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Abstract

Extensive research has been conducted into the modelling of professional tennis matches. Most current
approaches take advantage of the hierarchical structure of the tennis scoring system to define stochastic
models, based on Markov chains. These models use only the probability of each of the players winning
a point on their serve to compute their respective probabilities of winning the match. Consequently,
a variety of factors that contribute to the outcome of a match are ignored. We propose a supervised
machine learning approach that uses historical player performance across a wide variety of statistics
to predict match outcomes. We define a novel method of extracting 22 features from raw historical
data, including abstract features, such as player fatigue and injury. Using the resulting dataset, we
develop and optimise models based on two machine learning algorithms: logistic regression and artificial
neural networks. When evaluated on a test set of 6315 ATP matches played in the years 2013-2014, our
models outperform Knottenbelt’s Common-Opponent model, the current state-of-the-art in stochastic
modelling. Our neural network generates a return on investment of 4.35% when in competition with the
betting market, an improvement of about 75%. We believe that the use of machine learning will lead to
innovation in the field of tennis modelling.
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Chapter 1

Introduction

Tennis is undoubtedly among the world’s most popular sports. The Association of Tennis Professionals
(ATP) features over 60 professional tennis tournaments in 30 countries every year, drawing immense
numbers of spectators. Andy Murray’s historic defeat of Novak Djokovic in the 2013 Wimbledon final was
the most watched television broadcast of the year in Great Britain, with an audience of 17.3 million. The
growth of the popularity of the sport, paired with the expansion of the online sports betting market, has
led to a large increase in tennis betting volume in recent years. The same Murray-Dojokovic Wimbledon
final saw £48 million traded on Betfair, the world’s largest betting exchange. The potential profit, as
well as academic interest, has fuelled the search for accurate tennis match prediction algorithms.

The scoring system in tennis has a hierarchical structure, with a match being composed of sets, which
in turn are composed of games, which are composed of individual points. Most current state-of-the-
art approaches to tennis prediction take advantage of this structure to define hierarchical expressions
for the probability of a player winning the match. By assuming that points are independently and
identically distributed (iid)1, the expressions only need the probabilities of the two players winning a
point on their serve. From this basic statistic, easily calculated from historical data available online, we
can deduce the probability of a player winning a game, then a set, and finally the match. Barnett [1]
and O’Malley [18] both defined such hierarchical models, and Knottenbelt [13] refined the models to
calculate the probabilties of winning a point on serve using only matches with the common opponents
of the players, instead of all past opponents. This reduces the bias resulting from the players having
historically had different average opponents. Madurska [16] further extended the Common-Opponent
model to use different probabilities of winning on serve for different sets, challenging the iid assumption
and allowing the model to reflect the way a player’s performance varies over the course of the match.
Knottenbelt’s Common-Opponent model and Madurska’s Set-By-Set model are the current state-of-the-
art, claiming a return on investment of 6.8% and 19.6%, respectively, when put into competition with
the betting market on matches in the 2011 WTA Grand Slams.

While elegant, this mathematical approach is not perfect. By representing the quality of players using
only a single value (service points won), the method is unable to act upon the more subtle factors that
contribute to the outcome of a match. For example, a player’s susceptibility to a particular playing
strategy (e.g., attacking the net), the time since their last injury, or accumulated fatigue from previous
matches would only indirectly affect match prediction. Furthermore, the characteristics of the match itself
(location, weather conditions, etc.) would have no effect on the prediction. Considering the availability
of an immense amount of diverse historical tennis data, an alternative approach to tennis prediction
could be based on machine learning. The features of players and the features of the match, paired with
the match result, could form a set of labelled training examples. A supervised ML algorithm could use
these examples to infer a function for predicting the results of new matches.

Despite machine learning being a natural candidate for the tennis match prediction problem, the ap-
proach seems to have had little attention in comparison with the stochastic hierarchical approaches. Most
past attempts made use of logistic regression. For example, Clarke and Dyte [6] fit a logistic regression
model to the difference in the ATP rating points of the two players for predicting the outcome of a set. A

1Klaasen and Magnus [12] show that points are neither independent nor identically distributed. However, they find that
deviations from iid are small, and using this assumption often provides good approximations.
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simulation then was run to predict the result of several men’s tournaments in 1998 and 1999, producing
reasonable results. Ma, Liu and Tan [15] used logistic regression with 16 variables related to character-
istics of the players and the match. Investigating a different ML algorithm, Somboonphokkaphan [22]
trained an artificial neural network (ANN) using the match surface and several features of both players
(winning percentages on first serve, second serve, return, break points, etc.) as training parameters. The
authors claim an accuracy of about 75% in predicting the matches in the Grand Slam tournaments in
2007 and 2008.

The goal of the project is to investigate the applicability of machine learning methods to the prediction of
professional tennis matches. We begin by developing an approach for extracting a set of relevant features
from raw historical data (Chapter 3). Next, we train a logistic regression model on the constructed dataset
(Chapter 4). Seeking further improvement, we train two higher-order models (logistic regression with
interaction features and an artificial neural network) in Chapter 5. We then evaluate the performance
of the models on an independent dataset of 6135 ATP matches played during the years 2013-2014, using
three different betting strategies (Chapter 7). We find that our most profitable machine learning model
generates a 4.35% return on investment, an improvement of approximately 75% over the current state-
of-the-art stochastic models. This shows that a machine learning approach is is well worth pursuing. We
propose some extensions to our work in Chapter 8.

2



Chapter 2

Background

2.1 The Game of Tennis

Tennis is a racquet sport that can be played either against a single opponent (singles) or between
two teams of two players (doubles). For simplicity, we will focus only on modelling singles tennis
matches.

At any point in a match, one of the players is designated to be the server, and the other is the receiver.
The players stand on opposite sides of the tennis court, a rectangular area with a net stretched across its
width. Various court surfaces are used in different tournaments, including clay, grass, or hard. After a
legal service by the server (for which they have two attempts), the players alternate hitting the ball, until
eventually one wins the rally, earning a point. (We omit the full details of the tennis rules for brevity,
the official rules are published online by the International Tennis Federation1).

A game consists of a sequence of points with the same player serving. The first player to win at least four
points and at least two more than the opponent wins the game. The points are counted in an unsual way,
in the sequence 0, 15, 30, 40. If the score reaches 40-40, this is called a deuce. Whichever player wins
the next point has the advantage, because winning another point will result in them winning the game.
After each game, the players alternate at serving. The first player to win at least six games and at least
two more than the opponent wins the set. However, if the set score reaches 6-6, in most tournaments,
a tiebreaker is played, a special game in which the first player to have won at least seven points and at
least two more than the opponent wins the set. A match is won when a player wins the majority of a
specified number of sets, either three or five (this depends on the tournament).

Professional tournaments take place 11 months of the year, and are organised by the Association of Tennis
Professionals (ATP) and the Women’s Tennis Association (WTA) for men’s and women’s tournaments,
respectively. We will further restrict our focus on predicting the results of ATP matches. This will
impose no loss of generality on our model, since the only major distinction is the additional possibility
of best-of-five matches for men, which do not occur in women’s professional tennis.

2.2 The Tennis Dataset

Historical tennis data is widely available online. Tennis websites such as atpworldtour.com provide
access to information about players, the outcomes of matches and statistics related to player performance
in particular matches. Some sources, such as tennis-data.co.uk, provide historical data in structured
form (CSV or Excel files). More complex datasets with a longer historical timespan and higher accuracy
are available for purchase online. One such dataset is provided by the OnCourt system2, which will
provide the basis for data used throughout the project. OnCourt has results for over 500 thousand ATP
matches since 1990, of which over 40 thousand include betting odds. Table 2.1 summarises the most
relevant data available from OnCourt.

1Official Rules of Tennis. http://www.itftennis.com/officiating/rulebooks/rules-of-tennis.aspx
2www.oncourt.info
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Table 2.1: OnCourt dataset

Player details

Name
Date of birth

Country of birth
Prize money

ATP rating points over time
ATP rank over time

Match details

Tournament name
Tournament type (e.g., Grand Slam)

Surface
Location (country, lat/lon)

Date
Result (scoreline)

Prize money
Odds (Marathonbet, Pinnacle)

Per-match stats for both players

First serve percentage
Aces

Double faults
Unforced errors

Percentage of points won on first serve
Percentage of points won on second serve

Percentage of receiving points won
Winners

Break points (won, total)
Net approaches (won, total)

Total points won
Fastest serve

Average first serve speed
Average second serve speed

Odds (Marathonbet, Pinnacle)

Some data which may be relevant for tennis modelling but is unavailable through OnCourt includes per-
set statistics for players and the details of how matches progressed point-by-point. This can be obtained
for some matches by scraping websites such as flashscore.com. It is worth noting that for many
tournaments, data of a much finer granularity is captured through HawkEye ball-tracking technology,
including the location of the ball and players at any point in the match. However, this data is owned by
the management group behind the ATP and is not licensed to third parties.

2.3 Tennis Betting

There are two main categories of tennis betting: pre-game and in-game, with the distinction that pre-
game bets cannot be placed after the game commences. Furthermore, it is usually possible to bet on a
variety of factors, such as the winner of the match, the score of different sets, the total number of games,
etc. We will focus on pre-game bets on the winner of the match, as the odds for this bet type are most
available historically, allowing us to perform a more comprehensive evaluation of the performance of our
model against the betting market.

Bets on tennis matches can be placed either with bookmakers or on betting exchanges. Traditional

4
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bookmakers (e.g., Pinnacle Sports) set odds for the different outcomes of a match, and a bettor competes
against the bookmakers. In the case of betting exchanges (e.g., Betfair), customers can bet against odds
set by other customers. The exchange matches the customers’ bets to earn a risk-free profit by charging
a commission on each bet matched.

2.3.1 Betting Odds and Implied Probability

Betting odds represent the return a bettor receives from correctly predicting the outcome of an event.
For example, if a bettor correctly predicts the win of a player for whom the odds are 3/1, they will receive
£3 for every £1 staked (in addition to their staked amount, which is returned). If the bettor mis-predicts
the match, they will lose their stake of £1. This profit or loss resulting from a bet is called the return
on investment (ROI), and will the main metric used to assess our model. Measuring the performance of
the model based on the ROI generated from competition against the historical betting market has been
common in past research on the subject (including [13,16]).

Betting odds give an implied probability of the outcome of a match, the bookmaker’s estimate of the true
probability. For odds X/Y for a player winning a match, the implied probability p of the win is:

p =
Y

Y +X
(2.1)

2.3.2 Betting Strategies

Given the betting odds and a predicted probability of a match outcome, a bettor has various methods of
deciding if, and how much, to stake in a bet. Needless to say, different strategies will result in a different
return on investment. We will consider three different strategies for evaluating the profitability of our
model. In the following, define:

si = amount to stake on player i

pbettor
i = bettor’s estimate of probability of player i winning

bi = net odds received when betting on player i, calculated as
X

Y
for odds X/Y

pimplied
i = implied probability of player i winning, calculated as

Y

Y +X
for odds X/Y

1. Betting on the predicted winner

In the simplest strategy, the bettor always stakes a fixed amount q on the player which they expect
to win:

si =

{
q, if pbettor

i > 0.5

0, otherwise

2. Betting on the predicted winner at better odds

A bettor may increase their returns by only betting a fixed amount q on matches where they have
an edge over the bookmakers, i.e., their probability estimate of player i winning is greater than
the probability implied by the betting odds. In other words, this strategy avoids betting on the
predicted winner when the odds do not sufficiently compensate for the risk of the bet.

si =

{
q, if pbettor

i > pimplied
i

0, otherwise

3. Betting on the predicted winner using the Kelly criterion

In the previous strategy, the bettor staked a fixed amount on a bet if they believed they had an
edge, regardless of the size of the edge. The Kelly criterion, described by John Kelly in 1956 [11],
can be used to determine the optimal size of a bet based on a bettor’s edge, and is guaranteed to
perform better than any other essentially different betting strategy in the long run. The bettor

5



Machine Learning for the Prediction of Professional Tennis Matches Michal Sipko

now bets a fraction of a maximum bet size q on the predicted winner if they believe they have an
edge:

si =

q ·
pbettor
i (bi + 1)− 1

bi
, if pbettor

i > pimplied
i

0, otherwise

In practice, the maximum bet size q is often a fraction of the bettor’s bankroll, and therefore varies
over time, depending on the success of the bettor’s previous bets. For model evaluation, we fix q
to be a constant so that all bets contribute equally to the overall return on investment, regardless
of their temporal order.

Note that in all three strategies, a bet is never placed on both players. Also, while the first strategy
will bet on every match (provided that the estimated probability is never exactly 0.5), for the latter two
strategies, it is possible for no bet to be placed on a match.

2.4 Statistical Models

Current state-of-the-art models for tennis prediction make use of hierarchical stochastic expressions based
on Markov chains. A comparison with such models will be used for the evaluation of our model, and
this section gives an overview of their fundamental concepts.

2.4.1 Markov Models

Klaasen and Magnus [12] show that points in tennis are approximately independent and indentically
distributed (iid). This finding allows us to assume that for any point played during the match, the
point outcome does not depend on any of the previous points. Let’s further assume that we know the
probability of each player winning a point on their serve. Namely, let p be the probability that player
A wins a point on their serve, and q the probability that player B wins a point on their serve. Using
the iid assumption and the point-winning probabilities, we can formulate a Markov chain describing the
probability of a player winning a game.

Formally, a Markov chain is a system which undergoes transitions between different states in a state
space. An important property is the system’s lack of memory, meaning that the next state of the system
depends only on the current state, not on the preceeding sequence of states. If we take the different scores
in a game to be our state space, and the transitions between the states to be probabilities of a point being
won or lost by player A, the resulting Markov chain will reflect the stochastic progression of the score
in a game. Figure 2.1 depicts the Markov chain for a game diagrammatically, where player A is serving.
Assuming their probability of winning a point on serve is p, due to the iid assumption, all transitions
representing the win of a point by player A have this probability, and all transitions representing the loss
of a point happen with probability 1− p.

As described in Section 2.1, scoring in tennis has a hierarchical structure, with sets being composed of
games, and a match composed of sets. Additional Markov chains are constructed in a similar fashion,
modelling the progression of scores in tiebreakers, sets and matches. For example, in the model of a match,
there would be two out-going transitions from each non-terminal state, labelled with the probabilities of
the player winning and losing a single set. Diagrams for the remaining models can be found in [16].

2.4.2 Hierarchical Expressions

Based on the idea of modelling tennis matches with Markov chains, both Barnett and Clarke [1] and
O’Malley [18] have developed hierarchical expressions for the probability of a particular player winning
an entire tennis match.

Barnett and Clark express the probability of player A winning a game on their serve Pgame using the
following recursive definition:

Pgame(x, y) = p · Pgame(x+ 1, y) + (1− p) · Pgame(x, y + 1) (2.2)
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Figure 2.1: Markov chain for a game in a singles match, player A serving
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The boundary values are defined as follows:

Pgame(x, y) = 1 when x = 4, x− y ≥ 2

Pgame(x, y) = 0 when y = 4, y − x ≥ 2

Pgame(x, y) =
p2

p2 + (1− p)2
when x = 4, x− y ≥ 2

In the above, p is the probability of player A winning a point on their serve, and x and y represent
the number of points won by players A and B, respectively. This expression clearly corresponds to the
Markov chain depicted in Figure 2.1.

Barnett and Clark further define a similar expression for the set-winning probability, based on the
probabilities of players winning individual games (given by equation 2.2) and for tiebreakers (which also
depend on the serve-winning probabilities of the players). Finally, the match-winning probability can
be expressed in terms of the previously defined expressions. The all-important realisation is that the
resulting expression for the match-winning probability is dependent only on the probabilities of both
players winning a point on their serve.

2.4.3 Estimating Serve Winning Probabilities

Given the probabilities of both players winning a point on their serve, we can use the hierarchical expres-
sions derived by Barnett and Clark (described in Section 2.4.2) to find the match-winning probability.
The question remains of how to estimate these serve-winning probabilities for matches that have not
yet been played. Barnett and Clark [1] give an efficient method for estimating these probabilities from
historical player statistics:

fi = aibi + (1− ai)ci
gi = aavdi + (1− aav)ei

(2.3)

Where:

fi = percentage of points won on serve for player i
gi = percentage of points won on return for player i
ai = first serve percentage of player i
aav = average first serve percentage (across all players)
bi = first serve win percentage of player i
ci = second serve win percentage of player i
di = first service return points win percentage of player i
ei = second service return points win percentage of player i

Now, for a match between players A and B, we can estimate the probabilities of player A and B winning
a point on their serve as fAB and fBA, respectively, using the following equation:

fAB = ft + (fi − fav)− (gj − gav) (2.4)

Where:

ft = average percentage of points won on serve for tournament
fav = average percentage of points won on serve (across all players)
gav = average percentage of points won on return (across all players)

2.4.4 Current State-of-the-Art

Current state-of-the-art tennis prediction models are based on the hierarchical stochastic expressions
described in the previous sections. Knottenbelt [13] adapted the way the serve-winning probabilities
of players are calculated before being supplied to the Barnett formulas. Instead of finding historical
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averages of statistics for the players across all opponents, only the players’ performance against common
opponents is considered. The modified serve-winning probabilities more accurately reflect the quality of
two players if they have historically had different average opponents. Madurska [16] further modified
Knottenbelt’s Common-Opponent model to allow for different serve-winning probabilities in different
sets. This weakens the iid assumption to cover only points and games, and enables the model to account
for a player’s typical change in performance from set to set. The Common-Opponent and Set-by-Set
models claim an ROI of 6.8% and 19.6%, respectively, when put into competition with the betting market
on matches in the 2011 WTA Grand Slams. The Common-Opponent model was also tested on a larger
and more diverse test set, generating an ROI of 3.8% over 2173 ATP matches played during 2011. We
will therefore use the Common-Opponent model as a reference for the evaluation of our model.

2.5 Machine Learning Models

2.5.1 Machine Learning in Tennis

Machine learning is a field of artificial intelligence (AI) that studies algorithms which learn from data.
A supervised machine learning system has the task of inferring a function from a set of labelled training
examples, where a labelled example is a pair consisting of an input vector and the desired output
value.

In the context of tennis, historical tennis data can be used to form the set of training examples. For a
particular match, the input vector can contain various features of the match and the players, and the
output value can be the outcome of the match. The selection of relevant features is one of challenges of the
construction of successful machine learning algorithms, and is described further in Section 2.5.5

Different machine learning algorithms exist to solve different types of problems. We can approach the
tennis prediction problem in two ways:

1. As a regression problem, in which the output is real-valued. The output may represent the
match-winning probability directly, but true match-winning probabilities are unknown for historical
matches, forcing us to use discrete values for training example labels (e.g., 1 for match won, 0 for
match lost). Alternatively, we can predict the probabilities of the players winning a point on their
serve, and feed this into Barnett’s or O’Malley’s hierarchical expressions to find the match-winning
probability (see Section 2.4).

2. As a binary classification problem, in which we can attempt to classify matches into either a
‘winning’ or a ‘losing’ category. Some classification algorithms, such as logistic regression (described
in Section 2.5.2), also give some measure of the certainty of an instance belonging to a class, which
can be used as the match-winning probability.

We now present several machine learning algorithms which have either been applied to tennis match
prediction in the past, or are expected to produce good results by the author.

2.5.2 Logistic Regression

Despite its name, logistic regression is in fact a classification algorithm. The properties of the logistic
function are central to the algorithm. The logistic function σ(t) is defined as:

σ(t) =
1

1 + e−t
(2.5)

As can be seen in Figure 2.2, the logistic function maps real-valued inputs between −∞ and +∞ to
values between 0 and 1, allowing for its output to be interpreted as a probability.

A logistic regression model for match prediction consists of a vector of nmatch features x = (x1, x2, · · · , xn)
and a vector of n + 1 real-valued model parameters β = (β0, β1, · · · , βn). To make a prediction using
the model, we first project a point in our n-dimensional feature space to a real number:

z = β0 + β1x1 + β2x2 + · · ·+ βnxn
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Figure 2.2: Logistic function σ(t)
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Figure 2.3: Logistic loss in predicting a won match
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Now, we can map z to a value in the acceptable range of probability (0 to 1) using the logistic function
defined in equation 2.5:

p = σ(z) =
1

1 + e−z
(2.6)

The training of the model consists of optimising the parameters β so that the model gives the best
reproduction of match outcomes for the training data. This is done by minimising the logistic loss
function (equation 2.7), which gives a measure of the error of the model in predicting outcomes of
matches used for training.

L(p) = − 1

N

N∑
i=1

pi log(yi) + (1− pi) log(1− yi) (2.7)

Where:

N = number of training matches
pi = predicted probability of a win for match i
yi = actual outcome of match i (0 for loss, 1 for win)

Figure 2.3 shows the logistic loss incurred due to a single match for different predicted probabilities,
assuming the match resulted in a win. Any deviation from the most correct prediction of p = 1.0 is
penalised.

Depending on the number of training examples, one of two methods of training (i.e., minimising the
logistic loss) is chosen:

1. stochastic gradient descent - an slower iterative method suitable to large datasets

2. maximum likelihood - a faster numerical approximation, cannot deal with large datasets

Most published ML-based models make use of logistic regression. Clarke and Dyte [6] fit a logistic
regression model to the difference in the ATP rating points of the two players for predicting the outcome
of a set. In other words, they used a 1-dimensional feature space x = (rankdiff ), and optimised β1 so
that the function σ(β1 · rankdiff ) gave the best predictions for the training data. The parameter β0 was
omitted from the model on the basis that a rankdiff of 0 should result in a match-winning probability of
0.5. Instead of predicting the match outcome directly, Clark and Dyte opted to predict the set-winning
probability and run a simulation to find the match-winning probability, thereby increasing the size of
the dataset. The model was used to predict the result of several men’s tournaments in 1998 and 1999,
producing reasonable results (no precise figures on the accuracy of the prediction are given).

Ma, Liu and Tan [15] used a larger feature space of 16 variables belonging to three categories: player
skills and performance, player characteristics and match characteristics. The model was trained with
matches occurring between 1991 and 2008 and was used to make training recommendations to players
(e.g., “more training in returning skills”).
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Logistic regression is attractive in the context of tennis prediction for its speed of training, resistance to
overfitting (described in Section 2.5.5), and for directly returning a match-winning probability. However,
without additional modification, it cannot model complex relationships between the input features.

2.5.3 Artificial Neural Networks

An artificial neural network is a system of interconnected “neurons”, inspired by biological neurons. Each
neuron computes a value from its inputs, which can then be passed as an input to other neurons. A
feed-forward network is a directed, acyclic graph (DAG). ANNs are typically structured to have several
layers, with a neuron in each non-input layer being connected to all neurons in the previous layer. A
three-layer network is illustrated in Figure 2.4.

Figure 2.4: A three-layer feed-forward neural network
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Associated with each connection in the network is a weight. A neuron uses its inputs and their weights
to calculate an output value. A typical composition method is a non-linear weighted sum:

f(x) = K

(∑
i

wixi

)
, where wi is the weight of input xi (2.8)

The non-linear activation function K, allows the network to compute non-trivial problems using only a
small number of neurons. The logistic function defined in equation 2.5 is one of several sigmoid functions
commonly used for this purpose.

Match prediction can be done by passing the values of player and match features to the neurons in the
input layer and propagating values through the network. If a logistic activation function is used, the
output of the network can represent the match-winning probability. There are many different training
algorithms, which aim to optimise the network’s weights to generate the best outputs for a set of training
examples. For example, the back-propagation algorithm uses gradient descent to reduce the mean-square
error between the target values and the network outputs.

Somboonphokkaphan [22] trained a three-layer feed-forward ANN for match prediction with the back-
propagation algorithm. Several different networks with different sets of input features were trained and
compared. The best-performing network had 27 input nodes, representing features of both players and
the match, and had an average accuracy of about 75% in predicting the outcomes of matches in the 2007
and 2008 Grand Slam tournaments.

ANNs can detect complex relationships between the various features of the match. However, they have a
“black box” nature, meaning that the trained network gives us no additional understanding of the system,
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as it is too difficult to interpret. Furthermore, ANNs are prone to overfitting and therefore necessitate
a large amount of training data. Also, ANN model development is highly empirical, and the selection of
the hyperparameters of the model (discussed in Section 2.5.5) often requires a trial and error approach.
However, due to its success in the above-mentioned experiment, this approach is clearly deserves further
investigation.

2.5.4 Support Vector Machines

Support vector machines (SVMs), just like the other machine learning models described in this section,
are supervised learning models. An SVM is built by mapping examples to points in space, and finding
a maximum-margin hyperplane which separates them into the categories with which they are labelled
(as before, these can be the ‘winning’ and ‘losing’ categories). An unseen example, such as a future
match, can then be mapped to the same space and classified according to which side of the margin it
falls on.

To the best of the author’s knowledge, no work has yet been published on applying SVMs to tennis match
prediction. SVMs have several advantages over ANNs in this context. Firstly, the training never results
in a local minimum, as is frequent with ANNs. Also, SVMs typically out-perform ANNs in prediction
accuracy, especially when the ratio of features to training examples is high. However, the training time
for SVMs tends to be much higher, and the models tend to be difficult to configure.

2.5.5 Machine Learning Challenges

Overfitting

As described in Section 2.2, a considerable amount of historical data is available for the training of
the models described above. However, it is important to note that the performance of players in an
upcoming match will need to be estimated based on their past matches. Only recent matches on the
same surface against similar opponents accurately reflect the expected performance of the players. For
this reason, tennis modelling inherently suffers from a lack of data. The lack of data often results in
overfitting of the model, meaning that the model describes random error or noise in the data, instead of
the underlying relationship. ANNs are particularly prone to overfitting, especially when the number of
hidden layers/neurons is large relative to the number of examples.

To overcome the overfitting problem, only the most relevant features of matches will be used for training.
The process by which these features are selected is called feature selection, for which various algorithms
exist. Removing irrelevant features will also improve training times.

Hyperparameter optimisation

The training of a model optimises the model parameters, such as the weights in an ANN. However,
models commonly also have hyperparameters, which are not learned and must be provided. For example,
the number of hidden layers and the number of neurons in each layer are some of the configurable
hyperparameters of an ANN. The process of arriving at optimal hyperparameters for a given model
tends to be empirical. The traditional algorithmic approach, grid search, involves exhaustively searching
through a pre-defined hyperparameter space. A successful tennis prediction model will necessitate a
careful selection of hyperparameters.
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Chapter 3

Feature Extraction

3.1 Tennis Match Representation

A supervised machine learning algorithm requires a set of labelled examples for training. In the context of
tennis prediction, each training example corresponds to a single historical tennis match, and is composed
of two elements:

1. A vector of input features (X), representing the characteristics of the players and the match

2. The target value (y), corresponding to the outcome of the match

The trained model can then be used to predict the outcome of a future match, provided that the set of
input features can be constructed for the match.

3.1.1 Match Outcome Representation

Two players participate in every singles tennis match, and are labelled as Player 1 and Player 2. The
target value can be defined as follows:

y =

{
1, if Player 1 won
0, if Player 1 lost

(3.1)

Incomplete matches are not used for training, so no other outcome is possible.

3.1.2 Symmetric Match Feature Representation

Any effective tennis prediction model must consider the characteristics of both players participating in
a match. Consequently, we must have two values for each variable of interest, one for each player. We
construct a feature by taking the difference between these two values. For example, consider a simple
model based only on the ATP ranks of the two players. In this case, we construct a single feature
RANK = RANK1 − RANK2, where RANK1 and RANK2 are the ranks of players 1 and 2 at the time
of the match, respectively. Clarke and Dyte [6] used precisely the rank difference as the sole feature in
their logistic regression model.

An alternative way of representing match features would be to include both values of a variable (one
for each player) as two distinct features. For example, we could include RANK1 and RANK2 as two
independent features in our model. Arguably, this approach would preserve more information about the
two players, allowing for a more accurate model. However, in practice, the difference in a variable for the
two players is often a sufficiently informative measure. For example, O’Malley [18] showed that in the
hierarchical model (Section 2.4), the match outcome depends on the difference between the serve-winning
probabilities of the two players, and the individual probabilities are not essential.
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An important advantage of using the differences in variables as features is the possibility of a symmetric
model. We define a symmetric model as one which would produce an identical match outcome prediction,
even if the labels of the players were swapped (i.e., if Player 1 was Player 2 and vice versa). An asymmetric
model may, due to noise in the data, assign more importance to a feature for Player 1 than for Player 2,
resulting in different predictions depending on the labelling of the players. For example, a logistic
regression model may give a higher absolute weight to RANK1 than to RANK2. We avoid any bias by
having a single RANK feature, representing their difference.

Using variable differences as features halves the number of features, reducing the variance of the model
(the model’s sensitivity to small variations in the training dataset). This helps prevent overfitting (see
section 2.5.5).

3.2 Historical Averaging

In the previous section, we described how the variables representing the qualities of two players are
combined into features. Although some values of variables, such as the ranks of the players, are easily
accessible before a match, others must be estimated based on the performance of the players in their
previous matches. For example, a player’s success on return varies from match to match. In order
to construct a feature representing the difference in the players’ average winning on return percentage
(WRP), we would use the past matches of the players to find their average winning on return percentages
(WRP1 and WRP2), and then take their difference. Table 3.1 illustrates how the winning on return
percentage and the aces per game would be estimated for Federer’s match on June 1, 2014. An identical
process would be performed to find any other features which must be estimated from the previous
matches. We would then perform a similar calculation for his opponent, and take the difference between
the estimates to generate features for training. Note that we average over all prior matches, resulting in
higher estimates for Federer’s performance than if we had only used the past several matches.

Table 3.1: Estimating Federer’s performance based on past matches

Win on return % Aces per game · · · Match date

Statistics in past matches

...
...

...
0.27 0.26 2014-01-24
0.33 0.19 2014-03-16
0.41 0.23 2014-03-26
0.30 0.10 2014-04-20
0.35 0.31 2014-05-14

Average performance 0.41 0.30

Although simple, this method of estimating the performance of the players has several shortcomings.
Firstly, the players may have historically had very different average opponents. If Player 1 has played
against more difficult opponents than Player 2, the resulting estimates will be biased towards Player 2.
We discuss a method of removing this bias in Section 3.2.1.

Furthermore, naive historical averaging overlooks the fact that not all of a player’s past matches are
equally relevant in predicting their performance. We can address this by taking weighted averages, and
giving a higher weight to past matches which we think are more relevant for predicting the upcoming
match. Sections 3.2.2 and 3.2.3 describe approaches to determining these weights.

3.2.1 Common Opponents

The simple averaging of player performance across all past matches described in the previous section
is biased if two players have had different average opponents. Knottenbelt [13] proposed a method for
a fair comparison of players by using their common opponents. Although the technique was developed
as a means of estimating the serve and return winning percentages of players for use in a hierarchical
Markov model, the same idea can be applied to our use case.
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First, a set of common opponents of the two players is found (the players which both players have played
against). Next, we take each common opponent in turn, and find the average performance of both
players against the common opponent. Finally, we average the performance values for each player across
all common opponents. In this way, performance estimates for an upcoming match are based on the
same set of opponents for both players.

Figure 3.1: Estimating the WRP feature using common opponents
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Figure 3.1 shows how we would estimate the winning on return percentages for two players using their
common opponents. The common opponents are labelled as C1 to Cn. For player i, WRPi(Cj) is their
average winning on return percentage in all matches against common opponent Cj . We need to average
these values to obtain an estimate for each player:

WRPi =

∑n
j=0 WRPi(Cj)

n

Finally, we construct the WRP feature by taking the difference of the estimates for the two players (as
discussed in Section 3.2):

WRP = WRP1 −WRP2

We can perform a similar computation to find the other match features. Clearly, this method will be
accurate only if a sufficient number of common opponents exists for the two players.

3.2.2 Time Discounting

There are many factors that affect a player’s performance over time. In general, a player’s performance
improves as they gather strength and experience in the first part of their career and later declines due
to the physiological effects of ageing, as shown in Figure 3.2. However, injury may also have a long-term
impact on a player’s performance, as well as events in their private lives. For example, Farrelly and
Nettle [8] found that professional tennis players suffer a significant decrease in ranking points during the
year after their marriage.

Although many of these factors are difficult to model, we can assume that a player’s recent matches more
accurately reflect their current state than older matches. For example, the matches that a 35-year-old
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Figure 3.2: Tennis ageing curves
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player has played in the past year are likely to yield better estimates of their performance than matches
played in their 20s. We reflect this using time discounting, giving higher weights to more recent matches
when estimating features. We assign the weights using an exponential function:

W (t) = min(f t, f) (3.2)

Where:

t = time since the match (years)
f = discount factor

The discount factor f can be any real number between 0 and 1, and determines the magnitude of the
effect of time discounting. If f is small, older matches have very little significance. Figure 3.3 shows the
weights assigned to historical matches when a discount factor of 0.8 is used. Due to the min function in
Equation 3.2, all matches in the past year are assigned the same weight. Otherwise, very recent matches
would be assigned extremely large weights. Note that the discount factor is a hyperparameter in the
model, and needs to be optimised (see Section 2.5.5).

3.2.3 Surface Weighting

Tennis is played on a variety of court surfaces (clay, hard, grass, etc.), each having a different impact
on the bounce of the ball. Grass is the fastest surface, while clay is the slowest, and hard is somewhere
in between. A player is likely to perform differently depending on how the characteristics of the surface
affect their playing style. An analysis of the highest ranked men and women by Barnett [2] confirms
that players’ performances are affected by the court surface. Furthermore, he deduces fundamental
relationships between players’ performances across different surfaces. For example, if a player’s optimal
surface is grass, they are likely to perform better on hard court than clay.

Clearly, for predicting an upcoming match on a particular surface, a player’s past matches on the same
surface will be more informative than those on other surfaces. As in time discounting, we can assign a
weight to past matches, depending on their surface. In the simplest approach, we can consider only past
matches played on the same surface as the match we are predicting, by assigning them a weight of 1
and giving all other matches a weight of 0. We will refer to this surface weighting strategy as splitting
by surface. The drawback of splitting by surface is that it significantly reduces the amount of data
used for estimating the features of the match. For example, it is likely that two players have no common
opponents on grass, since few tournaments use this surface.
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Figure 3.3: Time discount function (f = 0.8)
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We could run an optimisation to find the best weighting of other surfaces for each surface. However, the
search space is too large, and this is computationally infeasible. Instead, we can use the dataset to find
the correlations in player performance across different surfaces. First, for each player, we can find the
percentage of matches won across different surfaces during their career. For every pair of surfaces (a, b),
we then calculate correlations in performance across all players:

ρa,b =

∑n
i=1(ai − a)(bi − b)
(n− 1)sasb

(3.3)

Where

ai = percentage of matches won by player i on surface a
bi = percentage of matches won by player i on surface b
sa = standard deviation of percentage of matches won on surface a
sb = standard deviation of percentage of matches won on surface b
a = mean percentage of matches won on surface a

b = mean percentage of matches won on surface b
n = number of players

Computing Equation 3.3 for all pairs of surfaces on ATP matches in the years 2004 - 2010 (our training
set) yields the correlation matrix shown in Figure 3.4. We can see that all correlations are positive, i.e.,
a player that tends win on one surface will also tend to win on another, but perhaps not as often. Our
findings support Barnett’s results. For example, there is a much higher correlation between performance
on grass and hard courts than between grass and clay courts.

As correlation is a measure of dependence between two sets of data, it can be used to provide the weights
for past matches when estimating features for an upcoming match. We refer to this as weighting by
surface correlation. This approach makes use of a larger amount of historical data than splitting by
surface, and could therefore allow for a more accurate comparison of players. Furthermore, we avoid any
optimisation process, using the values in the correlation matrix directly when computing averages.
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Figure 3.4: Correlation matrix of player performance across surfaces
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3.3 Uncertainty

Time discounting and surface weighting (described in Sections 3.2.2 and 3.2.3, resp.) assign weights to
a player’s past matches when computing estimates of their performance in an upcoming match. The
weights of the player’s past matches can be used to give a measure of uncertainty with respect to
the player’s performance estimates and consequently the match features. Such a quantity is useful for
removing noise prior to training and for obtaining a level of confidence in a match outcome prediction.
The calculation is slightly different depending on whether we use the common opponent approach or
not, and we describe both methods below.

3.3.1 Uncertainty For Simple Averaging

To find the match feature uncertainty for the simple averaging approach (without the use of common
opponents), we first find the total weight of past matches for player i:

Si =
∑
m∈Pi

W (m)

Where

W (m) = Weight of match m
Pi = Set of past matches of player i

We define the overall uncertainty of the features of the match as the inverse of the product of the total
weights for the two players:

U =
1

S1 · S2
(3.4)

This implies that we will only be confident in the accuracy of the features of the match if the performance
estimates for both players are based on a sufficiently large amount of data.

3.3.2 Uncertainty For Common Opponents

If match features are found using the common opponents of the players, we first find the total weight for
each player’s estimates with respect to each common opponent:

Si(Cj) =
∑

m∈Pi(Cj)

W (m)
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Where

W (m) = Weight of match m
Pi(Cj) = Set of past matches of player i against opponent Cj

The overall uncertainty is computed using the sum of the weights across all common opponents:

U =
1∑

j S1(Cj) · S2(Cj)
(3.5)

This means that we expect the quality of match features to increase with the number of common op-
ponents. However, a smaller number of common opponents with strong relationships with both players
will result in a lower uncertainty than a large number of common opponents with low weights.

3.4 New Feature Construction

As discussed in Section 2.2, the OnCourt system provides the dataset from which features are extracted
for each match. In general, there are two approaches to extracting features:

1. If we are certain about the value of a feature at the time of the match (e.g., the difference in the
rank of the players), we use the value directly

2. If we do not know the value, we must use the historical matches of the players to estimate it.
This approach is used for all match statistics in Table 2.1 (first serve percentage, aces per game,
winning on return percentage, etc.). During the averaging, we can apply any combination of the
averaging methods described in the previous section (common opponents, time discounting, and
surface weighting).

In addition to features produced using these two methods, we apply our knowledge of the tennis domain
to generate additional features which we expect to be relevant in match prediction.

3.4.1 Combining Statistics

Adding combinations of the estimates of players’ performance statistics as features may improve the
prediction accuracy of a machine learning algorithm. In fact, higher-order learning algorithms (such as
neural networks with at least one hidden layer) attempt to discover patterns in the weighted combinations
of input features. However, we can use our knowledge of the game to include the most relevant combi-
nations directly, allowing them to also be used in simpler models (e.g., logistic regression). Higher-order
models are discussed in Chapter 5.

Overall winning on serve percentage

The OnCourt dataset provides the winning percentage on first and second serves as separate values.
When combined with the first serve accuracy, we can calculate an overall winning on serve percentage
for a player i:

WSPi = W1SPi · FSi + W2SPi(1− FSi)

We expect this aggregate statistic to be more consistent for players across different matches. As for all
features, the WSP feature is computed by taking the difference of the values for the two players:

WSP = WSP1 −WSP2

Completeness

The very best of tennis players have few weaknesses, and are strong in both offensive and defensive
playing styles. For example, Roger Federer is a considered by many to be the greatest all-court player of
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all time. We can attempt to measure the completeness of a player by combining their serve and return
winning percentages:

COMPLETEi = WSPi ·WRPi

The multiplicative relationship ensures that a player has high completeness if they are strong in both
offensive and defensive aspects of the game.

Advantage on serve

So far, all features discussed were generated using performance estimates computed independently for
the two players. However, a performance estimate for one player can also rely on some statistic of the
other player. For example, instead of comparing the players’ winning on return percentages directly, we
may want to gauge one player’s serve strength against the other’s return strength. We call the resulting
feature a player’s advantage on serve (SERVEADV):

SERVEADV1 = WSP1 −WRP2

SERVEADV2 = WSP2 −WRP1

SERVEADV = SERVEADV1 − SERVEADV2

Arguably, this feature is much more informative of the outcome of a match than the WSP and WRP
features taken on their own, since a player’s performance when serving clearly has a strong dependence
on the quality of the opponent’s return play. Directly comparing the serve strengths of the players,
without accounting for the opponents’ return strength, does not account for this relationship.

We could attempt to construct many other features by comparing different characteristics of players.
However, this requires an understanding of the sport and of the semantic relationships between different
player statistics.

3.4.2 Modelling Fatigue

The physical form of a player before entering a match is likely to have a strong impact on their per-
formance. A common explanation for the under-performance of a player in a match is the accumulated
fatigue from previous matches. We therefore represent fatigue as the number of games a player have
played in the past three days. The contribution of each day is weighted in a similar fashion to the
time-discounting of matches (Section 3.2.2), using a discount factor of 0.75. For example, if a player
contested in a 50-game match two days ago, their fatigue score would be 50 · 0.752 = 28.

The size of the time window (three days) and the discount factor were found by experimentation. Fig-
ure 3.5a shows the distribution of the outcome of the match for the player who entered with a higher
fatigue score (as defined above), using all matches in our training set. Clearly, a less fatigued player has
an improved chance of winning.

Figure 3.5: Match outcome for player with impaired form (ATP matches 2004 - 2010)

(a) More fatigued than opponent

Lost 55.1

Won44.9

(b) First match since retirement

Lost 51.5 Won48.5
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3.4.3 Modelling Injury

A player’s form is also affected by any recent injuries. Although the OnCourt dataset does not provide
any specific information regarding player injuries, we can deduce from the match results whether a player
retired from a match. A player is said to retire from a match if they withdraw during the match, usually
do to injury, and forfeit their place in a tournament. We can thus use retirement as an approximation
for injury. This is only an approximation, since a player may retire for other reasons (e.g., to conserve
strength for more important upcoming matches), or they may instead injure themselves during training,
which we have no knowledge of.

Initially, we considered using the time since a retirement as the measure of the severity of an injury.
However, a player that has not competed for longer has also had more time to recover, so the relationship
is unclear. Also, the effect of the retirement is only a significant factor in the match immediately following
the retirement. If a player has retired but has already competed since, we can assume that they have
sufficiently recovered. For these reasons, we define the retirement of player i as a binary variable:

RETIREDi =

{
1, if first match since player i retired
0, otherwise

Figure 3.5b confirms that retirement has a negative impact on the outcome of the match (although the
effect is smaller than for fatigue).

3.4.4 Head-to-head Balance

The outcomes of the matches directly between two players, also known as their head-to-head balance,
is an important factor in the prediction of an upcoming match. Some players routinely struggle against
a particular opponent despite being the favourite. One such surprising result is Federer’s 11-8 head-to-
head balance against David Nalbandian, who was consistently ranked lower than Federer throughout
his career. If the two were to compete today (which is unlikely, since Nalbandian has retired from
professional tennis), the head-to-head statistic would lower our predicted probability of Federer winning.
Another example would be Rafael Nadal’s 5-6 head-to-head standing against Nikolay Davydenko.

We represent the head-to-head relationship between player using the DIRECT feature (direct total
matches won), computed as follows:

DIRECT = H2H(1, 2)−H2H(2, 1) (3.6)

Where
H2H(i, j) = percentage of matches won by player i against player j

Note that the computation of this feature is the same, irrespective of whether common opponents are
used. Also, if either (or both) of time discounting or surface weighting is used, the mutual matches of
the players are also be weighted in a similar fashion. The DIRECT feature thus assigns a higher weight
to the more relevant matches between the two players.

3.5 Data Preparation

3.5.1 Data Cleansing

The OnCourt dataset is imperfect, as some statistics for matches are innacurate or corrupt. Data cleans-
ing is the process of detecting and removing such statistics. We perform data cleansing on our training
dataset, to prevent any innacuracies from degrading the quality of match outcome predictions.
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Invalid Percentages

All values representing percentages m must be real numbers between 0 and 1. The dataset contains
some matches that have a value of greater than 1 for the first serve success rate, the winning on first
serve percentage, the winning on second serve percentage, or the winning on return percentage. The
percentages are then marked as invalid and ignored in any averages. The dataset contains 54 such records
(from a total of about 80 000 matches with statistics).

Improbable Average Serve Speeds

By inspecting the dataset, we notice that for a few matches, the average serve speeds have a value of
zero. This is clearly the result of an error in the generation of the data – missing serve speeds should
be marked as invalid, not given the value of zero. Furthermore, some matches have highly unlikely
values for serve speeds. From the distribution of ATP serve speeds shown in Figure 3.6, we can see that
average serve speeds of less than 120 and 100 for first and second serves, respectively, must correspond
to some sort of inaccuracy. In this case, we also set the values to invalid (approximately 40 matches are
affected).

Figure 3.6: Average serve speeds (ATP)
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Extreme Percentages After Averaging

If there are only a few matches used in performance estimates for a player (e.g., if the player has only
participated in several ATP matches during their career), some estimates may result in extreme values.
For example, if a player has a defensive playing style and they have only approached the net once in all
their past matches, but succeeded in this one attempt, they will have an expected net approach success
rate of 100%. This is, however, only due to the lack of data, and does not accurately reflect the quality
of the player’s net game.

To alleviate this problem, we can use the measure of uncertainty defined in Section 3.3. For matches with
high uncertainty (i.e, those for which the feature estimates are less reliable), we can ignore features that
are likely to be inaccurate. Features more prone to inaccuracy are those for which fewer observations
are made. Specifically, break points, net approaches, and total matches won are all based on only a
few observations per match (or a single observation, in the case of total matches won). We ignore these
features if the uncertainty is below a specified threshold.

Despite the filtering based on uncertainty, some percentages retain extreme values (exactly 0 or 1). These
values signify a lack of data, and as they are uncharacteristic of the performance of players, they are also
ignored. For example, regardless of the number of matches used in generating an estimate of a player’s
break point win percentage, if the estimate is 100%, the actual probability of a player winning a break
point in an upcoming match is certainly less than 100%.
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Figure 3.7: Distribution of estimated break point winning percentages
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(b) After cleansing
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Figure 3.7 shows the effect of the filtering of break point winning percentage estimates with high uncer-
tainty (in this case, we used a threshold of 1.0) and extreme percentage values. Firstly, we see than the
filtering significantly reduces the number of matches with break points as a valid feature. However, the
distribution now bears a closer resemblance to the normal distribution, with a more regular curve and
no clusters at 0 and 1.

Finally, the DIRECT feature (Section 3.4.4) describes the head-to-head balance between the two players.
However, an insufficient number of mutual matches can result in inaccurate predictions. As before, we
only use the feature if its uncertainty (based on the number / relevance of mutual matches) is below a
specified threshold. We do not, however, filter out the extreme values of 0 and 1. If a player has defeated
another player in every match they have played, provided that they have played a sufficient number of
matches, keeping this information is likely to improve our prediction accuracy.

3.5.2 Feature Scaling

By inspecting the distributions for performance estimates, we see that most are approximately normally
distributed (e.g., the break point winning percentage in Figure 3.7). The match features (formed by
taking the difference in performance estimates of the two players) are usually also normally distributed. In
fact, of the features discussed so far, only the following do not seem to follow a normal distribution:

• DIRECT - the distribution of the head-to-head balance has clusters at 0 and 1, since it is very
common for one player to always win / lose against another

• FATIGUE - in many matches, most players have a fatigue score of zero, resulting in a large spike
in the middle of the distribution

• RETIRED - since the underlying variable is binary, the feature can only take on values in the set
{−1, 0, 1}

Figure 3.8 shows the distribution of the ACES feature, which resembles the general shape of the distri-
butions of most of our features. We also show the distributions of the three features described above,
which are not normally distributed. For all features except these three, we perform standardisation, the
scaling to unit variance. We standardise a feature X by dividing it by its standard deviation σ:

Xstandardised =
X

σ
(3.7)

We do not mean-center the features, since we expect the features to already have a mean of zero. This is a
consequence of our symmetric approach to feature construction (Section 3.1.2). Since players are labelled
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Figure 3.8: Feature distributions

−1.0 −0.5 0.0 0.5 1.0

ACES

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r
of

m
at
ch
es

−1.0 −0.5 0.0 0.5 1.0

DIRECT_TMW

0

20

40

60

80

100

120

140

160

180

N
um

be
r
of

m
at
ch
es

−1.0 −0.5 0.0 0.5 1.0

RETIRED

0

50000

100000

150000

200000

N
um

be
r
of

m
at
ch
es

−40 −30 −20 −10 0 10 20 30 40

FATIGUE

0

20000

40000

60000

80000

100000

120000

140000

160000

N
um

be
r
of

m
at
ch
es

as Player 1 and Player 2 arbitrarily for each match, there is no bias towards either of the players, and
we expect the averaged difference in their performance estimates to be zero. This is confirmed in Figure
3.8 - all the distributions are already centered at zero. Mean-centering the features would therefore only
have the effect of introducing bias due to random noise in the data.

Standardisation is an implicit requirement for many machine learning algorithms. For the algorithms we
employ, logistic regression and neural networks, standardisation is not, in theory, a requirement. There
are nonetheless several advantages of this pre-processing step:

1. If the features have unit variance, the weights assigned by logistic regression can be used to compare
the relative significance of different features in determining the match outcome.

2. In both algorithms, regularisation has a stronger effect on features with greater values, so large
differences in the standard deviations of feature distributions could penalise some features more
than others (regularisation is explained in the following chapter).

3. Standardisation typically improves training times for neural networks [14].

Despite the feature FATIGUE not conforming to a normal distribution, its standard deviation of approx-
imately 14.4 is a reasonable scaling factor, so we standardise this feature as well. The remaining two
non-normal features (DIRECT and RETIRED) are left unscaled, as they tend to already take on values
of the same order of magnitude as the scaled features.
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3.6 Summary of Features

In Table 3.2, we provide a summary of all extracted features. Note that all features are differences in
values for the two players, as discussed in Section 3.1.2. Also, the features ACES, DF, UE, WIS and
TPW are normalised to per-game averages (by dividing by the number of games in a match), instead of
the per-match averages provided in the OnCourt dataset (Table 2.1).

Table 3.2: Summary of all extracted features

Feature Explanation Cleansing Standardised

RANK ATP rank Yes
POINTS ATP points Yes

FS First serve success percentage P, E Yes
W1SP Winning on first serve percentage P, E Yes
W2SP Winning on second serve percentage P, E Yes
WSP Overall winning on serve percentage Yes
WRP Winning on return percentage P, E Yes
TPW Percentage of all points won P, E Yes
TMW Percentage of all matches won E, U Yes
ACES Average number of aces per game Yes
DF Average number of double faults per game Yes
UE Average number of unforced errors per game Yes
WIS Average number of winners per game Yes
BP Percentage of break points won P, E, U Yes
NA Percentage of net approaches won P, E, U Yes
A1S Average first serve speed S Yes
A2S Average second serve speed S Yes

FATIGUE Fatigue from matches in past 3 days Yes
RETIRED Whether first match since retirement No

COMPLETE Player completeness Yes
SERVEADV Advantage when serving Yes

DIRECT Head-to-head balance U No

P− prior to averaging, remove if value is not in range [0, 1]

S− prior to averaging, remove if serve speed is below 120 / 100 km/h for first / second serves
E− after averaging, remove if value is exactly 0 or 1
U− after averaging, remove if the uncertainty is above threshold (e.g., 1.0)
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Chapter 4

Logistic Regression Model

4.1 Dataset Division

In the previous chapter, we presented our approach to the extraction of match features from OnCourt
data. We form a machine learning dataset by extracting a vector of features for all matches, and pairing
them with the corresponding match outcomes. The dataset contains ATP matches for the past 11 years
(2004 to 2014). We use common opponents, time discounting and surface weighting in unison during
feature extraction.

We split the dataset in the following way:

• Training set (2004-2010)

Training data is used by logistic regression (or any other supervised learning algorithm) to train
a model that minimises the error in the prediction of the outcomes of the training matches. In
other words, the parameters of the model are adjusted to create the most optimal mapping from
the training match feature vectors to training match outcome predictions. For logistic regression,
the logistic loss function is used as a measure of error during training (see Section 2.5.2).

• Validation set (2011-2012)

The validation set is used for tuning the hyperparameters of the model (those parameters not
optimised by the training algorithm). We train a model on the training data using various com-
binations of values for the hyperparameters and assess each combination using the validation set.
The selection of a feature selection strategy is also done using the validation set.

• Test set (2013-2014)

After a model’s hyperparameters have been optimised, we evaluate its predictive performance on
the test data, giving us a measure of how well the model generalises to unseen data. In this case,
we use all other data (training and validation) to train the model. Test data is set aside and never
used before the evaluation phase.

The division of the data follows a 7-2-2 ratio of the time-ranges of different splits (7 years for the training
set and 2 years each for the other two sets). However, we filter out a large portion of the training matches
prior to training (Section 4.5.2). Also, many of the matches in the training and validation sets do not
have betting odds, which we require for evaluating the model. Consequently, the number of matches
in each of the dataset splits is approximately 39 000, 6 200 and 12 600 for the training, validation and
test sets, respectively. We have chosen to split the dataset in this way despite unequal validation and
test set sizes. Each year of professional tennis has a fixed structure, with certain tournaments always
being played at particular times of the year. Splitting the dataset by complete years results in the
same distribution of tournaments across the different splits, which we believe makes the evaluation more
accurate.

We have chosen not to use cross-validation for evaluating our model. Cross-validation is often used in
place of a test set in assessing how well a model generalises to an independent dataset. This method
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involves partitioning the entire dataset into k equal-sized subsets (folds), of which one is retained as
the validation set and the others are used for training. The process is then repeated k times, using a
different fold as the validation set each time. Cross-validation has the advantage of lower variance in
model evaluation, in comparison to when a single test set is used. However, the entire model fitting
procedure (feature selection, hyperparameter optimisation, etc.) would have to be performed separately
for each fold. As will become apparent in the following sections, this would be computationally very
expensive. Furthermore, our dataset has a time-series element: the matches are ordered by time.
The most recent years are chosen as the test set, because these are most representative of the current
state of tennis prediction. As the field progresses, it is becoming increasingly more difficult to compete
against the bookmakers. Using only the past couple of years will yield a more accurate assessment of
profitability of the model. Finally, our dataset is sufficiently large for cross-validation to be considered
unnecessary.

When evaluating the model, we will only consider predictions for the first 50% of the matches, when
ordered by uncertainty. In Section 3.3, we defined uncertainty for a match based on the weights assigned
by time discounting and surfaces weighting during feature extraction. As we are more confident in the
accuracy of features for matches with lower uncertainty, we expect to make a greater profit when betting
on these matches. Therefore, we will not place bets on matches with high uncertainties. We will aim to
maximise the profitability of the model for the most certain 50% of the matches. By ignoring half of the
matches in this way, we obtain a more realistic evaluation of our model, unaffected by the noise induced
by high uncertainty matches (on which bets would not be placed).

4.2 Evaluation Metrics

In feature selection and hyperparameter optimisation (Sections 4.4 and 4.5, respectively), we require
metrics for evaluating the performance of our model. Our overall goal is to maximise the return on
investment (ROI) when placing bets based on the predictions generated by our model. Various betting
strategies result in a different ROI, so we consider different strategies when assessing our model. We
have selected three strategies, discussed in Section 2.3.2. Of the three, betting on the predicted winner
using the Kelly criterion seems to be most profitable, so this will serve as the main betting strategy used
for evaluating a model.

A metric commonly used to assess predictor performance in literature is accuracy, the proportion of
match outcomes correctly predicted. However, accuracy does not consider the deviations of the predicted
probabilities from the actual match outcomes. The more successful betting strategies rely on these
probabilities. For this reason, we instead employ logistic loss as an evaluation metric, which penalises
any deviations from actual match outcomes (see Section 2.5.2). Although logistic loss is used to guide
the training process of a logistic regression predictor, it can also serve as a metric for comparing the
quality of different predictors. In fact, it is a proper scoring rule1 for the assessment of probability
predictions. Other popular scoring rules exist (e.g., the quadratic Brier score). However, logistic loss has
been shown to have superior performance in certain conditions (see comparison of scoring rules conducted
by Bickel [3]).

Perhaps surprisingly, we have found that logistic loss and ROI often give contradictory results. The
model with the minimal logistic loss is not always the most profitable (note that we minimise logistic
loss, but maximise profit). We therefore consider both metrics in our decisions regarding the optimisation
of a model.

4.3 Model Symmetry

As described in Section 2.5.2, logistic regression optimises a vector of n+ 1 parameters β to obtain the
best mapping from the n input features x to a match result (for the matches in the training dataset). In
this generic formulation of the model, the probability of a win is computed by Equation 4.1.

1A proper scoring rule is one which gives the best score when the true probability distribution is predicted
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P (Player 1 wins) = σ(z) =
1

1 + e−z
(4.1)

Where
z = β0 + β1x1 + β2x2 + · · ·+ βnxn, βi is the weight for feature xi

To maintain a symmetric model (Section 3.1.2), we remove the bias term β0. This ensures that when
the features are all zero (i.e., the players are expected to have identical performance), the predicted
probability of a win will be 0.5. Also, we will obtain the same prediction of the match outcome, regardless
of the order of the labelling of the players.

4.4 Feature Selection

Feature selection is the process of selecting a subset of all available features to use within a model. The
main motivation for applying this technique to tennis match prediction is the possibility of improving
prediction accuracy through the removal of irrelevant features. A model with fewer features has lower
variance, which prevents overfitting to the training set. In addition, feature selection will allow us to
gain insight into the relative importance of different features in predicting match outcomes.

4.4.1 Ignoring Rank Information

There is considerable evidence that ATP ratings do not accurately reflect a player’s current form. Both
Clarke [5] and Dingle [7] constructed alternative rating systems, which had better predictive power than
the official ATP ratings. These authors argue that one of the biggest weaknesses of ATP ratings is their
disregard for the quality of a player’s opponents or the margin by which a match is won or lost. Instead,
the ratings are a cumulative measure of a player’s progression through tournaments. In fact, players
are awarded points for a match even if they win due to a walkover (non-attendance by the opponent).
Furthermore, a player has a single rating across all surfaces, preventing us from taking into account any
difference in performance across surfaces.

A difference in the ATP ranking of two players has a relatively strong correlation with the match outcome.
In fact, as demonstrated by Clarke and Dyte [6], using RANK as the sole feature is sufficient to obtain a
prediction accuracy of about 65%. However, these features are poor in predicting the true probabilities
of match outcomes. As shown in Figure 4.1, using RANK as the sole feature in a logistic regression
predictor results in a much narrower distribution of predicted probabilites than when SERVEADV is
used. We can approximate the true probability distribution by the implied probabilites derived from
betting odds, as shown in the right-most histogram in Figure 4.1. Clearly, the distribution resulting
from using SERVEADV as the sole feature bears a much closer resemblance to the true distribution.
The more profitable betting strategies require accurate probability estimates. For this reason, we have
decided to henceforth exclude the RANK and POINTS features from our feature set, as they would be
likely to distort the predictions.

4.4.2 Feature Selection Algorithms

A simple approach to feature selection would be to rank features according to their (absolute) correlation
with the match outcome. However, as demonstrated by Guyon and Elisseeff [9], features influence
each other when used in a machine learning algorithm. For example, two variables that are useless by
themselves may be useful together. Therefore, instead of evaluating features separately, we select the
subset of features which performs best.

We have extracted 22 features (Table 3.2), and after removing the RANK and POINTS features, 20
features remain, allowing for more than a million different subsets (220). It is computationally infeasible to
perform an exhaustive search for the best subset. We implemented several techniques which use different
heuristics for searching this space, as outlined by Guyon and Elisseeff [9]. The different feature selection
techniques are applied to the training set. The validation set is then used to select the best-performing
technique. During feature selection, the model hyperparameters are set to those that performed best
with all features selected (hyperparameter optimisation in discussed in Section 4.5).
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Figure 4.1: Distributions of probabilities for RANK and SERVEADV
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Wrapper Methods

Wrapper methods use the underlying predictor as a black box for evaluating the performance of different
subsets. There are two main flavours of greedy wrapper feature selection algorithms: forward selection
and backward elimination. In forward selection, the features which cause the greatest improvement in
the evaluation metric are progressively added, until all features have been added or no improvement is
gained by adding additional features. Conversely, backward elimination begins will the full set of features
and removes those whose elimination results in the greatest improvement in the evaluation metric. Algo-
rithms 1 and 2 give the pseudocode for forward selection and backward elimination, respectively.

Algorithm 1 Forward Selection

1: procedure ForwardSelection(A,E) . Given: set of features A and evaluation metric E
2: F ← ∅ . Initialise the current set of selected features
3: FB ← ∅ . Initialise the current best set of selected features
4: while |F | < |A| do . While more features may be added
5: x← argmaxx∈A−F E({x}+ F ) . Select next best feature x from remaining features
6: F ← {x}+ F . Add selected feature to feature set
7: if E(F ) > E(FB) then
8: FB ← F . Update best feature set
9: end if

10: end while
11: return FB . Return the best set of features
12: end procedure

Algorithm 2 Backward Elimination

1: procedure BackwardElimination(A,E) . Given: set of features A and evaluation metric E
2: F ← A . Initialise the current set of selected features
3: FB ← A . Initialise the current best set of selected features
4: while |F | > 1 do . While there are features remaining
5: x← argmaxx∈F E(F − {x}) . Select next best feature x from current features
6: F ← F − {x} . Remove selected feature from feature set
7: if E(F ) > E(FB) then
8: FB ← F . Update best feature set
9: end if

10: end while
11: return FB . Return the best set of features
12: end procedure
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The assessment of a subset of features proceeds by first training the predictor on a portion of the
training data (years 2004-2008), and then evaluating its performance on another portion (2009-2010).
Both algorithms require an evaluation metric for this purpose. The advantage of wrapper methods is
the freedom of choosing a custom evaluation metric. Therefore, in addition to logarithmic loss, we also
perform feature selection using ROI.

Embedded Methods

An alternative to wrapper methods are embedded feature selection methods, which incorporate feature
selection as part of the training process of the predictor. One such method is Recursive Feature Elimi-
nation (we use the name adopted by the machine learning library Scikit-Learn [19]). In RFE, a logistic
regression predictor is first trained using the set of all features. Then, the feature which is assigned the
lowest absolute weight in the predictor is removed, and this is repeated until a single feature remains
(see Algorithm 3). RFE uses the heuristic that a lower absolute weight is likely to correspond to a less
important feature. The validation set is used to determine the optimal number of features to remove.
As with the wrapper approaches, we can optimise both the logistic loss and the ROI.

RFE is often preferred over the wrapper methods due to its lower time complexity. The wrapper methods
must train and evaluate the predictor many times at each step in the algorithm. Specifically, Step 5 in
Algorithms 1 and 2 requires the evaluation of n subsets if there are n features remaining (to be added
or removed). Although we perform this step in parallel across multiple cores, the time complexity is still
quadratic in the number of features. On the other hand, RFE only requires the predictor to be trained
once each time a feature is removed. However, for our current size of the feature set, efficiency is not yet
a limiting factor.

Algorithm 3 Embedded Recursive Feature Elimination

1: procedure RFE(A,E) . Given: set of features A and evaluation metric E
2: F ← A . Initialise the current set of selected features
3: FB ← A . Initialise the current best set of selected features
4: while |F | > 1 do . While there are features remaining
5: x← argminx∈F |weight(x)| . Select feature with lowest absolute weight
6: F ← F − {x} . Remove selected feature from feature set
7: if E(F ) > E(FB) then
8: FB ← F . Update best feature set
9: end if

10: end while
11: return FB . Return the best set of features
12: end procedure

4.4.3 Results

Figure 4.2 shows the optimal number of features selected by the different feature selection approaches
discussed in the previous sections. Each approach selects a different optimal number of features (marked
by a diamond). For example, backward elimination selected 12 features when using logistic loss for the
comparison of different subsets.

It would appear that backward elimination finds the most optimal subsets. However, we need to assess
how well each strategy generalises to the validation set. For this reason, we evaluate the performance of
the subset selected by each feature selection strategy using the validation set. From Table 4.1, we can
see that all approaches that use the logistic loss evaluation metric have relatively similar performance
on the validation set. However, the only approach that outperforms the benchmark (i.e., using all 20
features) in terms of logistic loss is forward selection. This strategy also offers the best ROI of the three,
improving upon the benchmark by 1.9%.

When ROI is used as the evaluation metric for RFE, it chooses to retain all features. In the remaining
two cases, logistic loss is increased. Forward selection with ROI as the evaluation metric results in the
greatest ROI of all strategies (11.3%). However, this is considerably greater (by about 3%) than its ROI
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on the training set. Backward elimination using ROI, on the other hand, suffers a significant drop in
performance when evaluated on the validation set. It appears that using ROI for optimisation results in
unpredictable performance on unseen data. Also, Figure 4.2b shows that different adjacent subsets (those
with one feature added or removed) have very large differences in profit, confirming the high volatility of
ROI. Logistic loss appears to be a much more stable metric. As we want to achieve the best performance
on the test set, it is imperative that the feature selection strategy we use will generalise well. For this
reason, we select forward selection with logistic loss as the optimal feature selection strategy.

Figure 4.2: Optimal feature subset sizes using different approaches
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(b) Return on Investment
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Table 4.1: Evaluation of feature selection approaches

Approach Evaluation
Metric

Features Selected
(in order of importance)

Performance on
Validation Set

Log-loss ROI % (Kelly)

Backward
Elimination log-loss

COMPLETE, WRP, W1SP, ACES,
W2SP, FATIGUE, DIRECT,
NA, DF, WIS, A2S, TPW

0.5764 7.1

Forward
Selection log-loss

SERVEADV, FATIGUE, DF,
DIRECT, TMW, WIS, TPW,

A2S, NA, ACES, COMPLETE,
WSP, W1SP

0.5743 9.7

RFE log-loss SERVEADV, TMW, DIRECT,
FS, COMPLETE, W2SP, ACES

0.5765 7.0

Backward
Elimination ROI COMPLETE, FS, WSP, UE,

FATIGUE, WIS, A1S
0.5803 8.2

Forward
Selection ROI SERVEADV, W2SP, BP, A2S 0.5799 11.3

RFE ROI

SERVEADV, TMW, DIRECT,
FS, COMPLETE, W2SP, ACES,

WRP, W1SP, UE, NA, BP,
RETIRED, FATIGUE, WSP, A1S,

DF, TPW, A2S, WIS

0.5762 7.8

None All features 0.5762 7.8
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Having settled on the feature selection strategy, we now use all training and validation data (2004-2012)
to generate the final feature set:

SERVEADV, DIRECT, FATIGUE, ACES, TPW, DF, BP, RETIRED, COMPLETE, NA, W1SP, A1S

The final set of features has a large overlap with the subset selected when only the training set was used.
In fact, 9 of the 12 selected features were also selected previously. This suggests that the strategy will
select a relative stable subset of features as the dataset grows. We can also visualise the weights assigned
to each feature by the training process. Figure 4.3 shows that SERVEADV has the greatest impact on
the outcome of the match, followed by DIRECT and ACES. As we would expect, FATIGUE, RETIRED,
and DF all have negative weights. It may come as a surprise that the difference in the estimated winning
on first serve percentage (W1SP) is also assigned a negative weight. However, as mentioned previously,
features are not trained independently, and affect one another. Therefore, W1SP might be given a
negative weight to balance out the effect of one or more of the features with positive weights.

Figure 4.3: Weights assigned to final feature set
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4.5 Hyperparameter Optimisation

The process of training a logistic regression predictor tunes the regression coefficients, i.e., the internal
weights for each feature. However, the model also has parameters which are not optimised by the training
process, termed hyperparameters. In order to achieve the best performance of the model, we optimise
these parameters using the validation set (years 2011-2012 of the dataset). To reiterate, we optimise
only according to the performance of the least uncertain 50% of the matches in the validation set (see
Section 4.1).

4.5.1 Optimisation Approach

The most common approach to hyperparameter optimisation is grid search, a brute-force method that
exhaustively searches the entire space of different hyperparameter configurations. Most of our hyperpa-
rameters are real-valued, and the tuning is fine-grained. A sufficiently fine-grained grid search would be
prohibitively expensive for our purposes.

We instead proceed by a greedy heuristic search, which at any point optimises the parameter that,
when altered, will cause the greatest improvement in an evaluation metric (e.g., logistic loss or ROI).
We iterate until all parameters have settled in their global maxima. Since hyperparameters are not
necessarily independent, it is entirely possible that this approach will terminate in a local maximum, or
may not terminate at all. However, we found that this process worked very well for our use case.

Note that this process is intentionally not automatic, but guided by human decisions. As shown during
feature selection, we must often trade off the optimisation of logistic loss and the optimisation of ROI.
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We expect to achieve the best results by reasoning about this trade-off for each hyperparameter and
making a conscious decision using our knowledge of the strengths and weaknesses of each metric.

The set of features used for prediction may also be considered a model hyperparameter. Consequently,
feature selection (described in the previous section) is also a part of the optimisation process. Clearly,
we do not want to select features based on the performance of a very sub-optimal model. Therefore, we
incorporate feature selection into the process as follows:

1. Perform an initial optimisation of hyperparameters using all features (except for RANK and
POINTS, as discussed in Section 4.4.1)

2. Run feature selection to obtain a new feature set

3. Re-optimise using the new feature set

4.5.2 Noise Removal

Our training set contains matches with varying degrees of uncertainty. Matches with very high uncer-
tainty (e.g., those where the two players have very few common opponents) can be treated as noise in
the input data. By removing these matches, the predictor will be able to more accurately model the true
underlying relationships in the dataset. We order all matches in the training set by their uncertainty,
and run an optimisation to find the best percentage of higher-uncertainty matches to remove. Figure 4.4
shows our results. There is a clear improvement in both ROI and logistic loss as noisy matches are
removed. We fix the hyperparameter value at 80%, the peak of the ROI. Although the logistic loss keeps
improving past 80%, there is a sharp undesirable drop in the ROI after this point.

Figure 4.4: ROI and logistic loss when removing uncertain matches
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We have also considered removing training matches with noise in their output values. The betting
odds for a match could be used to identify matches that had very surprising results. We could, for
example, remove all matches for which the winner had an implied probability of winning of less than
30%. However, we found that a very small number of matches were affected by such filtering, and it thus
had no considerable effect on the ROI or the logistic loss.

4.5.3 Time Discount Factor

Time discounting of past matches while extracting features requires a discount factor, which is a hy-
perparameter in our model. Essentially, the higher the discount factor, the lesser the effect of time
discounting. In Figure 4.5, we see that the logistic loss peaks at a discount factor of 0.8, which we select
as the optimal value. Although the ROI is maximised by using a factor of 0.9, the difference is small
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enough to be attributed to the volatility of ROI. The graph shows large fluctuations in profit for small
changes in the discount factor (e.g., more than 2% for factors 0.3 and 0.4).

Figure 4.5: ROI and logistic loss for different time discount factors
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The optimal value of 0.8 for the discount factor has an interesting practical interpretation. It signifies
the rate at which the performance of players changes over time. For example, as a player ages, we would
expect matches played in the preceding year to be 80% as good an approximation of their current form
as matches played this year.

4.5.4 Regularisation Parameter

Regularisation prevents overfitting to training data by penalising large weights when training a logistic
regression predictor. The effect of regularisation is controlled using a regularisation parameter C. The
lower the value of C, the stronger the effect of regularisation (the default value is 1.0). Figure 4.6 shows
that increased regularisation improves logistic loss (although the effect is very minor – note that the
y-axis on the right has very small increments). Conversely, there seems to be a slight increase in ROI
as C is made smaller. Therefore, we choose C = 0.2, which appears to give reasonable results for both
evaluation metrics.

Figure 4.6: ROI and logistic loss for different values of C
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Chapter 5

Higher Order Models

5.1 Bias and Variance

Errors in the predictions of tennis match outcomes can be classified into two categories: those due to
bias and those due to variance. Bias results from erroneous assumptions of the model, i.e., its inability
to accurately capture the relationships in the data (under-fitting). For example, we may be missing
some important match features, and for this reason our predictions may be systematically wrong. On
the other had, variance is the sensitivity of the model to small variations in the dataset. A model with
high variance does not generalise well to unseen data (overfitting). There is always a trade-off between
bias and variance. A more complex model can more accurately capture relationships in the data, but it
will not generalise as well.

Model variance can typically be reduced by using a larger dataset, since the model will then be less
likely to overfit to noise in the data. Figure 5.1 shows that the predictive power of our logistic regression
model is relatively constant when we vary the size of the training dataset. The best return on investment
oscillates between 8% and 10% and the error, as measured by logistic loss, actually grows (although
very slightly) with more training data. These results suggest that our model has low variance, and
to improve its performance, we could attempt to reduce the bias. The following sections present two
different approaches to increasing the expressiveness of the model.

Figure 5.1: ROI and logistic loss on validation set for different training set sizes
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5.2 Logistic Regression with Interaction Features

5.2.1 Constuction of Interaction Features

Logistic regression is a generalised linear model. As described in Section 2.5.2, it computes the probability
of a match outcome using the weighted sum of the values of the match features:

P (Player 1 wins) = σ(z) =
1

1 + e−z

Where
z = β1x1 + β2x2 + · · ·+ βnxn, βi is the weight for feature xi

For this reason, the model can only fit a linear decision boundary to the feature space and higher-order
relationships between the features cannot be represented. A common approach to allowing a non-linear
decision boundary is the introduction of interaction terms, the weighted products of features. After
adding interaction terms, z becomes:

z =

original terms︷ ︸︸ ︷
β1x1 + β2x2 + · · ·+ βnxn +

interaction terms︷ ︸︸ ︷
β12x1x2 + β13x1x3 + · · ·+ β(n−1)nxn−1xn

In total, there are
(
n
2

)
additional features, one for each unique product of two of the original features. This

model can now identify higher-order relationships in the data, resulting in lower model bias. However,
increasing the complexity of the model will increase its variance, making it more prone to overfitting.
Also, both the training and optimisation of the model will be more computationally expensive.

We have already extracted one interaction feature: COMPLETE. Completeness for player i was defined
as the product of their serve and return strengths (WSPi ·WRPi). Notice that we compute the product
before taking the difference in the values of the two players. This is a distinction between our approach
and the standard application of interaction features. In general, the interaction feature A_B, based on
features A and B, is computed as follows:

A_Bi = Ai · Bi

A_B = A_B1 − A_B2

We have decided to exclude any interaction features formed using the RETIRED value for a player, due
to its binary nature (it would either invert the sign of the other multiplicand or have no effect). This
gives us with a total of

(
19
2

)
+ 20 = 173 features.

5.2.2 Model Optimisation

A larger feature set increases the likelihood of our model overfitting to noise in the training data. As
before, we can run a feature selection algorithm to select a subset of features with the best performance. It
is essential that the chosen algorithm generalises well, so we re-evaluate all three approaches (backward
elimination, forward selection, and RFE) using the new, higher-order model. As evaluating subsets
using ROI previously failed to generalise well, we only use logistic loss to compare different subsets.
Figure 5.2 shows the results of running the three feature selection strategies on the training set. Backward
elimination selects a far greater number of features than the other approaches (57), but this subset has
the best performance on the training set. Note that during feature selection, the model hyperparameters
are set to the most optimal values derived for the basic logistic regression model in Section 4.5.

Table 5.1 shows that the feature subsets selected by the three approaches result in similar logistic loss
when evaluated on the validation set. The only approach that improves upon the benchmark (i.e., using
all features) in terms of logistic loss is backward elimination. Although the best ROI is achieved by the
benchmark, the difference is very minor in comparison to backward elimination. Therefore, we select
backward elimination as the feature selection strategy.

The final feature set for use by the model is selected by running backward elimination on all training
and validation data. This time, only 19 features are selected. Furthermore, as shown in Figure 5.3, all

36



Machine Learning for the Prediction of Professional Tennis Matches Michal Sipko

Figure 5.2: Feature selection with polynomial features
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Table 5.1: Evaluation of feature selection approaches

Approach Number of features
selected

Performance on
Validation Set

Log-loss ROI % (Kelly)

Backward
Elimination 57 0.5737 8.2

Forward
Selection 23 0.5753 7.8

RFE 6 0.5775 6.3

None All features (173) 0.5745 8.4

but two of the selected features are interaction features (ACES and RETIRED are the only two “original”
features in the selected subset). Interestingly, ACES has replaced SERVEADV as the feature with the
greatest weight. The meaning of many selected interaction features is difficult to grasp, and some seem
completely non-sensical. For example, the large negative weight assigned to ACES_W2SP suggests that
a player that hits many aces and has strong performance on their second serve is less likely to win.
However, the weights of different features should not be considered independently, as they affect one
another. For example, it is entire possible that ACES_W2SP would be assigned a positive weight if
some additional features were removed. With the addition of interaction features, the model has become
too complex to allow for an interpretation of the assigned weights.

A different feature set may require the re-optimisation of the model hyperparameters. However, the
optimal value of only a single hyperparameter affected by the introduction of interaction features: the
regularisation parameter C. We decided to decrease the value of C from 0.2 to 0.1, implying that the
higher-order model performs slightly better with stronger regularisation. This is consistent with our
expectations. Regularisation reduces the variance of a model, so a more variable model, as obtained by
the introduction of interaction features, will benefit from stronger regularisation.

5.3 Artificial Neural Network

In the previous section, we have attempted to decrease the model bias by introducing additional features
in a logistic regression predictor. These features allow the representation of more complex relationships
in the data. However, the approach is clearly not scalable. Modelling interactions between triples of
features would necessitate

(
19
3

)
= 969 additional features. Such a model would be highly susceptible to

overfitting, and our feature selection approaches would no longer be feasible.
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Figure 5.3: Weights assigned to final feature set (logistic regression with interaction features)

T
P
W

_
W

S
P

T
M
W

_
A
2
S

W
2
S
P
_
D
IR

E
C
T

T
P
W

_
A
2
S

W
R
P
_
B
P

D
F
_
W

S
P

D
F
_
B
P

N
A
_
D
IR

E
C
T

T
P
W

_
U
E

B
P
_
U
E

B
P
_
A
2
S

A
C
E
S

N
A
_
S
E
R
V
E
A
D
V

A
C
E
S
_
W

2
S
P

R
E
T
IR

E
D

T
P
W

_
F
A
T
IG

U
E

W
R
P
_
N
A

A
C
E
S
_
U
E

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
W
ei
gh

t

An alternative approach involves the use of an artificial neural network (described in Section 2.5.3).
ANNs can model highly complex functions of the input features. The output values of neurons in the
hidden layer may be influenced by many (or all) of the features. Such a representation may uncover
significant relationships between the features, which would be ignored in a lower-dimensional model.
However, the use of ANNs brings new challenges. Firstly, ANNs take significantly longer to train than
logistic regression models. On our dataset, a logistic regression model took at most several seconds to
train, while a neural network takes 10 minutes or more, depending on the hyperparameters. The model
configuration is also more difficult, and forms an active research area. There are many hyperparameters
to optimise (structure of the network, learning rate, momentum, etc.), and many parameters have strong
dependencies on the values of other parameters.

The task of training a neural network for tennis match prediction has been attempted by Somboon-
phokkaphan et al. [22]. There are some essential differences in comparison to our model. Firstly, the
authors used a simple averaging approach to feature extraction, without surface weighting or time dis-
counting. Instead, the surface was fed as an additional input feature to the network (i.e., a binary input
node for each possible surface). More importantly, separate input features were used for the average
statistics of the two players, in contrast to our features of differences (Section 3.1.2), introducing asym-
metry into the model. In addition, there is no mention of feature standardisation and mean-centering
(which would be beneficial in this case). Although the authors claim an average accuracy of about 75%
in predicting the matches in the Grand Slam tournaments in 2007 and 2008, there is no assessment of the
actual probabilities predicted (using ROI or a scoring rule such as logarithmic loss). We have attempted
to replicate the experiment as described in the paper, but we were unable to reproduce the results.

5.3.1 Network structure

To reduce the size of the hyperparameter space, we fix some aspects of the structure of the network
heuristically. The overall architecture of the network is that of a multilayer perceptron (MLP), a feed-
forward network trained by backpropagation. We use all features (except for rank-related information)
as inputs. The filtering of training data based on uncertainty and the time discount factor are set to
their optimal values for logistic regression (80% and 0.8, respectively).

We use a single hidden layer. Hornik [10] showed that a single hidden layer with a finite number of neurons
can approximate any continuous function, provided that a sufficient number of hidden neurons is used. It
is generally accepted that a single layer is sufficient for most networks. However, as shown in Figure 5.4,
the number of neurons in the hidden layer remains a hyperparameter that we must optimise.

The most common activation functions are sigmoid “squashing” functions. One such function is the
logistic function, which has a range of [0, 1], and is also used in logistic regression. An alternative is the
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hyperbolic tangent (tanh) function, with a range of [−1, 1]. LeCun [14] argues that symmetric sigmoids
such as the tanh function result in lower training times, so we use the tanh activation function in our
hidden neurons. However, the final value returned by an activation of the network (i.e., the output of
the single neuron in the output layer) must be interpretable as a valid probability. For this reason, we
use the logistic function for activation in the output neuron (an alternative approach would be to use
tanh in the output neuron, and then remap the outputs to valid probabilities).

Conventionally, a network contains a bias neuron, which is connected to every non-input node in the
network. The bias neuron always emits a constant value (e.g., 1), and allows a horizontal shift in the
activation functions of individual neurons. However, as explained in Section 3.1.2, we strive to obtain
a symmetric model, i.e., one that would give the same prediction if the players were labelled in reverse.
By excluding the bias neuron, we are ensuring that the network is unable to give an unfair advantage
to either player. In other words, if all input features are zero (the players are expected to have identical
performance), the network output (the probability of Player 1 winning) is guaranteed to be exactly 0.5,
regardless of the weights assigned by backpropagation. Furthermore, the exclusion of bias reduces the
complexity of the network and thus helps prevent overfitting.

Figure 5.4: ANN architecture

...

...

ACES

DF

WSP

FATIGUE

H1

Hn

P (Player 1 win)

Input layer
(20 nodes)

Hidden layer
(tanh activation)

Output layer
(logistic activation)

5.3.2 Model optimisation

We adopt the same approach to hyperparameter optimisation as for logistic regression: at each step,
we optimise a single parameter (based on its performance on the validation set) and then re-run the
analysis for the remaining parameters. This iterative process is more difficult this time, since the hyper-
parameters have stronger dependencies. For example, changing the learning rate requires re-calibrating
regularisation, momentum, etc.

Number of hidden nodes

The number of hidden nodes affects the generalisation ability of a network. A network with a high number
of hidden nodes has higher variance, and is therefore more likely to overfit to the training data. Too few
hidden nodes, on the other hand, can result in high bias. There are various heuristics for selecting the
number of hidden nodes, based on the number of training examples and the number of input / output
nodes. Different sources advocate different “rules of thumb”, and there seems to be little consensus in
the matter. Sarle [21] claims that these rules are “non-sense”, since they ignore the amount of noise in
the data and the complexity of the function being trained. They also do not take into consideration the
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amount of regularisation and whether early stopping is used. Sarle suggests that in most situations, the
only way determine the optimal number of hidden units is by training several networks and comparing
their generalisation errors.

Figure 5.5: ROI and logistic loss for different numbers of nodes in hidden layer
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As shown in Figure 5.5, the profit is highly variable for networks of different sizes, oscillating between
8% and 10% when betting with Strategy 3. However, the logistic loss seems to improve with the number
of nodes, especially when the number of nodes is less than 50. There does not seem to any significant
benefit of having more than 100 nodes, and since it is in our interest to keep the network as small as
possible (to reduce variance and training time), we fix the value of this parameter at 100.

Learning rate

The learning rate parameter determines the extent to which the current training set error affects the
weights in the network at each training epoch. A higher learning rate results in faster convergence,
but due to the coarser granularity of the weight updates, it may prevent the learning algorithm from
converging to the optimal value. We can illustrate this by plotting learning curves for different learning
rates, which show the evolution of the training and validation set errors during the training process
(Figure 5.6). A learning rate of 0.0001 takes more than three times as long to converge as a learning rate
of 0.0004. Also, the error on the validation set, as measured by logistic loss, actually slightly decreases
from 0.5798 from 0.5795 when 0.0004 is used. A further increase in the learning rate (to 0.0008) results
in a less significant improvement in training time and an increase in logistic loss. Therefore, we select
0.0004 as the learning rate.

Figure 5.6: Learning curves for different learning rates
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The learning rate does not need to remain constant during training. An adaptive learning rate can
change during training so as to take smaller steps when converging to a value. One such approach is
learning rate decay, which exponentially shrinks the learning rate during training. Although we have
not attempted to incorporate adaptive learning rates into the model (to minimise the hyperparameter
search space), this is a possible future improvement of the model.

Regularisation

Regularisation in neural networks can be achieved through weight decay, the exponential shrinkage of
weights during training. For example, a weight decay parameter of 0.01 means that that the updated
weights are shrunk by one percent during each training epoch. This prevents weights from becoming
very large, which helps avoid overfitting. The approach is analogous to the C parameter in logistic
regression.

Figure 5.7: ROI and logistic loss for varying weight decay
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In Figure 5.7, we can see that the error on the validation set grows with increased regularisation. This
means that the decay of weights prevents the predictor for modelling relationships in the dataset as
accurately. However, we can also see a clear upward trend in the return on investment. As we increase
the weight decay from 0.002 to 0.02, the ROI grows by over 3%. Further analysis shows that the
trend continues even for unreasonably large values of weight decay: stronger regularisation results in
higher profits, despite greater logistic loss. This counter-intuitive phenomenon can be explained as
follows: strong regularisation forces the weights in the network to be smaller and therefore the predicted
probabilities are more moderate (i.e., closer to 0.5). As a result, bets are only placed on matches with
a greater mis-pricing of the odds, resulting in greater profits. Notice that Strategy 1 (betting on the
predicted winner) is unaffected by the magnitude of the probability values and thus remains constant with
stronger regularisation. This graph would suggest maximising regularisation to achieve the maximum
returns. However, stronger regularisation also reduces the number of bets placed by Strategies 2 and 3,
and the amount wagered by Strategy 3. If an investor re-invests their profits into subsequent matches,
a higher frequency of bets results in exponentially higher returns. This notion of compounding is not
measurable by ROI, which assumes a fixed bet size, regardless of change in the investor’s bankroll.

Our goal is to predict the most accurate probabilities for the outcomes of matches. In this situation,
optimising for the greatest ROI degrades the quality of the predictions. We aim to obtain a distribution
of predicted probabilites that is similar to the distribution of true probabilities. Figure 5.8 shows that
increasing the regularisation makes the distribution of predicted probabilities narrower. If we approxi-
mate the true probability distribution by the distribution of probabilities implied by betting odds, we
see that it has a larger standard deviation than any of our predicted probability distributions. To obtain
the most realistic probability estimates, we should therefore minimise the weight decay. We find that a
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weight decay of less than 0.002 results in very inconsistent behaviour. Therefore, we choose 0.002 as the
value for the weight decay parameter.

Figure 5.8: Distributions of predicted probabilities for varying weight decay
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Bagging

The training process of a neural network begins with randomly initialised weights. Therefore, the same
training dataset can produce networks with very different weights and thus different levels of performance.
We wish to reduce this variability to ensure that the model performs well on the test set. Bootstrap
aggregating (also known as bagging) is an approach for stabilising the performance of machine learning
models by combining multiple versions of a predictor into a single aggregate predictor. First, we generate
n bootstrap datasets from the original training dataset by sampling from the dataset uniformly and with
replacement. Each bootstrap dataset has the same number of examples as the original, but only about
1− 1

e of the examples are expected to be unique, with the rest being duplicates. We then train a different
neural network using each bootstrap dataset. To predict the outcome of a match, we take the mean of
the predictions of the n neural networks. Breiman [4] showed that bagging can provide significant gains
in accuracy, especially when the underlying predictor is unstable.

Figure 5.9: ROI and logistic loss for different numbers of bootstrap datasets
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It remains to decide the number of bootstrap datasets (n). Breiman used 25 datasets in his experiments,
and most of the improvement in prediction accuracy was gained from only 10 datasets. By evaluating
the performance of models with different numbers of bootrap datasets (Figure 5.9), we find that there is
a significant improvement in performance when the number of bags is increased from 1 to 8. However,
adding more than 10 bootstrap datasets appears to make little difference. Nevertheless, we expect the
predictions to be more stable with a larger number of predictors, so we can train as many as possible,
considering a reasonable amount of compute resources is used. In the evaluation, we train 20 individual
predictors.

Other Parameters

We use the online learning variation of backpropagation, which updates weights immediately after being
presented each training example. The alternative is batch learning, which only updates weights at the end
of each epoch, having seen all training examples. In theory, batch learning should result in more accurate
adjustments to weight, at the expense of longer training times. However, Wilson and Martinez [23] argue
that this is a “widely held myth” in the neural network community, and that convergence can be reached
significantly faster with online learning, with no apparent difference in accuracy. An investigation into
batch learning could be conducted in the future.

Momentum can be added to the learning process to avoid local minima and, according to LeCun [14],
speed up convergence. When momentum is used, a fraction of the previous weight update is incorporated
in the current update during training. In this way, we avoid large fluctuations in the directions of
weight updates. Although momentum did not have a significant impact on the prediction accuracy, we
empirically found that a momentum coefficient of 0.55 resulted in much faster convergence.

It is necessary to define the stopping criteria for training. We use a common technique called early
stopping [20], which uses a validation set to detect when overfitting begins to occur. Note that we do
not use our validation set (years 2010-2011) for this purpose, but instead split the training set into two
portions, one for training and one for early stopping. We conclude the training process when the error
on the validation set does not achieve a new minimum for 10 consecutive epochs.
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Chapter 6

Implementation Overview

6.1 Data Flow

The first step in the implementation of a machine learning predictor for tennis match outcomes is the
generation of the dataset. As discussed in Section 2.2, we obtain raw historical tennis data from the
OnCourt system. SQL queries are run against the OnCourt MySQL database to retrieve all information
necessary for feature extraction. Next, we process the data to generate the dataset, as described in
Chapter 3. The generated dataset is persisted as a CSV (comma-separated values) file.

Each machine learning algorithm reads the dataset file prior to training. The dataset is divided as
described in Section 4.1, and the model is first trained and then tested on separate parts of the dataset.
Finally, the results of the evaluation are also saved in a file.

Figure 6.1: Data flow diagram

6.2 Technologies

All data processing components of the system were implemented in the Python1 programming language.
Python has several packages for scientific computing which have made the implementation succinct and
efficient, in particularNumPy2 andPandas3. These two libraries provide a clean interface to in-memory
manipulation of large datasets.

For logistic regression, we use the machine learning library scikit-learn4. This library also provides
useful utility functions for machine learning, such as grid search. However, it does not have an imple-
mentation for artificial neural networks. For this purpose, we utilise PyBrain5, the library recommended
by scikit-learn. Both machine learning libraries are Python-based.

1http://www.python.org/
2http://www.numpy.org/
3http://pandas.pydata.org/
4http://scikit-learn.org/
5http://pybrain.org/
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The data processing is done in an Ubuntu virtual machine hosted on the private cloud6 of the Department
of Computing at Imperial College. The VM has 8×3 GHz processors and 16 GB RAM. The entire system
runs inside a Docker7 container, for portability between VMs. Git8 is used for version control.

6.3 Efficiency

We have no requirements for the efficiency of the system, provided that a prediction can be generated in
time for an upcoming match with a reasonable amount of resources (compute power / memory).

The most demanding part of the data flow (by a large margin) is the generation of the dataset, which
takes over 10 hours. The long processing time can be attributed to the common opponent feature
extraction approach, which requires assessing the performance of both players in every match relative to
all their common opponents. However, once generated, adding additional data points (i.e., new completed
matches) is a matter of minutes, as is the training of a predictor. Therefore, the current architecture of
the system is efficient enough to allow for betting on upcoming matches.

6http://www.doc.ic.ac.uk/csg/services/cloud
7http://www.docker.com/
8http://git-scm.com/
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Chapter 7

Evaluation

7.1 Evaluation Method

Having trained different machine learning based models for the prediction of tennis matches, we now
compare how they perform on unseen data. As described in Section 4.1, we have split our dataset into
three divisions: training, validation, and test. We draw attention to the fact that the test data has not
been used for any purpose before this point, and is therefore a valid approximation for new, upcoming
matches.

Throughout the evaluation, as during the optimisation of the models, we only consider the models’
performance on the least uncertain 50% of the matches. This gives us a more representative quantification
of a model’s performance, since the result is less affected by poor predictions caused by a lack of data.
In reality, we would only bet on the matches whose features are based on a sufficient amount of data, so
it makes sense to evaluate the performance of the models with respect to these matches.

We use odds from the bookmaker Pinnacle1 for all ROI calculations. According to comparisons of
different bookmakers2, Pinnacle offers the best payout on almost all events, so the odds will give us a
realistic ROI estimate. After removing 50% of the matches based on uncertainty, our test set contains
6315 ATP matches with Pinnacle odds, played during the years 2013-2014.

We use Knottenbelt’s Common-Opponent model [13] as the benchmark for comparison (see Section 2.4.4).
The stochastic model represents the current state-of-the-art in tennis modelling, and it is our ambition
to improve upon its performance.

7.2 Results

7.2.1 ROI and Logistic Loss

Figure 7.1 shows the return on investment when betting on the matches in the test set using different
betting strategies (the three strategies are detailed in Section 2.3.2). All strategies are profitable for all
models. Strategy 3, which bets on the predicted winner according to the Kelly criterion, has the best
performance. Furthermore, all three machine learning models are considerably more profitable than
the benchmark when this strategy is used, improving the ROI by about 75%. Interestingly, although
their performance is very similar when using Strategy 3, the basic logistic regression model performs
much better than the other ML models for the remaining strategies. This could be due to the subset of
selected features used in this model, which differs from the others.

During hyperparameter optimisation, we noticed that the ROI was a very unstable evaluation metric
(small changes in parameter configurations would result in large changes in ROI). For this reason, we also
compare the prediction error of the different models (measured by logistic loss), which is less volatile.

1http://www.pinnaclesports.com/
2http://www.oddsportal.com/odds-quality/
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Figure 7.1: Percentage return on investment on test set for different betting strategies
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Figure 7.2 shows the error on both the validation and test sets for all models. As expected, the error
is greater on the test set than on the validation set for the ML models, since their hyperparameters
were optimised to achieve the best performance on the validation set, resulting in some overfitting. The
model most prone to overfitting appears to be the logistic regression model with interaction features.
The model had a much lower error on the validation set than the other models, but its performance on
the test set is very similar to that of the basic logistic regression model. This overfitting is most likely
a result of the feature selection process. Only 18 of 173 features were selected, based on the validation
set. With the high dimensionality of the feature space, it is possible that some of these features have no
true correspondence with match outcomes.

It is interesting to note that the error also increases for the Common-Opponent model. Since no op-
timisation was conducted for the Common-Opponent model using the validation set, we would expect
it to perform just as well on both sets of data. The increased error of this model for matches played
in the years 2013-2014 suggests that these matches might have simply been more difficult to predict
(based on historical statistics) than those in the years 2011-2012. Perhaps players are becoming ever
more inconsistent.

Figure 7.2: Logistic loss on the validation and test sets
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If we consider the test set error in Figure 7.2, we see that for the ML models, the error slightly decreases
with increased complexity. In other words, the ANN-based model, which can express the most complex
relationships between the input features, also has the lowest test error (and the highest ROI). Due
to the immense number of training examples, we can decrease the bias of a machine learning tennis
predictor without a significant increase in variance. This suggests that further improvement could be
achieved by an even greater increase in the model’s complexity (e.g., by constructing additional relevant
features).
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7.2.2 Betting Volume

A limitation of ROI as an evaluation metric is its ignorance of the betting volume for different models. A
model that bets only on 10 matches in the test set and has an ROI of 10% is clearly inferior to a model
that bets on 20% of the matches and offers the same ROI. All three betting strategies use a fixed-size
maximum bet. However, in practice, this bet limit can be adjusted according to the current size of a
bettor’s bankroll. In this way, the returns from previous matches can be re-invested into (larger) bets
on future matches. A model which generates predictions that result in larger or more frequent bets
will provide exponentially higher returns. It is therefore important to also compare this aspect of the
models.

Table 7.1: Betting volume (based on Strategy 3)

Model Bets placed Investment Return Net profit

Logistic regression 3181 709.53 739.12 29.59
Logistic reg. (interaction features) 3140 670.69 698.08 27.39
Artificial neural network 3183 695.60 725.85 30.26
Common-opponent 2515 489.10 500.84 11.75

Table 7.1 shows that the models based on machine learning place a significantly larger number of bets
when betting with Strategy 3 (the most profitable strategy for all four models). For example, the ANN
bets on over 50% of the 6315 matches we are considering, while the benchmark bets on less than 40%.
Furthermore, the amount invested is increased by about 43% when the ANN model is used. The ML
models are considerably more effective at finding opportunities for placing bets, despite using the same
betting strategy as the Common-Opponent model.

Why does the Common-Opponent model place fewer bets? Figure 7.3 reveals that the distribution of
predicted probabilities for the Common-Opponent model has a much smaller standard deviation than
the distributions of the other models (0.16% versus 0.20%, respectively). In other words, the stochastic
model tends to assign less extreme probabilities to match outcomes. The betting strategy only places
a bet if the predicted probability of a player winning a match is greater than the implied probability.
Clearly, with lower probabilities, there will be fewer such cases. It may be possible to correct this
systematic error in the Common-Opponent model (we have set all parameter values to those given in the
publication). However, even if the Common-Opponent model had a wider distribution, we would still
expect better performance from the ML models. All three ML models offer significantly higher returns
even when Strategy 1 is used for betting (see Figure 7.1), and this strategy is unaffected by the standard
deviation of the probability distribution.

Figure 7.3: Predicted probability distributions for different models
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7.2.3 Simulation

To demonstrate the profitability of the machine learning models, we can simulate the evolution of a
bankroll (starting at £100) over the duration of the test set. At any point, we fix the maximum size
of a bet to be 10% of the current bankroll, thereby compounding our profits from previous matches.
Figure 7.4 shows the average bankroll for each month during this period. Firstly, although the Common-
Opponent model is profitable in 2013, it is in fact loss-making in 2014, and completes the simulation with
a bankroll of £58.41, which is lower than the initial one. On the other hand, all ML-based approaches
make a significant profit. In particular, if bets are placed using predictions of the ANN model, we
finish with a bankroll of £1051.55. This translates to a stunning average annual increase of 224% in the
bankroll. However, the simulation also shows that the returns are very volatile. For example, May 2014
saw a large fall in the bankroll for all three ML models. Given our “edge” in the predictions, the profits
should converge to exponential gains in the long term, but due to the large volatility, it is not possible
to guarantee a return in the short term.

Figure 7.4: Monthly average bankroll during the years 2013-2014 (Strategy 3)
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7.3 Tennis Insights

7.3.1 Relative Importance of Different Historical Matches

Our dataset was generated using all three feature extraction techniques described in Chapter 3: common
opponents, surface weighting and time discounting. The effect of time discounting is controlled as a
model hyperparameter, for which the optimal value was found to be 0.8 (Figure 4.5). This value is
revealing of the effect of time on player performance. For example, matches that a player participated
in three years ago are about half as relevant as ones played this year (0.83 = 0.512).

We can fix the time discount factor at its optimal value and assess the performance of the model for
different configurations of the other techniques. Figure 7.5 shows that the best results are achieved when
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both common opponents and surface weighting by correlation are used together, as we have done. When
no distinction is made between surfaces and averages are computed across all past matches, the logistic
regression predictor has very poor performance, making a loss of over 6%. Interestingly, without common
opponents, splitting by surface is more profitable than weighting by surface correlation. However, when
combined with common opponents, splitting by surface performs worse. This is most likely because it
results in very few matches being available for computing averages. For example, if a match is played
on grass, it is entirely possible that the players have no (reasonably recent) common opponents on this
surface. From these results, we can claim that a player’s performance is heavily dependent on the surface,
and a model is likely to have significantly better accuracy when the surface is taken into account.

Figure 7.5: Evaluation of feature extraction techniques (logistic regression)

C, S C, W C S W None
Feature extraction technique

−8

−6

−4

−2

0

2

4

6

R
O
I
(%

)

ROI - Strategy 1
ROI - Strategy 2
ROI - Strategy 3

C− Common opponents
S− Split by surface

W − Weight by surface correlations

7.3.2 Relative Importance of Different Features

As part of our investigation into tennis prediction with machine learning, we hoped to get an insight into
the relevance of different features. By inspecting the weights assigned by logistic regression (Figure 4.3),
we see that the single most important feature is SERVEADV, the difference in the players’ advantage
on serve. In fact, this is also the first feature to be chosen during feature selection using the forward
selection algorithm. The importance of this feature is unsurprising, since it considers the most important
qualities of the two players: their serve and return strengths. The weights in the logistic regression model
also show that many of the features we constructed – DIRECT, FATIGUE, RETIRED and COMPLETE
– affect the outcome of the match. The head-to-head balance of the players, modelled by the DIRECT
feature, seems particularly important, and is not considered by the stochastic Common-Opponent model.
For the author, it comes as a surprise that the ACES feature has a very high weight in both logistic
regression models. This shows that powerful serves are essential to winning matches.

Unfortunately, the higher-order models give us little insight into the relative importance of different
features. The limitations of such “black boxes” are discussed in the next section.
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7.4 Limitations

7.4.1 Black Box Models

The stochastic tennis models use a single statistic about each of the two players in a tennis match
to predict the match outcome: the probability of winning a point on their serve. Furthermore, the
prediction is a result of the application of a set of well-understood mathematical formulas. For these
reasons, it is possible to understand the decisions of the model. On the other hand, our machine learning
approaches have a “black box” nature. The probability estimates of the ML models are difficult to justify,
increasingly more so with higher model complexity. While the weights in a logistic regression model give
us an intuition for the effects of different features, the predictions of the higher order models have to be
blindly accepted.

7.4.2 In-play Prediction

Tennis betting expert Peter Webb claims that over 80% of the overall money wagered on tennis matches
is bet in-play, i.e., during the course of the match.3 The stochastic models can predict the match
outcome probability from any starting score, allowing for in-play betting. Our ML models are not
currently capable of adjusting a prediction according to the progression of the match. We could attempt
to encode the current score as a match feature, but we doubt that this could compete with the structured
hierarchical approaches.

7.4.3 Data Collection

As more features are added to the dataset, we will require multiple data sources, as not all information of
interest is contained in the OnCourt database. It will most likely be necessary to scrape some information
from tennis websites. This process is error-prone, and a substantial amount of resources must be invested
to monitor the accuracy and consistency of the data. The stochastic models only require basic statistics,
so the management of the dataset is much simpler.

3http://www.sportspromedia.com/guest_blog/peter_webb_why_tennis_is_big_business_for_bookmakers
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Chapter 8

Conclusion

8.1 Innovation

Extensive research has been conducted into the prediction of tennis matches. Due to the hierarchical
nature of the scoring system in tennis, most tennis prediction models are based on Markov chains. In this
project, we explored the application of machine learning methods to this problem. All of our proposed
ML models significantly outperform the current state-of-the-art stochastic models. In particular, the
model based on artificial neural networks generated a return on investment of 4.4% when betting on
6315 ATP matches in 2013-2014, almost doubling the 2.4% ROI of the Common-Opponent model during
the same period.

We have developed a novel method of extracting tennis match features from raw historical data. By
finding player performance averages relative to a set of common opponents and by weighting historical
matches by surface correlations and time discounting coefficients, we obtain features that more accurately
model the differences in the expected performance of two players. Furthermore, we have constructed
new features representing additional aspects of their form, such as fatigue accumulated from previous
matches.

Two model evaluation metrics were used throughout the project: return on investment (ROI) and logistic
loss. Although the ROI has a practical meaning, we warn against its use during model optimisation.
We find that models tuned to generate a high ROI do not generalise well, and an error metric such as
logistic loss should be used instead. Additionally, our results show that a betting strategy based on the
Kelly criterion is consistently more profitable than more basic strategies for both the ML models and
the Common-Opponent model.

Our method of weighting historical matches during feature extraction and our selection of the most
relevant features could be used to refine the existing stochastic models. More generally, our investigation
provides insights into ML-based modelling that are useful across a wide variety of sports, many of which
have a similar dataset. Machine learning can model sports without a highly-structured scoring system,
which is a necessity for hierarchical approaches based on Markov chains. Also, the proposed models may
easily be extended with additional features, and may be altered to predict other aspects of the match
(e.g., number of games in the match).

Due the profitability of the proposed models on the betting market, they offer potentially lucrative
financial opportunities. It is not difficult to envision a fully-automatic bet-placing system, with a neural
network at its core. Although the project is of an academic nature, it’s practical applicability in sports
betting is a powerful testament to its success.
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8.2 Future Work

8.2.1 Additional Features

A majority of the features we constructed – such as player completeness, advantage on serve and pre-
match fatigue – were shown to be influential in the predictions generated by our models. Professional
bettors suggest additional factors to consider, such as motivation and home bias. Also, all of our features
represent qualities of the players, not the conditions of the match. For example, the weather conditions
(temperature, wind) may favour a particular playing style. Adding match-specific features may further
reduce model bias.

8.2.2 Women’s Tennis

We limited the scope of our investigation to ATP matches, due to a greater availability of betting odds
for these matches in our dataset. Nonetheless, all our code is generic enough to accommodate predictions
for WTA matches. However, as different features may be relevant for women, supporting women’s tennis
will require re-calibrating and re-evaluating the machine learning models.

8.2.3 Other ML Algorithms

We focused our efforts on two machine learning algorithms: logistic regression and artificial neural
networks. Other approaches may produce better results. In particular, support vector machines
(SVMs) often have greater accuracy than neural networks, at the expense of longer training times (see
Section 2.5.4). We favoured ANNs as they are a natural extension of logistic regression and therefore
likely to work well with the same features, but SVMs are certainly worth exploring. It is important to
note that SVMs will require a calibration step to predict good probabilities, while this is not necessary for
logistic regression or neural networks [17]. In addition, Bayesian networks, which model dependencies
between different variables, could be used to predict match outcomes.

8.2.4 Set-by-Set Analysis

As demonstrated by Madurska [16], a set-by-set approach to tennis match prediction can be more ac-
curate, as it allows the model to capture the change in a player’s performance over the course of the
match. For example, different players fatigue during a match in different ways. Although the OnCourt
data does not include set-by-set statistics, these are partially available online (flashscore.com). The
machine learning approach could be adapted to predict the outcome of a set, based on the result of the
preceding set. This would allow for different values of features to be used for the prediction of different
sets (e.g., a different in-match fatigue score).

8.2.5 Hybrid Model

Each model performs differently under different conditions. Machine learning could further be used to
build a hybrid model, combining the output of many models. Essentially, the predictions of other models
could be separate features, and the model could be trained to understand the strengths and weaknesses of
each. For example, the predictions of our model could be combined with the Common-Opponent model,
using the characteristics of the match to weight the relative influence of the two predictions.
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Appendix A

Additional Figures

Figure A.1: Learning curves for ANN
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The figure shows the errors (R2) on the training and validation sets at each training
epoch of an artificial neural network, using the final hyperparameter configuration.
The training stops when there is no improvement in the validation set error for 10
consecutive epochs, and in this case, 140 total epochs were necessary. Notice that
the errors on the two sets move more or less in tandem, and the margin between then
does not increase as training progresses. This is in partly due to the large amount of
training data, and also due to regularisation (which prevents overfitting). The effect
of regularisation can also be seen between epochs 100 and 140, where the training set
error slightly grows due to the shrinkage of weights, while the error on the validation
set improves.
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Figure A.2: Return on investment across different uncertainty levels
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The diagram shows the percentage return on investment for different groups of
matches in the test set, when ordered by uncertainty. Note that we only evalu-
ate the models with respect to their performance on the most certain 50% of the
matches (we ignore the transparent columns). Also, the Common-Opponent model
assigns uncertainty in a different manner (using only the number of common oppo-
nents), so a match present in some bucket in the Common-Opponent model could be
present in another bucket in the other models.
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Appendix B

Model Parameter Summary

For reproducibility of our results, we include a summary of all parameters used in the different models.
See the sections on hyperparameter optimisation in the body of the report for justification.

Table B.1: Common Parameters

Parameter Value

Time discount factor 0.8
Percentage of most uncertain matches removed prior to training 80%

Table B.2: Logistic Regression

Parameter Value

Regularisation parameter C 0.2

Features SERVEADV, DIRECT, FATIGUE, ACES, TPW, DF,
BP, RETIRED, COMPLETE, NA, W1SP, A1S

Table B.3: Logistic Regression With Interaction Features

Parameter Value

Regularisation parameter C 0.1

Features

TPW_WSP, TMW_A2S, W2SP_DIRECT,
TPW_A2S, WRP_BP, DF_WSP, DF_BP,

NA_DIRECT, TPW_UE, BP_UE, BP_A2S,
NA_SERVEADV, ACES_W2SP, RETIRED,

ACES, TPW_FATIGUE, WRP_NA, ACES_UE

Table B.4: Artificial Neural Network

Parameter Value

Hidden neurons 100
Learning process Online
Learning rate 0.0004
Weight decay 0.002
Momentum 0.55
Stopping criteria No improvement in 10 epochs
Features All features in Table 3.2 except for POINTS and RANK
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