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Abstract— The popularity of statistics driven performance
analysis in major sports leagues speaks to the success of
machine learning in understanding complex human behavior.
For instance, in the NBA, over 65% game outcome prediction
accuracy has been achieved using various supervised machine
learning techniques based on individual player statistics. How-
ever, despite the empirical wisdom that team chemistry and
rivalry play affects a team’s performance, the correlations
between players within the same team and in opposing teams
remains under-explored. Here we report our efforts in achieving
prediction accuracies comparable to established machine learn-
ing models utilizing an original team-chemistry-focused model.
In addition, our model offers qualitative insights into players’
chemistry that could provide valuable information for future
trades.

I. INTRODUCTION

Machine learning provides an interesting platform to
attempt to understand complex human behavior. We are
interested in applying these techniques to the NBA, which is
replete with detailed statistics on players and games. More
specifically, the motivation of this project is to understand
the role that player-player chemistry may play in predicting
game outcomes and providing quantitative predictions of
chemistry between players. The inputs for our algorithm will
be the identity of the players on each team for a given
game. We will then use logistic regression with a linear
model and a quadratic model to output a prediction on which
team will win the match. We also provide a comparison
using a multi-layer perceptron neural net. The goal for
this work is to examine the effectiveness of the quadratic
model in accurately predicting NBA match outcomes and
then examine the learned parameters to be able to answer
questions such as whether players perform better playing
with certain players over others and the opposite, do players
perform worse when playing against certain players?

II. RELATED WORK

NBA games are notoriously difficult to predict. The aver-
age score differential is about 10 points with average scores
varying from 100-112 points, depending on the season. Still,
most machine learning models are able to achieve 65-70%
accuracy in predicting the game outcome. Previous work
by Uudmae [1] compared the accuracy of several models
on predicting game winners based on past games. Uudmae
was able to achieve a maximal accuracy of 65% using
a Neural Network Regression model. Avalon, Balci and
Guzman achieved similar accuracy among the many models

they tested (linear regression, GDA, PCA & SVM, Random
Forest, Adaptive Boost) [2]. The input features for their
models was team statistics and the dataset was limited to data
from one season. Miljkovi¢, Gajié¢, Kovacevi¢ and Konjovié
used data mining techniques with Naive Bayes to achieve
an accuracy of 67% [3]. The best model we have seen so
far was by Beckler, Wang, and Papamichel, who used a
combination of linear regression and k-means clustering to
obtain a maximum accuracy of 73% (single season accuracy)
and an average accuracy of 70% [4]. There is also some
work on predicting player chemistry using clustering and a
proposed SPM framework by Maymin, Maymin and Shen
[5] that predicts which players or groups of players would
have game ’synergy’. It should be noted that these works all
relied on extensive player statistics as input for their model.
In contrast, our work here relies only on the identity of the
players on the teams playing for each game (see Dataset and
Features).

III. DATASET AND FEATURES

Historical data for games from the 2014-2015 season to
the current season was collected from kaggle.com [6]. Data
for later seasons was collected from basketball-reference.com
[7]. From this dataset, we extracted the names of the teams
playing (team A and team B), the date, and the number of
points scored by each team (points A and points B). The
game data was limited to regular season games since players
often play and behave differently during the playoffs. Playoff
data was collected and processed but not used for training
purposes. We also collected roster data for each team from
the 2014-2015 season to the current season[7]. The total
number of players in the league throughout these seasons
was 963. Thus, the feature vector for each team is a vector
of length 963 with a 1 in every position corresponding to one
of its players and Os elsewhere. The date for each game is
used to access the roster information in that season for each
team. The feature vectors for each team is then stacked in
order to create the input for our model. The labels are either
1 or 0, depending on whether team A won or team B won,
respectively.

The dataset contains duplicates for each game (Team A
vs Team B on Date D as well as Team B vs Team A on
Date D). A separate dataset was created for games without
duplicates. Both game sets were shuffled prior to training
in order to remove time-series bias. Note that the feature
vectors for our experiments only capture the player’s identity



rather than any information about their skill (points per game
or three-point shooting percentage, for example). This was
a deliberate choice on our part in order to examine whether
simply the identity of the player could accurately capture the
dynamics of the player chemistry. Future work will include
adding player skill information to improve model prediction
accuracy and identify factors that determine two players’
chemistry.

IV. METHODS

The data was fit using three models. The first was simple
logistic regression with an input features vector x that is a
stacked vector of the team inputs features ¢; and ¢s. The
prediction for this model is given by

1

ho(z) = g(0"x) = [

The second model is a quadratic classifier that attempts
to capture player chemistry. The model assumes that each
team has some intrinsic symmetry amongst its players (some
players play better with other players on the same team) and
an anti-symmetric component that represents some adversity
between the two players. The symmetry matrix will be
represented by S and the adversity matrix with A. With our
model, the prediction will be estimated as

h(ty,t2) = g(t] Sty — t1 Sty + 2tT Aty),

where ¢; is a Team 1’s feature vector/roster and ¢ is Team
2’s feature vector/roster and g(z) is the sigmoid function.
This prediction function can also be written as

he(x) = g(:rTHx) ,

S A
where x 1S now and 6 has the form [ . We

to -A -5
then use a standard gradient descent algorithm to maximize
the log likelihood in order to optimize 6. Initially we
computed the gradient and wrote the code for the gradient
ourselves (vectorized as much as possible) but we found that
it was slow to run. We then tried mini-batch gradient descent
with different batch sizes but that was still slow and the dev
accuracy was lower than full batch. Finally, we used Pytorch
[8] to compute the gradient and found that led to a significant
increase in speed.

Simply using gradient descent however does not guarantee
the symmetry requirements of . Therefore, we will need to
impose some condition on our fit in order to ensure that .S
and A satisfy the appropriate symmetry conditions. We test
two methods for this:

e Projected gradient descent
o Regularization

Projected gradient descent maps 6 to the closest value of
that satisfies the given conditions (S is symmetric and A is
anti-symmetric) at each iteration [9]. This was implemented
in our algorithm by first dissecting € into four quadrants, as
shown above, corresponding to @1, @2, @3, and Q4. Then

we pick out the symmetric components of ()2 and ()4 and
the anti-symmetric components of Q1 and Q3:
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sym _ ~sym

& —C@s
S .

e ellnti—sym + anti—sym(( gnti—sym)T)
' 2

ti-
anti-sym . (

depending on whether Q3

WS in terms of Lo norm.

The second method, regularization, imposes a cost penalty
if S is not symmetric and A is not anti-symmetric. This is
implemented by adding a term to the loss function as follows
with weight 1 (utilizing the same notation from previous

paragraph):

anti-sym ) T
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Finally, we also fit our data using a multi-layer perceptron
neural net as a comparison. A number of different architec-
tures and activation functions were examined for tuning the
hyperparameters.

V. RESULTS AND DISCUSSION

For the experiments, data from all six seasons was shuffled
together and then split into training, dev and test sets in a
64:16:20 ratio. Model selection was based on the highest dev
set accuracy.
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Fig. 1: Training and dev accuracy for the linear logistic
classifier with the best hyperparameters.
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Fig. 2: Training accuracy vs dev accuracy as a function of iterations for the quadratic model with projection (left) and
regularization (right) to place constraints on the .S and A sub-matrices in 6.

Linear Model

Figure 1 shows a plot of the training and dev accuracy
vs the number of iterations for the linear logistic model with
tuned hyperparameters. The training set accuracy is 69% and
the dev set accuracy is 66%. Despite the simplicity of the
model, note that this is already comparable to other reported
prediction accuracies in the literature.

Neural Network

The dataset was also fit using a multi-layer perceptron
neural net from scikit-learn [10]. In order to determine the
best hyperparameters, we optimized for the following:

solver = [adam, sgd]
hidden_layer_size = [(4, j)],4,7 € 5[1, §]

activation = [logistic, tanh]

In the case of the stochastic gradient descent solver,
the learning rate was also tuned. In addition, single layer
architectures were considered with the number of nodes
varying in the set [5, 10, 20, 30, 40, 50, 100, 964] (There are
963 players in the league + 1 for the bias term). A grid plot
of the training and dev accuracies for the two layer model
is shown in Fig.

It is noticeable that the architectures with the highest
dev accuracies (green in the right plot) also had the lowest
training accuracies (blue in the left plot). This is a strong
indication that the other architectures were overfitting the
model. The neural net architecture with the highest dev rate
was with two hidden layers, the first with 30 nodes and the
second with 25 nodes, all with a logistic activation function.
The dev accuracy was 65.9% and the final test accuracy was
65.1%, which is comparable to the linear model although
slightly lower. It is possible that better test accuracies could
be achieved with the neural net model with more extensive
parameter tuning.
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Fig. 3: Grid plot of training accuracy and dev accuracy for
two hidden layer neural net model. The number of nodes in
the first layer is along the vertical axis and the number of
nodes in the second layer is along the horizontal axis.

Quadratic Model

The quadratic model was tested with two methods to
constrain S and A to the appropriate symmetries. The
training and dev accuracy for both models with best hy-
perparameters is shown in Fig. 2. The projection based
method achieves substantially higher training (68.4%) and
dev accuracy (66.5%) than the regularized model.

Note the periodic oscillations in the dev accuracy for
the regularized model. The training accuracy is stable (with
minor fluctuations) beyond 15 iteration but the dev accuracy
oscillates between the training accuracy and 56%. Given
that these oscillations are present in both the training and
dev accuracy and that the maximum of dev oscillations are
roughly the same as the training accuracy, we believe that
this is indicative of model instability and potentially some
overfitting. It may be possible to obtain a more stable fit with
a lower regularization weight but then the constraints on S
and A will be less strict. In contrast, with projection, we see
a more stable model that guarantees a symmetric S and an
anti-symmetric A.

In addition to sampling points from all seasons for the
training, dev and test set, we also checked the accuracy of our
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Fig. 4: Training and test accuracy for the quadratic model
when applied on each season.

model by training and testing for each individual season. In
this case, the data for each season was split into the training
and test set in a 70:30 ratio. The hyperparameters for each
season was optimized independently and the results for the
accuracies are shown in Fig. 4. The average test accuracy
is 64.9% and the highest accuracy is 69.4%. This is the
same evaluation method used and reported by Beckler, Wang,
and Papamichel in their paper although a different set of
seasons/years was used for the data.

Parameter Analysis

To examine the ’synergy’ between two players, we can
examine the normalized 6 (and therefore S and A) that was
fit using the quadratic model. Fig 3. provides a potential
interpretation of the S and A matrix elements. There are
three types of matrix elements:

« Diagonal elements of S - indicator of player’s individual
skill

o Off-diagonal elements of S - indicator of how much
the two players as teammates contribute positively to
the win percentage of their team

« Off-diagonal elements of A - indicator of the difference
in the players’ contribution to their teams’ winning
chance when they are on opposing teams

Let us consider the S and A coefficients for two sets of
players based on the 6 of the best fit model (shown in Fig.
2 (left)):

o LeBron James and Kyrie Irving
— Sk = 0.246
- Apyxi =0.003

o Stephen Curry and Kevin Durant
- Ssckp = 0.142
- Agcxp =0.144

Based on these parameters, we could qualitatively interpret
that LeBron James and Kyrie Irving have ’better’ chemistry

player 1 &2 player 1's
Player 1 contribution contribution
individual to winning 0 to winning
skill when on when against
same team player 2
player 2 &1 player 2’'s
contribution Player 2 contribution
to winning individual to winning 0
when on skill when against
same team player 1

Fig. 5: Interpretation of the elements of the S (left) and A
(right) matrices.

than Stephen Curry and Kevin Durant'. The A coefficients
suggest that LeBron and Irving square off evenly while
Durant outshines Curry in team winning contribution when
they face each other. This holds up against empirical ob-
servations since Durant was carrying the Thunders against
the Warriors before switching teams. We can also look at
the individual player performance according to the diagonal
elements. In agreement with most NBA commentators, the
model suggests that LeBron is the best player among these
four superstars. Curry comes second, then Durant and finally
Irving.

Focusing on LeBron James’s S coefficients with other
players, we find that he plays best with Danny Green. LeBron
James and Danny Green have only played together in 2019-
2020 of the seasons in our dataset and the Lakers have won
88% of their games so far, whereas LeBron’s overall win
percentage is 62.3%. This suggests that the model could be
fitting to the win percentage combinations of two players.
This is not surprising since this is the only game-relevant
information that we have supplied through our inputs and
labels.

Model Comparisons

The training and test accuracy for all three models is
given below. All three models gave similar accuracies, which
are also comparable with the results seen by Uudmae [1],
Avalon, Balci and Guzman [2] and Miljkovi¢, Gaji¢, Ko-
vacevi¢ and Konjovi¢ [3].

Full dataset

Training Accuracy | Test Accuracy
Linear 68.7% 64.8%
Quadratic 68.4% 65.1%
NN 71.9% 65.1%

We also evaluated model stability in two ways:

o Predicting later seasons with single season model

'We accidently switched the S coefficients for these two pairs in the
poster. The values and analysis in the paper are the correct versions.
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Fig. 6: Measures of model stability for the linear and
quadratic model throughout the individual seasons.

o Predicting each season based on data from all previous
seasons

The results from both are shown in Fig. 6. On the left,
the model has only been trained on the 2014-2015 season
and then tested on each subsequent season. Accuracy for
the 2014-2015 season is based on dev accuracy on 20%
of the dataset. Based on the standard deviations for both
sets, it seems that the quadratic model is more stable from
one season to the next than the linear model in predicting
the outcomes of the next season. Given that the model is
only trained on games from one season, as new players
are added to the league, no statistic would be available
for them. Additionally, we can intuitively say that while a
player’s individual performance may vary from season to
season, usually his personal chemistry with other players will
persist through time. For example, an retiring Wade would
probably perform better than his average when playing with
his buddy LeBron, even though age factor has begun to limit
Wade’s performance in general. These factors would explain
a decrease in accuracy for both models over time, but would
be compounded in the linear case.

In the second case, we trained each model on all the
previous games until that season and tested on games for
that season. So for example, for the 2017-2018 season, the
models were trained on all games from 2013-2017 and then
tested on all games in the 2017-2018 season (excluding
playoff games in both cases). In this case, while we do expect
a decrease in accuracy based on skill deteriorate from age,
we would limit the accuracy decline from new players to only
new players from that season. In this case, we observe that
both models are more stable. The exception is the accuracy
for both the linear and quadratic models for the 2018-2019
season. We suspect this is caused by significant moves from
major players to new teams such as LeBron James moving
to the Lakers and Kawhi Leonard to the Raptors, which
indicates that our model is susceptible to changes in team
rosters. This could be ameliorated by adding in data from
previous seasons.

VI. CONCLUSIONS

In this work, we propose and examine a new model for
predicting NBA game outcomes relying solely on the identity
of each player on the two teams. The proposed model, the
quadratic classifier, utilizes a ’synergy’ and an ’adversity’

matrix to quantify the players collaborative and competitive
nature in addition to each player’s individual talent. In order
to evaluate the model’s validity, we compare its performance
in predicting game outcomes against a logistic model and
multi-layer perceptron neural net, from which we conclude
that the performance of all three models in predicting game
outcomes is comparable. From model stability evaluations,
we find that quadratic model is more stable than the linear
model. Even though the performance of all three models
is comparable, the quadratic model allows us to examine
the fitted parameter # in a qualitatively meaningful way
for indications of chemistry amongst the players. We can
examine individual cases of ’synergy’ and ’adversity’ be-
tween any two players and (jokingly) resolve controversial
issues amongst NBA superstar players such as who is better,
Stephen Curry or LeBron James (not so controversial and
our model agrees!).

In order to increase the performance of our models, we
believe that the next step would be to add information about
the number of minutes played by each player for each game
(normalized by the total number of minutes in a game).
This would allow the model to account for injuries and
bench status, information that is currently missing in our
model. Currently, the model is fitting more broadly to team
chemistry rather than player chemistry but this information
would specialize it to player chemistry. Unfortunately this
data has been difficult to obtain. In addition, we could add in
other player statistics (e.g. 2-pt and 3-pt shooting percentage)
so evaluate whether this leads to better predictions.

As explained in the paper, the model would also benefit
from data from previous since currently, it cannot compute
correlations for players who have never played together and
it also treats players who have stayed on the same team
throughout this five year period as the same person. Finally,
to prevent deterioration of the model over time due to decline
in player skill beyond a certain age, we could scale the
input for each player based on their age since in the current
model, player skill is assumed to be constant for all seasons
but in reality, beyond a certain age, player skill begins to
decline. Previous work on modeling win-share percentage as
a function of player age [11] could easily be integrated with
our current model.

CODE

All data and code can be found at https://github.com/
prastutisingh/cs229.
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