difference in positions and velocities were about one part in 
105 after 1000 time steps. 

We have applied the M T S  method to systems of diatomic and tetrahedral 
molecules governed by atom-atom potentials, with comparable increases in 
computing speed. 

The M T S  method can be used to best advantage with time steps of about 
5 x 10 -15 s or less. With larger time steps it is necessary to adjust the parameters 
r~ and n to less favourable values (r~ increased, n decreased), with the result that 
the computing speed increase may be only marginal. In simulations of LJ 
molecules time steps of order 10 -14 s have traditionally been used [1, 2], and in 
cases where it is desirable to cover the greatest possible real time with a given 
amount of computing time, such as in simulations of inhomogeneous systems 
[13] or in calculating time-dependent properties over periods in excess of 10 -1~ s, 
little can be gained by using the M T S  method with a shorter step. However, it 
is our experience that equilibrium properties of the homogeneous LJ fluid can be 
computed with comparable precision in several thousand time steps of either 
10 -I4 s or 5 x 10 -15, in which case the M T S  using the shorter time step is superior. 
It is in simulations of polyatomic liquids that the M T S  method offers clear 
advantages over conventional molecular dynamics methods. In these systems, 
time steps of order 10 -15 s are required to cope with rotational motion [4-6], and 
we have found that no further decrease in step length is required by the M T S  
method. 

The M T S  method can be generalized to a hierarchy of time steps of different 
lengths, applied to components of the force produced by neighbours located in 
progressively larger spherical shells centred on each molecule ; but the gains in 
going beyond two shells are small in the cases we have studied. 

4. DISCUSSION AND CONCLUSIONS 

The essence of the M T S  method is the use of time steps of different lengths 
to calculate the time evolution of rapidly and slowly varying forces in a molecular 
dynamics simulation. In a limited sense it is the dynamic analogue of the 
method used by Weeks et al. [12] to separate the effects of repulsive and attractive 
forces in static structure and equilibrium thermodynamic properties. Just as 
these authors have shown that equilibrium structure is dominated by short- 
ranged forces which vary rapidly with distance, we have shown here that dynamic 
behaviour is dominated by short-ranged forces which vary rapidly in time ; and 
just as they have shown that the equilibrium effects of the longer-ranged attrac- 
tive forces can be calculated by a simple perturbation method, we have shown 
that the dynamic effects of the longer-ranged, slowly varying forces can be calcu- 
lated with less computational effort by the use of a longer time step than that 
used for the rapidly varying forces. The analogy is not complete, however, 
since (so far as we know) one cannot separate the effects of the rapidly and slowly 
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varying forces on the time-dependent properties in the same way that the effects 
of repulsive and attractive forces on the equilibrium properties can be separated. 

In principle the MTS method is compatible with any of the conventional MD 
methods with which we are familiar, including the central force method [16] and 
the method of constraints [17]. The only disadvantage of the MTS method is 
that it requires a considerably larger programming effort. 

The MTS method is a significant advance in the technique of molecular 
dynamics simulations. A sine qua non of the method is the deterministic nature 
of motion in a system governed by the laws of classical mechanics ; therefore, it 
does not appear to have a counterpart in the Monte Carlo method. 

Two of us (W.B.S. and D.J.T.) would like to thank Professor J. S. Rowlinson 
of Oxford, for inviting us to a weekend of hiking and climbing in North Wales in 
April 1976, during which the essential framework of the MTS method first took 
shape. It is a pleasure to acknowledge a generous allocation of computing time 
from the United States Military Academy, West Point, New York. This 
research was supported in part by grants from the National Science Foundation 
and the U.S. Army Research Office. 

APPENDIX 

A 1. Expressions for time derivatives of the secondary force 

The secondary force on molecule i at time t o is given by the second expression 
in equation (3). Since the terms in the summation can be differentiated 
separately, we need here consider only one of them, which we write as 

r de 
F . . . .  . (A 1) 

r dr 

Noting that the potential r is a function only of r, we define A-- -r - l (dC/dr)  
and reduce equation (A 1) to 

F = Ar.  (A 2) 

Differentiating with respect to time gives 

F ' = A r ' + B ( r .  r ')r, (A 3) 

where B=r - l (dA/d r ) .  The second and third derivatives are 

F"= [B(r. ,-"+ r ' )+C(r.  2B(,-. r'),-'+Ar" (A 4) 

and 

F"={B(r . r'+3r', r")+ 3C[(r. r')(r, r")+(r, r')(r' . r')]+D(r, r')a}r 

+3[B(r .  r "+  r ' .  r ' ) + C ( r ,  r ' )2 ] r '+3B(r ,  r ' ) r " +A r" ,  (A5) 

where 
r = r ~ - -  r j ,  / 

r I r ! = r i - -  r j  

etc. 

(A 6) 
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and C=r-l(dB/dr) and D=r-l(dC/dr). If the LJ potential is used, the 
expressions for A, B, C and D are 

1 d ~  
A - - 48(r -14 - 0-5r -s) 

r dr 

B= 
1 dA 
r dr 

1 dB 
C= 

r dr 

- 192( - 3.5r -16 + r -1~ 

- 1920(5.6r-lS_r-l~) 

(A 7) 

D = - = 23040( - 8"4r -2~ + r -lt) 
r 

(distances and energies are expressed in units of a and E respectively). 
Since derivatives of r~ to second order are often routinely calculated in carry- 

ing forward a MD simulation, the MTS method can be readily incorporated at 
this level and should increase the speed of computation by a factok of 3 or more. 
To achieve greater speed it may be necessary to use a higher-order Taylor series. 
The additional effort required to calculate the higher order derivatives of r~ 
depends mainly on the type of numerical algorithm used to solve the equations of 
motion. If a predictor-corrector algorithm of order m is used, the derivatives of 
r~ to order m are routinely calculated, hence third and higher-order MTS methods 
are facilitated by these algorithms. 

A 2. Time derivatives of thermodynamic functions 
In molecular dynamics simulations, the equilibrium thermodynamic proper- 

ties are calculated from time averages over the states generated at each time step. 
For example, the internal energy U and pressure P in a system of simple molecules 
are calculated (in part) from 

U = ( ~ /  

and 

~. ~(ri]))ro<.r ~ (A 8) 

P 1 ( d~(r~)\ (A 9) 
- -  r l J  ~ re, pkT 1--j-~-~ ~i j~>i r{j drij / 

where the angular brackets indicate time averages and the double sums are over 
all pairs in the cardinal set. When the MTS method is used, two alternatives are 
available for calculating thermodynamic properties : (1) include the contributions 
to the averages only at intervals of n time steps, when all pair interactions in the 
cardinal set are evaluated, or (2) calculate the contributions to the averages at the 
intervening steps from Taylor series expressions similar to equation (5). The 
latter alternative requires expressions for the time derivatives of those terms in 
the double sums in (A 8) and (A 9) that represent interactions with secondary 
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neighbours (r a < rii <. rc). The first three derivatives are 

6 ' -  - X ( r .  r'), 

~"---- - B ( r .  r ' ) 2 - A ( r ,  r " + r ' ,  r ') 

r  - C ( r .  r ')  ~ -  3B[(r .  r ' ) ( r ,  r" + r ' .  r ')] 
- -  i ( r .  r" + 3r' . r " ) ,  

(A 10) 
[r(ddp/dr)]' = - X ( r .  r'), 

[r(dr  - Y(r .  r ' ) ~ - X ( r ,  r " + r ' ,  r '), 

Jr(de~dr]"= - Z ( r .  r ')  a -  3 Y[ ( r .  r ' ) ( r ,  r" + r ' .  r ')] 
- X ( r .  r "+ 3r'. r"), 

where X -  - (dd~/dr), Y = r - l ( d X /d r ) ,  and Z -  r - l (d  Y/dr) .  

A 3. The linear extrapolation method 

We have tested an alternative scheme for estimating the first time derivative 
of the secondary force, Fs'(to) , for use with a first-order M T S  method. In lieu of 
equation (A 3), a finite difference formula is used : 

Fs(to + At)-- Fs(to) (A 11) 
Fs'(t~ ~ At 

In this case all pairs in the cardinal Set are explicitly evaluated at each of the first 
two steps in each block of n time steps, and a linear extrapolation of F~(t) is carried 
out over the next n - 2  steps. This  method is marginally more accurate than 
the first-order Taylor series based on equation (A 3), but slightly less efficient. 
In some respects it is easier to apply to systems governed by complex inter- 
molecular potential functions. We have used it in simulations of 108 methane 
molecules, modelled by a tetrahedral a tom-atom potential [14], and have realized 
a factor of 4 increase in computing speed over a conventional MD simulation of 
the same system [15]. 
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