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The convergence properties of long-range interactions in a periodic polar 
system are considered and an efficient method for their evaluation proposed. 
This method is applied to a Monte-Carlo simulation of water at 1 g cm -3 and 
a nominal temperature of 300 K, using the ST2 potential of Rahman and 
Stillinger. 

I. INTRODUCTION 

There have been several attempts over the past few years to simulate the 
properties of water by Monte-Carlo [1-7] and molecular dynamics [8-11] 
techniques, the most extensive being the molecular dynamics work of Rahman 
and Stillinger [8-11]. The major problems are the accurate specification of an 
effective pair potential between the water molecules and a practical treatment of 
the long-range dipolar interactions. 

It is only recently that accurate potential surfaces for the water dimer have 
become available [6, 7], and most workers have used empirical pair potentials. 
Despite the fact that atom-atom potentials may be more realistic than point- 
charge rigid molecule models, the atom-atom potentials proposed to date yield 
notably poorer radial distribution functions than the most recently developed 
point-charge models, e.g. the ST2 potential of Rahman and Stillinger [I0] and 
the Hartree-Fock+ C.I. parameterized potential of Lie et al. [7]. The latter is a 
true (isolated) pair potential and would not be expected to simulate accurately 
the properties of condensed phases, such as energy and pressure, which depend 
strongly on many-body interactions, though the radial distribution functions are 
closer to experiment than those obtained from any other potential. The ST2 
potential is thought to be a useful pair potential for a wide range of properties 
and was therefore chosen for the calculations reported here. 

The problem of the long-range dipolar interactions has only been considered 
relatively recently. The original procedure [l, 5-10] was to neglect all inter- 
actions between molecules whose oxygen-oxygen separation was greater than 
some fixed value. The neglect of long-range interactions was subsequently 
questioned by Barker and Watts [2, 3], who included a reaction field correction, 
assuming that the molecules outside the cut-off radius of a particular molecule 
could be represented by a uniform dielectric. However, this assumption neglects 
the periodicity of the system and is thus not consistent with the model chosen, 
and perhaps more importantly, assumes that water molecules at relatively short 
distances (typically about I0 A) interact as a macroscopic dielectric. 
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An alternative approach, and one which is followed in this work, is to evaluate 
the properties of the periodic system. The advantage of this approach is that the 
system can be accurately studied, and artifacts introduced by periodicity isolated 
by considering the dependence of the properties on the size of the system. 
Theoretical expressions for the long-range dipolar interactions have been derived 
by Jansoone [12] and Smith and Perram [13]. Unfortunately, these methods 
require repeated evaluation of involved, though rapidly converging, lattice sums, 
and use far more computer time than the straightforward spherical truncation 
scheme. The aim of this work is to consider an expansion of the interactions 
outside the cell of nearest neighbours in a periodic system, and to demonstrate 
that these interactions can be included in a simple computation if required, but 
can sometimes be ignored without significant loss of accuracy. 

Friedman [14] has attempted to remove the artifacts induced by periodic 
boundaries by enclosing the system in a spherical container, outside which is a 
uniform dielectric. The system must be large enough, however, for wall effects 
to be negligible and for the reaction field due to the uniform dielectric to be an 
accurate representation of the long-range interactions. Only numerical com- 
parison can decide whether systems with these boundary conditions converge 
more rapidly to the infinite system limit than those with periodic boundary 
conditions. 

2. LONG-RANGE INTERACTIONS I N  A PERIODIC SYSTEM 

Consider an infinite, periodic lattice of cells, each containing an identical 
configuration of N molecules. The periodicity implies that the system is com- 
pletely determined by the configuration of any set of N molecules contained in a 
cell. This result is invariant under a translation of the lattice of cells, as the 
periodicity is maintained under these conditions, and as a consequence simple 
expressions for the long-range interactions can be derived. 

Consider a particular molecule, molecule i, which has been brought to the 
exact centre of its cell by an appropriate translation of the lattice of cells. If the 
cell is large enough, the interactions between molecule i and those outside the cell 
are dominated by electrostatic interactions, which are identically pairwise additive 
[15]. The interactions between molecule i and those inside the cell of nearest 
images can be decomposed into pair, triplet, quadruplet and higher-order 
contributions. Taking, at present, only the contributions from pairs of 
molecules, the potential energy of molecule i due to all the other molecules can 
be written as 

Us = ~ u (eleo~+ �9 ~j E u,.. (1 )  
I k 

where the first term contains all the contributions from molecules outside the 
cell of nearest images and the second term the N - 1  pair contributions from 
molecules inside the cell. In a similar fashion, the potential energy of each of 
the other N - 1  molecules can be evaluated and the total potential energy per 
molecule, U, can be written as 

U = ( 2 N )  -t  ~', Xu~J (eiee'+ ~ Z Uie �9 (2) 
i = 1  j i = l ~ k = l  
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The sum over j extends over all the molecules outside the cell of nearest 
images of molecule i and the sum over k extends over all the molecules inside the 
cell of nearest images. The second term can immediately be simplified to a 
sum over pairs of molecules whose cartesian coordinates differ by less than half 
the cell length, and so, for pairwise interactions, 

U = N  -I  �89 ~ ~VU"te'ee)+~ U~k . (3) 
i=l j h 

Many-body contributions can be included in a sum over groups of molecules 
which are inside the nearest image cell of every molecule in the group. This 
implies a summation over molecules whose cartesian coordinate differences are 
all less than half the cell length. In this case, 

( N N N ) 
U = N - 1  1 • ]~uij(,1.c)+ E E u~k+ E Y~ Y. uik,+ . . . .  (4) 

i=1 j i>h=l i > h > l = l  

The restriction that all interactions between molecules at separations greater 
than half cell length are pairwise additive is not serious, since even in small 
simulations (200-300 molecules) the cell lengt h is typically 20 A and at 10 )~ 
electrostatic interactions are predominant in polar system. The interactions 
between molecules inside the nearest neighbour cells of each molecule are 
evaluated explicitly and we now seek a simple expression for the interactions 
between a molecule at the centre of the cell and the molecules outside the cell. 
It has been shown [13] that the pair potential between two point dipoles in an 
infinite periodic system consists of the finite difference between two divergent 
sums. However, it will be shown that the dipole and higher multipole potentials 
due to all the molecules in neighbouring cells taken at once is, by contrast, 
rapidly convergent. The electrostatic energy of molecule i due to the molecules 
in the neighbouring cells can be written as a sum over the interactions between 
the multipoles of molecule i and the total multipoles of all the molecules in each 
of the neighbouring cells. The origin of these total multipoles is taken to be the 
centre of the cell. 

Since all the cells are identical, their multipole moments are equal and, so 
using cartesian tensor notation, the electrostatic energy of molecule i due to the 
surrounding cells can be written as [15] 

U4 (elec) 

+ (~O~p ")O~,~ (o)-~U~(~)~py~ (o)--~U~(~)~),~,~(~))T~,~,~ + ..., (5) 

where [~(i) is the dipole moment of molecule i and [~(c) is the total dipole moment of 
the cell. O and ~ are quadrupole and octopole moments respectively. The 
gradient tensors, T, represent lattice sums over all cells of the gradient tensors 
between the central cell and the surrounding cells, e.g. 

T~p= ~]' T~p", T~p"=(4CrEo)-IV~VB(1/R(") ). (6) 
n 

R(") is the vector from the central cell (i.e. molecule t] to the centre of the cell 
defined by the Miller indices n. 

The prime indicates that the term with n~ = n u = n~ = 0 in the summation is 
excluded. 
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Using the results of Buckingham [15], 

CO cO CO 

T~p = (a a 4~r,0)-1 Y'. • ~ '  (3n~,np- n ~ ~,p)n -5, (7) 
~ x  ~ --CO ~ t y ~  --CO n z =  --CO 

CO cO cO 

T~ar = (a '  4rrr -1 ~'. E E '  -3[5no, nan, 
n x  ~ - -  o ~  f l v  ~ - -  O D  n z  = - -  O 0  

- -  n~(ne~#~, + n~Sr~ + nr~p)]n-~, (8) 

oo cO oo 

T~fly* = (aS 4~r'0) -1 E E E '  3135n,,npnrn~ 
n z =  - - c O  n y ~  - - 0 0  f l z =  ~ 0 0  

- 5n2(n~,npSra + n~,nr3a~ + n~,naSpr + npn~,~,a + npn,8o, r + nrn,8,, p) 

+ na(~88ra + ~r~a~ + ~a8~r)]n -9, (9) 
where a is the cell length. 

It can be seen that if the T tensor has an odd number  of subscripts, it will be 
an odd function of at least one subscript  and since the summations extend from 
- o o  to + oo, all its components  will be zero. Furthermore,  even for those T 
tensors with an even number  of subscripts, each coordinate must appear in pairs 
for the component  to be non-vanishing, and therefore 

T:v = Ty:= T:: = 0. (10) 

Finally, since all directions in the lattice sums are equivalent and the gradient 
tensors are traceless. 

T~x= T , v =  T ~ = � 8 9  (11) 

Thus  the dipole-dipole and dipole-quadrupole  terms vanish identically, and the 
leading terms in the expansion are the quadrupole-quadrupole  and dipole-  
octopole contributions. The  non-zero components  of the corresponding 
gradient tensor, T~pr~ , are either of the form Txxxx or Txxvv. Since T ~  is 
zero, 

T ~ x  = - 2 T ~  v, (12) 

and so T~/~r, has only one independent  component,  Tx~xx. The  lattice sums 
contributing to T~xzz from a rapidly converging series with the sums from 
- 1 <~ n~, nv, n, ~< 1 contributing over 95 per cent of the total. The  convergence 
of Tzxxx with successive cubic shells of cells is illustrated in table 1. Since 
Txxx~ is the most slowly convergent of all the non-zero lattice sums, it follows 
that the first cubic shell of cells contributes at least 95 per cent of the total 
potential energy due to molecules outside the nearest neighbour cell. 

Table 1. Convergence of Tz:rzx ; - n ~ nx, ny, nz <~ n. 

n (4~r~o a~) Txxzz n (4~r~oa 5) Txtzz 

1 71-786 6 74"452 
2 73"613 7 74"488 
3 74.095 8 74.512 
4 74"293 9 74"529 
5 74"394 10 74"542 
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The dipole moment of the cell is origin independent, and so 

N 

/~(o)= ~/~ (i). (13) 
i = 1  

The quadrupole and oct| moments are origin dependent [15], and neglecting 
terms arising from the requirement that the quadrupole and oct| moments 
are traceless, which do not contribute to the potential energy, 

N 

| (e)= y. [| ~(r(1)l~p(i)+rp(i)U (o)], (14) 
i = 1  

N 

~2~p (r ~ [~:p (i)+ 5~ r (o o (i)+ ?i~ a f13' r f l ( i ) O a y ( i ) T r y ( i ) O a f l ( i ) )  
i = 1  

+ ~ ( r a ( i ) r z ( i ) l ~ v ( i ) + r a ( i ) r y ( i ) t z $ ( i ) + r / ~ ( i ) r ~ , ( i ) l ~ a ( i ) ) ] ,  (15) 

where r~ (~ is the vector from the centre of the cell to molecule i. The cell 
f~ (c) different for each molecule, quadrupoleand oct| moments, | apv , are 

since the origin of the cell is different. They must therefore be re-evaluated 
for each molecule before determining the long-range contribution to its potential 
energy, Ui (eter Since all the distances involved in the computation of the 
cell moments for a particular molecule are required in the calculation of its 
nearest image interactions, the evaluation of the long-range contributions to 
the potential energy, at least for the quadrupole-quadrupole and dipole- 
oct| terms, is not a particularly lengthy computation. In the case of 
systems involving only dipolar forces, or in systems where these forces are 
predominant at distances of half-cell-length or greater, the expressions are con- 
siderably simplified, 

U(elee)-  ~__.. (oc~ (r ~_ (16) i - -  - -  1 5 ~ a  ~ f l ' y ~  at a f ly (  $ T . . .  

_ . ! _ 1 , .  ( i ) [ C ~  ( c )  8 ( ' ~  ( e )  8 ( ' s  (c ) '~  
- -  - -  15~[ '~x ~aaXX x - -  ~ X y y  - -  ~aaXZZ ] 

,~ayyy  - -  ~ aayZZ ] 

•  (~) ac) (O-L~2=(~)))T~,  (17) 
~ aaZXX - -  2 ~ Z y y  - -  

all other terms being zero. The cell oct| moment is given in this case by 

N 

g2~y (e) = ~ ~ (r~(i)rB(i)l%(i) + r~(i)rv(i)tz~(i) + r~(i)ry(i)lza(t)), (18) 
j = l  

where r~ (j) is the vector from the centre of the appropriate cell (i.e. molecule i) 
to molecule j. 

However, it would seem likely that the quadrupole-quadrupole and dipole- 
oct| contributions are often small compared with the nearest image inter- 
actions, and in the present calculations interactions outside the nearest neighbour 
cells were neglected. The approximation was tested on an equilibriated con- 
figuration of 256 molecules by explicitly evaluating the interactions between a 
molecule and those in the 26 cells surrounding its nearest neighbour cell. As 
was shown earlier, this contributes more than 95 per cent of the total potential 
energy due to molecules outside the nearest-neighbour cell. These interactions 
produced a potential energy of approximately 0.05 kJ mole -1 (0.02 kT) which, 



1044 A . J . C .  Ladd 

even allowing for fluctuations due to different configurations, is negligible. (It  
should be noted that this is a different procedure to that employed by Sarkisov 
et al. [4] who summed round the 26 cells surrounding the base cell rather than 
the nearcst-neighbour cell of each molecule.) The error involved in the 256 
molecule system is so small that the approximation is probably valid (i.e. the 
errors in the energy < 0.1 k T )  for all the systems used in these calculations, 

3. RESULTS 

Monte-Carlo calculations have been carried out on systems of 32, 129 and 
256 molecules, at a density of 1 g cm -a and a nominal temperature of 300 K. 
The specifications of the ST2 effective pair potential used in the calculations are 
given in reference [10]. Successive trial configurations were generated by small, 
random rotational or translational displacements of a randomly selected molecule, 
and the algorithm of Metropolis et al. [16] was used to accept configurations with 
the correct canonical distribution of energies. It is possible to vary the ratio of 
rotational and translational trial displacements, without disturbing the Boltzmann 
weighting, in the hope of exploring phase space more efficiently, but this was not 
tested in this work, a 1 : 1 ratio being used throughout. 

The nearest-image truncation scheme used in this work would involve ap- 
proximately twice as much computer time as the spherical truncation scheme, 
since there are nearly twice as many interparticle interactions in the cubic cell of 
nearest images as in a sphere inside this cell. This disadvantage can be remedied 
by defining a sphere around each molecule, outside of which, but still inside the 
cell of nearest images, the intermolecular interactions are represented by point 
dipoles of the same magnitude as those of ST2 water molecules. The sphere 
of explicitly calculated interactions was always chosen to be sufficiently large so 
that the errors involved in the point dipole approximation were negligible, i.e. 
less than 0.01 k T  when compared to energies of configurations where all the 
interactions in the cell of nearest images were evaluated explicitly. This involved 
cut-offs of 4-5 A, 6.0 A and 8-5 A for the 32, 129 and 256 molecule systems 
respectively. Since the point-dipole interactions involve a negligible amount of 
computation the present scheme should be no slower computationally than one 
with spherical truncation. The programme written for this work generates 
approximately 40 000 configurations per hour for the 256 molecule system on an 
IBM 370/165. It was tested with a run of 216 molecules at 1 g cm -3 and 391 K, 
starting from a random configuration, and only considering those interactions 
between molecules whose oxygen-oxygen separation was less than 8.46 A. This 
is an identical system to one used by Rahman and Stillinger [10], and after 
240 000 configurations, the potential energy was within 1 per cent of their 
reported value. 

Table 2. Thermodynamic properties. 

System kJ mole -1 PV/NA kT Cv J mole -1 K -1 

32 -45"8• -0"8• ~80 
129 -42"1• -0"2• ~70 
256 -39"9• 0.6• ~70 

R.S.[10] -43.1 0.05 I00 
Expt[24] -41.4 0.05 75 
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The calculation on the 32 particle system was started from a face-centred 
cubic lattice, with all molecules aligned in an identical orientation. The initial 
configuration of the 256 molecule system was generated by duplicating an 
equilibriated 32 molecule configuration in each of the cartesian directions. The 
129 molecule system was started by taking a cube of molecules from an equili- 
briated 256 molecule configuration. Under these conditions, 100 000, 100 000 
and 250 000 configurations respectively were required to equilibriate the 32, 129 
and 256 molecule systems, and 350 000, 400 000 and 400 000 configurations 
were used to compute the ensemble averages of the properties of these systems. 

3.1. Thermodynamic properties 
The configurational energy per molecule, qb, the constant-volume heat 

capacity and the equation of state have been computed for each of the three 
systems. The results and statistical errors are summarized in table 2. The 
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Figure 1. Convergence of the configurational energy. A: Present calculations using 
the ST2 potential and nearest image truncation. B : Watts' calculations (reference 
[3]) using the BNS potential and spherical truncation. 
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equation of state was obtained from the mean virial per molecule, W, but because 
of the large statistical fluctuations, the results are not very precise : 

PV/NAkT= 1 - W/3kT, (19) 

 u,4 (20) v:CN)-  ( 
The constant=volume heat capacity was calculated from fluctuations in the 
potential energy [17] 

DO 
N~kT  ( (~2)  _ ( , ) ~ )  + 3NffeT. (21) 

The results are compared with those estimated from Rahman and Stillinger's 
results for the 216 molecules system using a linear interpolation at 300 K 
between the reported temperatures of 283 K and 314 K. 

The magnitudes of the potential energy and virial deduced from Rahman and 
Stillinger's results are much greater than those reported here for the 256 molecule 
system, and in fact are quite similar to those of the 129 molecule system. This 
indicates that a considerable perturbation is introduced into the system by the 
spherical truncation used in their calculations which is confirmed by the results 
of Watts [3] for the older but similar BNS potential. These results show poorer 
convergence of the potential energy with increasing system size than the results 
reported here for the more polar ST2 potential (see figure 1). 

The heat capacity of the 256 molecule system was found to be approximately 
70 J mole -1 K -~ compared with an experimental result of 75 J mole -1 K -1. The 
large heat capacity found by Rahman and Stillinger (~100  J mole -1 K-l), 
attributed by them to neglect of quantum effects, is probably due to energy 
fluctuations induced by molecules crossing the spherical truncation boundaries 
surrounding each molecule. 

T h e  configurational energy has been found to be strongly dependent on the 
number of molecules in the system because of the large orientational correlation 
introduced by the periodic boundaries. It is therefore important to investigate 
fully the N-dependence of the properties of polar systems and to determine the 
values of these properties in the thermodynamic limit. Only then can the 
results of molecular dynamics or Monte-Carlo simulations be "meaningfully 
compared with experiment, and the accuracy of intermolecular potentials assessed. 

3.2. Dielectric properties 
The orientational correlation in a polar liquid is a sensitive test of both the 

potential and the boundary conditions. As a consequence, there has been con- 
siderable interest in the ability of molecular dynamics and Monte-Carlo simula- 
tions to predict accurate values of the orientational correlation parameter, gk, 
first introduced by Oster and Kirkwood [20], and defined by 

sphere 

gk= ~. (cosOlj), ( 2 2 )  
I 

where 01j is the angle between the permanent dipole moments of molecules 1 and 
j and where the sum is taken over all molecules j inside a sphere of large, but 
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arbitrary, radius centred on molecule 1. However, Kirkwood's theory of di- 
electric polarization [22] is not strictly applicable to polarizable molecules [21] 
and so estimates of gk derived from experimental dielectric contents are only 
approximate. 

The values of gk obtained from small simulations are affected by both the 
orientational correlation induced by the periodic boundaries, and by errors in 
~ cos 01i caused by the smallness of the sphere of molecules used to evaluate it. 
3 

These effects can be separated by computing gk for different sized spheres of 
molecules as well as different sized systems. Results were obtained for the 
129 and 256 molecule systems and are summarized in table 3 (The 32 molecule 

system was too small for useful results to be obtained.) 

Table 3. Kirkwood gk-factor ; R is the radius of the sphere used to compute gk. 

System R=4"65 A R=6"2 A R=7"75 A R=9"3 h 

129 3"7 3"7 0"5 
256 4"6 4"1 1'9 

The sharp decrease of gk for the largest sphere in each system is probably 
due to including molecules that are strongly correlated across the periodic 
boundary. This effect decreases with increasing system size, as would be 
expected. 

The values for gk obtained in these calculations do not exhibit a strong 
dependence on either system size or the size of the sphere of molecules used to 
compute it (except for the effect noted previously), and the results indicate a 
value of gk in the range 4-5 for the infinite system. This compares with the 
estimate of 2.6 obtained from the experimental dielectric constant [23], and 
represents a dramatic improvement over that obtained by Rahman and Stillinger 
[10] of approximately 0.16 (before an empirical correction was applied for the 
effect of the spherical truncation). Watts [3] has found that inclusion of the 
reaction field suggested by Barker and Watts [2] gave a value of gk of about 2 
for a 64 molecule system using the BNS potential, a considerable improvement 
over the results obtained using spherical truncation. 

3.3. Structural properties 

The oxygen-oxygen, oxygen-hydrogen and hydrogen-hydrogen radial 
distribution functions shown in figures 2, 3, 4 were computed by sampling the 
pair distributions in the 256 molecule system every 250 configurations for 100 000 
configurations. A comparison of these results with those of Rahman and 
Stillinger [10], Lie et al. [7] and the experimental results of Narten and Levy [18, 
19], taken from reference [7] is summarized in table 4. 

The results indicate a general reduction in the pair correlation when compared 
with those of Rahman and Stillinger [10]. The most notable is the second 
maximum in goo(r) which is broader and centred at much larger r than the peak 
in Rahman and StiUinger's calculations. These results compare less well in 
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general with the experimental results and indicate that some of the correlation 
found in Rahman and Stillinger's calculation was an artifact of the spherical 
truncation rather than a consequence of the intermolecular forces. 
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Figure 2. Oxygen-oxygen pair distribution function. 
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Figure 3. Oxygen-hydrogen pair distribution function. 
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Figure 4. Hydrogen-hydrogen pair distribution function. 

Table 4. Comparison of radial distribution functions. R,, M,,  m, m, are the positions and 
values of maxima and minima respectively of the radial distribution functions. 

R1 M,  r, m, R~ Ms r~ m2 

256 2-85 3.11 3"63 0"75 5"30 1"06 6"4 0"96 
R.S. [10] 2.85 3.09 3-53 0-72 4"70 1'13 5-8 0"80 

goo L.C.Y. [7] 2"83 2"46 3"53 0"94 4"25 1-08 5"6 0"89 
Expt [18] 2.83 2.31 3"45 0"85 4-53 1.12 5.6 0-86 

256 1.91 1"24 2"43 0"42 3"32 1"53 4.30 0"92 
R.S. [10] 1-90 l '38 2-50 0-31 3-40 1.60 4"60 0"92 

goi~ L.C.Y. [7] 1.90 1"08 2"55 0-2~ 3"35 1.68 4"85 0.90 

Expt [19] 1.90 0.80 2.45 0-50 3.35 1.70 - -  - -  

256 ; 2~51) 1.15 3.05 0.99 3.75 1-07 4.4 0.98 
R.S. [10] 2.50 1.50 3.10 0.78 4.00 1.15 5.40 0.96 

gH~a L.C.Y. [7] 2.50 1.40 3.10 0.86 3.90 1.20 5.50 0.93 
Expt [19] 2.35 1.04 3.00 0-47 4.00 1-08 - -  - -  

4. CONCLUSIONS 

It has been found that long-range interactions play a significant ro]e in 
d e t e r m i n i n g  the  p r o p e r t i e s  of p o l a r  l i qu ids  b u t  th i s  w o r k  has  s h o w n  t h a t  t h e i r  
i nc lus ion  is no t  a f o r m i d a b l e  task.  U n f o r t u n a t e l y ,  we have  f o u n d  t ha t  the  
p e r i o d i c  b o u n d a r i e s  c o n s i d e r a b l y  p e r t u r b  these  sy s t e ms  and  f u r t h e r  r e sea rch  
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on the N-dependence of the properties to determine their values in the thermo- 
dynamic limit is needed, before meaningful comparisons with experiment can be 
made. 

I am grateful to Professor A. D. Buckingham and Dr. L. V. Woodcock for 
several helpful discussions. I would also like to acknowledge financial support 
from'the S.R.C. 
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