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Abstract

The field of sports analytics has experienced major growth in the past decade,
including the area of match prediction. In comparison to pre-match predictions,
the task of producing mid-match live predictions remains an area open to emergent
study. We investigate the use of a recurrent neural network utilizing the Long Short-
Term Memory (LSTM) model infrastructure to compute ’live’ win probabilities
for tennis matches from mid-game data. Using a detailed point-by-point dataset
[1] for the four Grand Slam tennis tournaments, our model is intended to learn
deep relationships amongst the sequential data and to classify the probability of
winning the match for each player after any given point. In combination with
traditional pre-match prediction priors, our model obtains an average accuracy of
79.5% across all given points, roughly 3 percentage points higher than traditional
statistical point-by-point models [2].

1 Introduction

The past decade has seen an incredible emergence of analytical methods being applied to the world of
sports. Simultaneously, the world of sports betting has expanded rapidly. The sports betting market in
the US is estimated to bring in hundreds of billions of dollars in revenue [3]. Most bookmakers now
provide the opportunity for live betting, in which odds are updated throughout the game, allowing
users to place a bet based on the progression of the match. One match between Roger Federer and
Rafael Nadal saw 50 million Euro exchanged mid-match on the betting exchange Betfair [4].

A natural consequence of the emergence of richer sports data and increased betting opportunities
is the production of match prediction models. Tennis provides a great microcosm for this analysis
due to its discrete scoring nature. Most published research on tennis prediction has been focused on
using pre-match data. Furthermore, existing studies on mid-match prediction models largely act by
updating input parameters, rather than establishing temporal relationships amongst point-by-point
data. We propose that an RNN should provide benefits beyond traditional mid-match prediction
methods by better incorporating the temporal nature of point-by-point data and extracting more
complex features from the data, such as fatigue or momentum.

The input to our algorithm is a series of feature vectors representing each point in a tennis match. Each
point contains data such as the current game score, the speed of the shot, etc., as well as pre-match
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win probabilities to act as an anchor. We then train an LSTM on the data, feeding the points of a
given match as the sequential data. The model outputs the probability of "player 2" winning winning
the match at each point during the match.

2 Related work

As previously mentioned, tennis prediction has been host to a variety of methodologies. A paper by
Klaasen and Magnus [6] provides a seminal approach to this problem using a hierarchical Markov
model, often replicated or modified in future work. The model takes as an input the probability that
each player would win a single point if serving, and then constructs a tree of match outcomes using
this probability to arrive at the probability each player would win the match. Other efforts have
expanded upon this method, such as updating the single-point probabilities over the course of a match
[9] [13].

Kovalchik (2016) [8] provides an analysis of published results using this method, along with two
others: regression and paired comparison. Regression models attempt to predict a win probability
using some set of input features, such as the model used by Clark and Dyte (2000) [10]. Comparison
based models use previous match results to update the "rating" of a player, and use these ratings to
predict winners - a notable example is the ELO ranking method. Prediction results ranged from 59%
to 72%, with comparison based models fairing the best. Gollub (2017) provides another strong review
of these models, as well as several improved implementations. The paper tests modified points-based
models, a logistic regression model, and modified ELO models on pre-match as well as mid-match
data. Accuracy ranging from 63% to 69% were found for pre-match models, and from 71% to 76.5%
for mid-match models.

Approaches using modern machine learning methods have been explored for pre-match prediction.
A former CS 229 project by Cornman, Spellman, and Wright (2017) [11] tested a variety of these
models, including support vector machine, random forest, and even a neural network, finding accuracy
from 65% to 70%. Sipko (2015) explores basic logistic regression and neural network modeling for
pre-match prediction, finding improvements over betting market predictions.

3 Dataset and Features
Figure 1: Sample of Single Point Feature
VectorWe used the point-by-point dataset for the tennis Grand

Slams (Wimbledon, US Open, French Open, and Aus-
tralian Open) from 2011 - 2019 provided by Jeff Sackman
[1]. The data contains feature vectors for each point in
a match, including player distance run, whether a fault
occurred, type of point won, and more. We were able
to extract roughly 41 of these features, either from exist-
ing for the entire data set or by replacing blank values by
the global mean of the field. We also created new fields
communicating how many additional games or sets were
needed to be won by each player in order to win the match
from that point. A few sample features can be seen in
Figure 1.

We also used the pre-match predictions produced by the
13 models used in Gollub [15]. We matched this data with
the Sackman data and appended the pre-match predictions
to each point vector. Our intention was to capitalize on
the variety of methods Gollub provides to include a robust
pre-match prediction as an anchor point for our mid-match
predictions.

We split our data by year with 3373 training examples (matches), 693 dev set examples, and 799 test
examples. The dev set is all 2017 matches and the test set is all 2014 matches - the same year tested
on by the prediction models in Gollub, the best comparison metric available.
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4 Methods

As previously mentioned, the core of our approach was to apply a sequence model to tennis match
point-by-point data to predict the win probability of each player after every point in the match.
We experimented with both GRU and LSTM models, however the LSTM models consistently
outperformed the GRU based models, so we present their results in this report.

Long short-term memory (LSTM) networks networks are a special class of Recurrent Neural Networks
(RNN). RNNs, unlike regular neural networks, process temporally linked data points within training
examples. Long Short-Term Memory(LSTM) networks are utilize a structure of gates, or filters, to
control the flow of information between points in time (data points).

Figure 2: Single LSTM Unit [16]
The common architecture of an LSTM is comprised of
building blocks called units (Figure 2). Each unit has two
pipelines of inputs/outputs (Ct and ht in the above graph).
Ct−1 is responsible for propagating previous units out-
put forward, while ht−1 propagates previous units hidden
states. ht− 1 is passed through an input gate (it) and a
forget gate (ft) to control which information is passed on
and combined with the current input data xt to produce a
new proposed output C̃t. Ct is then produced by using the
forget gate and input gate to combine the previous output Ct−1 with the new proposed output C̃t.
Finally, an output gate ot is used to manage the flow of information in the hidden state to the next unit
ht, which is produced by a tanh activation of Ct. Ct and ht is passed horizontally to the next temporal
unit, while ht is also passed to the next layer of a multi-layer LSTM (Figure 3). Alternatively, if this
is the final layer, an activation output is used at each point in time t to produce ŷt - in our case the
probability of player 2 winning. Note, U and W each represent sets of trainable parameters for each
component of the model.

We optimized our model by minimizing a loss function that compares ŷt with the true value yt.
We tried several approaches to our loss function. An interesting aspect of our problem is that we
are trying to predict the win probability at a given point in time, however there is no real ’ground
truth’ for that value. As a proxy, we used the eventual winner of the match, inducing our model to
optimize towards predicting the winner with as much certainty as possible. We experimented with
treating our problem as a regression problem (predicting the win probability of a player) and as a
classification problem (predicting which player will win), concluding that the former fit our problem
better and implementing a binary cross entropy loss function. We also considered weighting the loss
for each point based on its temporal location in the data example. After experimenting with different
weighting mechanisms, we found a linear weighting scheme to produce the strongest results. This
scheme reduces punishment for early data points while placing a heavy emphasis on predicting the
match correctly by the late stages. Our loss function following these guidelines, with k as the number
of points in the match, was:

L = −
k∑

i=1

(
i

k
) ∗ (yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi)) (1)

Another interesting approach to the weighting we attempted was allowing the model to predict it’s
confidence in each point, and base the weighting on this. Now the output was 2 dimensional - a win
probability and a confidence value - and the loss was formulated as such with ci as the confidence
value:

L = λ||1− c||2 −
k∑

i=1

ci ∗ (yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi)) (2)

We found that as the model started training, the c output started off as close to a vector of zeros,
however as the model trained, it converged to a vector of ones. This formulation of the loss achieved
within 1 percent of the accuracy of the simpler loss function above, but proved less effective in the
end.
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5 Experiments/Results/Discussion

The primary evaluation metric used was total accuracy across all points. Precision and recall do not
make intuitive sense for our problem (as our true goal was to predict probabilities), thus instead we
also monitored calibration. The optimization procedure is described below, followed by results.

We explored several hyperparameter choices for our model. We performed a brief search for our
learning rate, resulting in α = 0.003 using an ADAM optimizer and involving a 10% cut at epoch 20
and 30. We also used a batch-size of 1, as training was efficient and this simplified computing loss
over variable size sequences.

Figure 3: Multi-Layer LSTM Network
[17]

Other hyperparameters we explored were the model depth
(number of stacked units) and width (dimension of hidden
state per unit). We attained significant gains on the order
of 5 percent by stacking two modules together over one,
however if we increased the depth beyond two we actually
noticed a slight degradation in evaluation performance
despite a further reduction in training performance (intro-
duced variance). We were able to mitigate this increased
variance somewhat by using dropout between our LSTM
modules, however the depth of two remained superior. In
terms of width, we achieved best results with a hidden
state of size 50, which roughly follows the rule of thumb
from Hagan (2014) [18]:

Nh =
Ns

α ∗ (Ni +No)
(3)

t Where Nh is the number of hidden neurons, Ns is the number of samples, Ni is the dimension of
the input, No is the dimension of the output, andα is a scaling factor. For our models with increased
depth, a decreasing the width per layer in the stack did not show performance improvements.

We utilized dropout and early stopping to prevent overfitting with larger models. We are confident
that we have not overfit to our training dataset as our accuracy matches tightly across our train, eval,
and test sets ( 79%).

We present our test results and comparisons in Table 1. "K-M Logit Elo" is a point-based model [6]
used by Gollub [2] to predict results using point-by-point data. "Logistic Regression" is a simple
classifier using the 13 Gollub models as an input feature vector. Our model produces an accuracy
of 79.5% on the test set, a 3% improvement over the the best mid-match Gollub model and a 6%
improvement over the basic pre-match predictor and the best pre-match results reviewed by Kovalchik
[8]. Results for our model are also provided for data points after each set.

Table 1: Model Results (%)

Model Net Accuracy Set 1 Set 2 Set 3 Set 4 Set 5

DeepTennis 79.5 84 85 93 85 90
K-M Logit Elo (Gollub) 76.5 N/a N/a N/a N/a N/a

Logistic Regression 73.4 N/a N/a N/a N/a N/a

Table 2: Accuracy by Match Progression (%)

Percentage of Match Played 25 50 75 100

Accuracy 73.2 84.9 89.2 99

Notably, our models performance is significantly higher after Set 4 at 85% than at the beginning
of the match or overall. By definition, the score of the match is tied after Set 4, thus indicating our
model has learned important features of the match beyond simply the score. It is not surprising our
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accuracy peaks after Set 3, as this includes many matches that end 3-0. Table 2 shows our model’s
predictive power increases as the match progresses.

Figure 4: Calibration
Finally, we investigated the calibration of our model as
a replacement for precision or recall numbers. Figure 4
plots our models predicted probability (in buckets of size
10%) of winning against the actual win-rate of matches in
each bucket. The model proved relatively well calibrated.

The individual match results from the network are interest-
ing to examine qualitatively. Referencing Figure 5 (blue
vertical lines are set wins for player 2, red are for player
1):

(a) Djokovic vs. Federer, Winbledon 2014 (b) Thiem vs. Gulbis, US Open 2014

(a) Novak Djokovic defeated Roger Federer in 5 sets in the
men’s final of the 2014 Wimbledon tournament. Novak Djokovic entered the match as the favorite,
and we can see that the model has learned to incorporate the prematch priors at the beginning of the
match. After Federer wins the first set, his win probability rises sharply. Following two set wins by
Djokovic, the match seems all but decided, until Federer wins 5 games in a row to push the match to
a back and forth 5th set. Finally Djokovic pulls of the win.

(b) This match from the 2014 US Open is an example where our model performed very poorly in
terms of training loss. We see that the winner of the match was Dominic Thiem, (player 1), however
for nearly the entire match, our model predicted that his opponent Ernests Gulbis would prevail. In
fact, this was a highly publicized upset by Thiem, a 20 year old playing in his first US Open coming
back from an early two set deficit [14].

Regardless of the incredibly surprising storylines from these matches, our model appears to well
capture notions of heavy favorites (Gulbis’ consistently high win probability) or momentum (Djokovic
winning two sets in a row and nearly winning in set 4).

6 Conclusion/Future Work

The implementation of a two-layer, 50 hidden node LSTM model appears to have improved per-
formance over existing methodologies for mid-match tennis prediction. Our model exhibits charac-
teristics that demonstrate learning connections between tennis points (momentum, consistency of
pre-match information, accuracy after Set 4) and better incorporates the relationships of point-by-point
data than traditional statistical models.

We believe our model could be further improved with the incorporation of more data or more detailed
features. For example, more abstract pre-match features (beyond just win probability) may provide
information that interacts uniquely with future point data, or visual data for each point could be useful.
Coupled with more detailed data, greater complexities in the model architecture, particularly with
regards to width or depth, may improve performance more than they did during our experimentation.

Our project would also be improved with greater connections to real world applications. Comparisons
or feature augmentation with live betting market data would be useful for analysis, and study regarding
the practical collection of live data is needed for proper implementation of our model.
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