
by Jon Bentley 

programming 
pearls 

A SPELLING CHECKER 

Spelling mistakes irritate readers. And for most writers, 
checking spelling is a boring and error-prone job. Fortu- 
nately, the problem is ideally suited for computers: 
dull, repetitive work that requires fast reading and a 
good memory. 

In this column we’ll study the design of the Unix’ 
spelling checker spell. It’s a beautiful and useful pro- 
gram, with a history rich in important lessons about 
program development. 

A Simple Program 
Steve Johnson wrote the first version of spell in an 
afternoon in 1!375. His straightforward approach is 
shown in Figure 1: isolate the words in a document, 
sort them, and then compare the sorted list with the 
dictionary. The output is a list of all words in the docu- 
ment that aren’t in the dictionary. 

Kernighan and Plauger reconstruct Johnson’s pro- 
gram on page ~33 of their Softzoare Tools in Pascal. Their 
pipeline of programs is paraphrased in Program 1. The 
vertical bar connects the output of one program with 
the input to the next program. The input to the first 
program is f i:tename, and the output of the last pro- 
gram is the lisl of (potentially) misspelled words. 

The first program in the pipeline, prepare, deals 
with the fact that many computerized documents con- 
tain formatting commands. To print a word in a bold- 
face font, for instance, one might type @b ( boldface ) 
or \f Bboldf ace\f R. A spelling checker must ignore 
such commands: the poor user who wades through mis- 
spellings like b and fbboldface is too exhausted to notice 
real errors. pr spare copies its input to its output, with 
formatting commands removed. 

translit transliterates its input to its output, sub- 
stituting certain characters. Its first invocation in the 
pipeline changes upper case letters to lower case. The 
next invocation removes all nonalphabetic characters 

’ Unix is a trademarlc of AT&T Bell Laboratories. 
- 
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by mapping them into the newline character, @n. The 
result is a file that contains the words of the document 
in the order they appear, with at most one word per 
line. 

The next program sorts the words into alphabetic 
order, and unique removes multiple occurrences. The 
result is a sorted list of the distinct words in the docu- 
ment. common, with the cryptic -2 option, uses a stan- 
dard merge algorithm to report all lines in its (sorted) 
input that are not in the (sorted) named file, and the 
output is the desired list of spelling errors. 

In an afternoon Johnson assembled five existing pro- 
grams and an online dictionary to make a new tool. His 
program was far from perfect, but it demonstrated the 
feasibility of a spelling checker and gained a loyal fol- 
lowing of users. Changes to the program over the next 
several months were minor modifications to this struc- 
ture: a complete redesign would wait for several years. 

The Design Space 
Before moving on to the next version of spell, let’s 
survey the options available to the designer. We’ll first 
examine the program’s external appearance (the prob- 
lem specification seen by the user), and then turn to its 
internal structure. 

When hunting for bogus .words, it can be helpful to 
know their source: bad spelling or bad typing. Poor 
spellers often write offun, good spellers occasionally 
write occaisionally, and we all make typnig mistakes. 
The design of a program may reflect the errors its users 
make most frequently. 

There are two mistakes a spelling program can make, 
and both compromise its usefulness. Failing to flag an 
illegal word is an obvious problem. And if a program 
reports too many valid words as errors, the user may be 
unwilling to search through the mud to find the pay 
dirt. All spelling programs make mistakes-whether to 
report too few or too many suspicious words is a design 
choice. 
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FIGURE 1. A Simple Spelling Checker 
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prepare filename 1 # remove formatting commands 
translit A-Z a-z 1 # map upper to lower case 

translit *a--z @n ( # remove punctuation 
sort ) # put words in alphabetical order 

unique 1 # remove duplicate words 
common -2 diet # report words not in dictionary 

PROGRAM 1. Code for the Simple Checker 

The program should check words for spelling, but 
what exactly is a word? Johnson’s checker recognized 
the importance of removing formatting commands. It 
ignored distinctions between upper and lower case, and 
therefore correctly looked up The as the. Some case 
problems are more subtle: DEC is the name of a com- 
puter company and Dee is a month, but dec is an error 
(unless, of course, it is an abbreviation for Decimal). 
Other subtleties about words include numbers, hy- 
phens, and apostrophes (consider VAX-11/780’ and 
his’s). A prototype can be sloppy about these fine 
points, but a production program should be more 
careful. 

And what about the dictionary itself’? A program 
should recognize some words not in a regular diction- 
ary, such as IBM and VLSI (but not vlsi). But bigger isn’t 
always better--the dictionary may know that a cere is 
near a bird’s bill, but in one of my files, it is more likely 
a misspelling of care. An affix is a prefix like pre- or a 
suffix like -ly; most dictionaries leave affix analysis to 
the reader. Although a spelling checker may in good 
conscience report antidisestablishmentarianism as a mis- 
take, I would be miffed to wade through a long list of 
misspellings like cats and replay when cat and play were 
in the dictionary. Johnson modified his program to han- 
dle the common -s and -ed endings, but a production 

a VAX is a Trademark of Digital Equipment Corporation. 
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spelling checker must do a more thorough affix 
analysis. 

Perhaps the most debated problem in specifying a 
spelling program is what it should do when it finds an 
error. Johnson’s simple checker produces a list of mis- 
spelled words. At the other extreme, interactive spell- 
ing correctors show the user a misspelled word in its 
context and ask whether to leave the word unchanged, 
change this occurrence to a suggested word, change this 
and all future occurrences to the suggested word, edit 
this word and change all future occurrences to the ed- 
ited version, and so on and so on. 

Some people say they couldn’t live without a fancy 
spelling corrector-poor spellers seem to find its advice 
especially valuable. My personal taste, as a fairly good 
speller, runs toward a simple checker. I now routinely 
use spell on all documents; I rarely used the fancy 
corrector on a previous system because it took several 
minutes for me to relearn its command language each 
time I tried it. Its advice was often more irritating (or 
amusing) than helpful-it once suggested that J. W. 
Tukey’s last name be corrected to “Turkey.” Addition- 
ally, a corrector is usually more difficult to build and to 
maintain than a checker. 

Turning from specification to implementation, there 
are two canonical structures for spelling programs. 
Johnson’s batch checker used the structure on the left 
of Figure 2; the online program on the right looks up 

FIGURE 2. Two Structures for a Spelling Program 
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each word as it is encountered. A spelling checker may 
use either structure, but an interactive corrector is usu- 
ally restricted to be online. Similarly, a random-access 
dictionary may be used by either structure, but a se- 
quential dictionary is only suitable for a batch program. 

There is a tradeoff between the sophistication of affix 
analysis and dictionary size. A simple program that 
does no affix analysis requires a huge dictionary, in- 
cluding test, tests, tested, tester, testing, retest, pretest, etc. 
Sophisticated .affix schemes store the stem test and an 
encoding of its valid affixes. 

There are many possible ways to store the dictionary 
itself. If it fits in main memory, it could be represented 
by a hash table, a binary search tree, or perhaps a “trie” 
that exploits the fact that a word is a sequence of char- 
acters. If the dictionary must reside on disk, then a 
B-tree or disk hash table is more suitable. 

The best implementation of the dictionary depends 
on several factors. A simple data structure will ease 
development and maintenance, but a back-of-the-enve- 
lope calculation shows that performance may be crucial 
in this application. Suppose that a disk-based scheme 
looks up a word in two disk reads of fifty milliseconds 
each. The program processes ten words per second, so a 
document of 4.000 words (the average size of these col- 
umns) requires six long minutes. The program we’ll 
soon study does the job in half a minute.3 A spelling 
corrector referenced under Further Reading sometimes 
makes as many as 200 disk accesses to correct a single 
misspelled word, which translates to ten seconds and 
an annoying wait in a real-time program. 

The outline in Figure 3 summarizes our considera- 
tions of the design space. It is intended more as a pro- 
grammer’s sketch than a formal taxonomy. Problem 4 
mentions approaches to spelling programs that are out- 
side this space. 

A Subtle Program 
In this section we’ll study the spell program that 
Doug McIlroy wrote in 1978. Its user interface is the 
same as Johnson’s: typing spell filename produces 
a list of the misspelled words in the file. The two ad- 
vantages of thi.3 program over Johnson’s are a superior 
word list and reduced run time. I’m an enthusiastic 
user: the program is simple to use, and it quickly re- 
ports all my m:isspellings and very few words that 
aren’t in error. My dictionary defines a pearl as some- 
thing “very choice or precious”; this program qualifies. 

The first problem Mcllroy faced was assembling the 
word list; to appreciate some of the subtleties of the 
task, see the sidebar on page 460. He started by inter- 
secting an unabridged dictionary (for validity) with the 
million-word Brown University corpus (for currency). 

‘Anecdotal evidence that performance matters: After writing this paragraph I 
ran Mcllroy’s spell on the two-thousand-word draft, and twenty seconds 
later the error list reported the words mo~~agraph. texffile, and filename. I fixed 
Ihe spelling error, and changed several occurrences of fexffile to filename for 
consistency. That was high return on a twenty second investment; I probably 
wouldn’t have run the program if it cost three minutes. 

REQUIREMENTS - The Customer’s View 
Typical user 

Source of errors: bad spelling or sloppy typing 
Response to errors: good spellers need only notification 

of their mistakes, bad spellers appreciate more assistance: 
Development resources 

How much programmer time is available’? 
Application resources 

Time and space requirements of the final code 

SPECIFICATION -The User’s View 
Word definition 

Fine points include formatting commands, upper vs. lower 
case distinction, and embedded numbers and punctuation 

The word list 
Explicit words: stored in the list 
Implicit words: present by affix analysis 

Response to errors 
Checkers report errors, correctors fix them 

IMPLEMENTATION -The Programmer’s View 
Program structure 

Batch programs sort the words to remove duplicates 
Online programs check each word as it occurs 

Word list implementation 
Tradeoffs between affix analysis. dictionary size. 

and quality of answers 
Dictionary specification 

Are words accessed in sorted order or random order? 
Dictionary implementation 

Primary memory: hashing, search trees. search tries 
Secondary memory: B-trees, hashing 
Combinations represent common words in primary memory 

and rarer words on secondarv mem~rv 

FIGURE 3. The Design SpeCa of Spelling PrOgrams 

That was a reasonable beginning, but there was much 
work left to do. 

McIlroy’s approach is illustrated in his quest for 
proper nouns, which are omitted from most dictionar- 
ies. First came people: the 1,000 most common last * 
names in a large telephone directory, a list of boys’ and 
girls’ names, famous names (like Dijkstra and Nixon), 
and mythological names from an index to Bulfinch. 
After observing “misspellings” like Xerox and Texaco, he 
added the companies on the Fortune 500 list. Publish- 
ing companies are rampant in bibliographies, so they’re 
in. Next came geography: the nations and their capitals, 
the states and theirs, the hundred largest cities in the 
United States and the world, and don’t forget oceans, 
planets, and stars. 

He also added common names of animals and plants, 
and terms from chemistry, anatomy, and (for local con- 
sumption) computing. But he was careful not to add too 
much: he kept out valid words that tend to be real-life 
misspellings (like the geological term cwm) and in- 
cluded only one of several alternative spellings (hence 
traveling but not travelling). 

McIlroy’s trick was to examine spell’s output on 
real runs; for some time, it automatically mailed a copy 
of the output to him. When he spotted a problem, he 
would apply the broadest possible solution. The result 
is a fine list of 75,000 words: it includes most of the 
words I use in my files, yet still finds my spelling 
errors. 

458 Communications of the ACM May 1985 Volume 28 Number 5 



Programming Pearls 

s pe 1 l’s affix analysis is both necessary and conven- 
ient. It’s necessary because there is no such thing as a 
word list for English; a spelling checker must either 
guess at the derivation of words like misrepresented or 
report as errors a lot of valid English words. Affix anal- 
ysis has the convenient side effect of reducing the size 
of the dictionary. 

The goal of affix analysis is to reduce misrepresented 
down to sent, stripping off mis-, re-, pre-, and -ed.4 
spell’s tables contain 40 prefix rules and 30 suffix 
rules. A “stop list” of 1,300 exceptions halts good but 
incorrect guesses like reducing entend (a misspelling of 
intend) to en + -tend. This analysis reduces the 75,000 
word list to 30,000 words. 

McIlroy’s program is the same as Johnson’s up to the 
point of lookiug up words in the dictionary (the corn - 
mon program in the previous pipeline). The new pro- 
gram loops on each word, stripping affixes and looking 
up the result until it either finds a match or no affixes 
remain (and the word is declared to be an error). Be- 
cause affix processing may destroy the sorted order in 
which the words arrive, the dictionary is accessed in 
random order. 

Back-of-the-envelope analysis showed the impor- 
tance of keeping the dictionary in main memory. This 
was particularly hard for McIlroy, whose machine had 
only a 64-kilobyte address space. The abstract of his 
paper summarizes his space squeezing: “Stripping pre- 
fixes and suffixes reduces the list below one third of its 
original size, hashing discards 60 percent of the bits 
that remain, and data compression halves it once 
again.” Thus a list of 75,000 English words (and roughly 
as many inflected forms) was represented in 26,000 16- 
bit computer words. 

McIlroy used hashing to represent 30,000 English 
words in 27 bits each (we’ll see later why 27 is magic). 
We’ll study a progression of schemes illustrated on the 
toy word list 

a list of five words 

The first hashing method uses an N-element hash table 
roughly the size of the list and a hash function that 
maps a string into an integer in the range 1.. N. The Ith 
entry of the table points to a linked list that contains all 
strings that hash to 1. If null lists are represented by 
empty cells and the hash function yields H(a) = 3, 
H(list) = 2, etc., then a five-element table might look 
like 

IIIIII II 
I I I ’ 

of list a words 
I 

five 

To look up the word W we perform a sequential search 
in the list pointed to by the H(W)lh cell. 

‘Even though represent doesn’t mean “to present again” and present doesn’t 
mean “sent beforehand”. spell uses coincidences to reduce dictionary size. 

The next scheme uses a much larger table. Choosing 
N = 23 makes it likely that moit lists contain just one 
element. In this example, H(a) = 14 and H(list) = 6. 

I 11 I 1 III I I I III I III I I I III I I III 
list words a of five 

The spell program uses N = 227 (roughly 134 million), 
and all but a few of the nonempty lists contain just a 
single element. 

Th+e next step is daring: instead of a linked list of 
words, McIlroy stores just a single bit in each table 
entry. This reduces space dramatically, but introduces 
errors. This picture uses the same hash function as the 
previous example, and represents zero bits by empty 
cells. 

I I I I I III I I I III I III I I I III I I III 

To look up word W, the program accesses the H(W)‘h bit 
in the table. If that bit is zero, then the program cor- 
rectly reports that word W is not in the table. If the bit 
is one, then the program assumes W is in the table. 
Sometimes a bad word just happens to hash to a 
valid bit, but the probability of such an error is just 
30,000/227, or roughly l/4,000. On the average, there- 
fore, one out of every 4,000 bad words will sneak by as 
valid. McIlroy observed that typical rough drafts rarely 
contain more than 20 errors, so this defect hampers at 
most one run of spe 11 out of every hundred-that’s 
why he chose 27. 

Representing the hash table by a string of N = 227 bits 
would consume over sixteen million bytes. The pro- 
gram therefore represents just the one bits; in the above 
example, 

6 11 14 19 23 

The word W is declared to be in the table if H(W) is 
present. The obvious representation of those values 
uses 30,000 27-bit words, but McIlroy’s machine had 
only 32,000 16-bit words in its address space. He there- 
fore sorted the list and used a variable-length code to 
represent the differences between successive hash val- 
ues. Assuming a fictitious starting value of zero, the 
above list is encoded as 

6 5 3 5 4 

spell represents the differences in an average of 13.6 
bits each. That left a few hundred extra words to be 
used to speed up the sequential search in the com- 
pressed list. The result is a 64-kilobyte dictionary that 
has fast access time and almost never makes mistakes. 

We’ve already considered two aspects of spell’s 
performance: it produces useful output and it fits in a 
64-kilobyte address space. It’s also fast, I mentioned 
earlier that it can check a 5,000-word document in 30 
seconds of VAX-11/750 CPU time; that translates into 
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Why Spelling is Hard 
The recipe fo.r elephant stew begins, “First, catch an 
elephant.” If your recipe for building a spelling program 
begins, “First, find a valid word list for English,” you 
may find it easier to prepare a delicious dish of ele- 
phant stew. After reading a draft of this column, Vie 
Vyssotsky wrote the following note, which helped me 
appreciate the problem. 

“Spelling is one of the best exampies I’ve,seen of the 
need for prototyping: build something small, try it, see 
how useful it is in practice, then modify and extend. As 
you point out, it would be nearly impossible to guess a 
priori what features a spelling checker shotrId have in 
detail in order to be most useful. 

“This is related to the fact that we’re dealing with 
English. French, for instance, has an academy to define 
root words and a more systematic set of derivations. In 
French it is a great deal easier than in English to deter- 
mine whether glotchification is a word and is correctly 
spelled. So it would be much easier to build a spelling 
checker for French than for English. But it would also 
he much less useful for French, because anybody who 
writes much in French knows how to spell correctly 
(and how to determine word boundaries, and how to 
decide whether a particular neologism is pliausiblef. 

“Language has the challenging property of changing 
as we speak: fribble is a word, and it’s in Webster’s, but 
my daughters would be astonished at the dictionary’s 

just 20 minutes for checking a 400-page book. And if I the final product: experience with Johnson’s program 
want to check the spelling of a single word, I type, for gave McIlroy insight into the typical number of total, 
instance, distinct, and misspelled words in a document. 

spell 
necesseiry 
*d 

and in about four seconds I know that it is a valid 
word-the small dictionary can be read from disk 
quickly. The paper cited under Further Reading sur- 
veys many spelling programs, but none are in the same 
performance class as McIlroy’s. 

Separation of Concerns. A well-built system is divided 
into independent components, each of which does one 
thing well. The five different programs in Johnson’s 
pipeline solve five different problems; any one could be 
enhanced without adversely affecting the others. Affix 
analysis and dictionary representation are largely inde- 
pendent in McIlroy’s program; one needn’t learn much 
about one to work on the other. And for my money, 
separation of concerns speaks against spelling correc- 
tors: errors should be found by a simple checker, fixing 
them is the job of a text editor, and help about the 
correct spelling of a word should come from a “sugges- 
ter” (see Problem 5). 

Principles 
Here’s the story in a nutshell. With a good idea, some 
powerful tools, and a free afternoon, Steve Johnson 
built a useful s:ix-line spelling checker. Assured that 
the project was worthy of substantial effort, a few years 
later Doug McIl.roy spent several months engineering a 
great program. The tale has several morals. 

Prototypes. Before you build a fancy program, let po- 
tential users experiment with a simple prototype on 
many real inputs. Johnson used a trivial word list to 
build a slow checker; users wanted a better word list 
and faster program, but there was no demand for a 
corrector. Prototypes can help estimate parameters of 

definition; glotch is a word, and everybody knows what 
it means’, but it’s not in Webster’s; &out is clearly not a 
word, Webster’s notwithstanding. These days I encoun- 
ter cwm more often than cum (because climbing has 
become a popular sport, and children are no longer 
forced to learn Latin), but 30 years ago it was the other 
way around. And what’s the correct spelling of thru? A 
generation ago, grade school teachers knew the answer, 
even if I didn’t, but the California Department of High- 
ways changed it for all of us. 

“It seems to me that this malleability of English is the 
deep fundamental reason why a spelling corrector 
won’t work. My fifth grade English teacher was a spell- 
ing corrector, and in your draft column she would 
surely correct newline and online as well as filename, 
none of which need correcting. I still remember the 
firmness of the putdown she administered when I sug- 
gested adding abaft to her canonical list of all-the- 
prepositions-in-the-English-language. Unfortunately for 
correctors, whether human or electronic, the English 
language (and its spelling) rests on agreement among its 
users, and not on decisions made by an academy of 
experts. 

“That’s what makes a spelling checker such an inter- 
esting undertaking, and such a good example of pro- 
gram design issues.” 

‘1 didn’t--a glotch is a large, disorderly aggregate. 

Simplicity. The best design is usually the simplest. 
Johnson’s problem definition is trivial to specify, and 
his program is just a few lines of code. Even Mcilroy’s 
subtle data structure yields simplicity: his single struc- 
ture does a job that many programs use several data 
structures to do more slowly. 

Software Engineering. Although it didn’t require any 
project management, the spe 11 program represents 
engineering of the first rank. Johnson and McIlroy using 
the old engineering tools of prototyping, simplicity, sep- 
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arating concerns, careful problem definition, and back- 
of-the-envelope calculations. They built with standard 
components: the design uses off-the-shelf filters for re- 
moving formatting commands, sorting, and removing 
duplicates. When they couldn’t use existing software 
tools, they used proven techniques: McIlroy’s word list 
data structure combines hashing, approximation algo- 
rithms, and data compression. The final program is 
steeped in skillful design decisions: McIlroy traded 
small chunks of run time, space, accuracy, and problem 
definition to yield an effective tool. 

Problems 
1. Gather data on documents and dictionaries such as 

the distribution of word lengths and the frequency 
of all possible letters and digrams (letter pairs). For 
dictionaries, evaluate the compression of simple af- 
fix analysis (what percent of words are covered by 
-s, -ed, and -ly?). For documents, count the number 
of total, distinct, and misspelled words. What are 
other useful statistics? 

2. Use back-of-the-envelope calculations to evaluate 
various designs for a spelling checker (for instance, 
should a fast filter be used to weed out the one 
hundred most common English words? Is it worth 
sorting the words in a batch program with a fast 
online dictionary?). Characterize the run time of 
the spelling program on your system. 

3. Investigate other data structures for representing a 
random-access dictionary; consider especially struc- 
tures that don’t always give the right answer. Ana- 
lyze space requirements and run time (both for 
reading the dictionary from disk and for accessing a 
word). 

4. Investigate spelling checkers that don’t use a com- 

1000 ’ HEAPSORT X(l..N) 

1010 IF K=l THEN RETURN 
1020 U=N 

Progrumming Pearls 

plete dictionary. Possible approaches include find- 
ing near misses (such as the words programmer and 
programer in one document) and checking for com- 
mon letter pairs and triples (see Problem 1). 

5. Design a spelling suggester that a bad speller might 
use with a checker. Given the input occurrance, it 
should suggest that you mean occurrence. 

6. Programs for checking spelling, playing word 
games, and making crossword puzzles require dif- 
ferent dictionaries. Give words that might be in one 
of the dictionaries but not in the others. What other 
dictionaries might be required by various pro- 
grams? 

7. Discuss the design of spelling checkers for lan- 
guages other than English. In connexion with this 
problem, how would you build a program to cheque 
spelling of the British flavour? 

6. Discuss the specifications and implementation of 
other programs that might prove useful to writers 
who store their documents on computers. 

Solutions for March’s Problems 
1. To modify SiftDown to have precondition 

Heap(L + 1, U) and postcondition Heap(L, U), 
change the first line of code from I : = 1 to I : =L. 
One can build a heap in O(N) time with the code 

for I := N-l downto 1 do 
/* Inv: Heap(I+l,N) */ 
SiftDown(I,N) 
/* HeaP(I,N) */ 

Because Heap(L,N) is true for all integers L > N/2, 
the bound N - 1 in the for loop can be changed to 
floor(N/Z). 

2. The BASIC program in Figure 4 is a reasonably effi- 

1030 FOR L=INT(N/2) TO 1 STEP -1: GOSUB 1100: NEXT L 
1040 L=l 
1050 FOR U=N-I TO 1 STEP -1 
1060 T=X(l): X(l)=X(U+l): X(U+l)=T 
1070 GOSUB 1100 

1080 NEXT U 
1090 RETURN 

1100 ' SIFTDOWN: PRE MAXHEAP(L-l,U), POST MAXHEAP(L,U) 
1110 I=L: T=X(I) 
1120 ' LOOP INV: MAXHEAP(L,U) EXCEPT BETWEEN I AND ITS CHILDREN 
1130 c=2*1 

1140 IF C>U THEN GOT0 1190 

1150 IF C<U THEN IF X(C+l)>X(C) THEN C=C+l 
1160 IF T>=X(C) THEN GOT0 1190 
1170 X(1)=X(C): I=C 

1180 GOT0 1120 

1190 X(I)=T: RETURN 

FIGURE 4. Heapsorl in BASIC 
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Further Readiing 
The details of Mcilroy’s spell program are described 
in his paper “Development of a spelling list,” which 
appeared in IEEE Transactions on Communications COM- 
30, 1 (January 1982, pp. 91-99). It is fascinating and 
delightful readi.ng, and a must for any serious student 
of programming. 

“Computer programs for detecting and corretiing 
spelling errors” by James L, Peterson appeared in Com- 
munications of the ACM 23,12 (December 1980, pp. 
676-687). The first part of the paper surveys @lie spell- 
ing problem and various implementations of checkers 
and correctors. We then describes a spelling corrector 
that he designed and implemented; the ctip&e Pascal 
program is published in a Springer-&?&g m~rmg~aph. 
The paper’s 44 :references are an excellent itiadu;ction 
to the literature of spelling. 

cient implementation of Heapsort; the invocation 
GOSUB I DO0 sorts the array X[l . . N]. It uses the 
linear-time heap-building algorithm of Problem 1 
and moves the Swap assignments to and from the 
temporary variable T out of the SiftDown loop. The 
SiftUp procedure can be made faster by moving 
code out of loops and by placing a sentinel element 
of “negative infinity” in XIO] to remove the test if 
I=l. 

3. Heaps replace a O(N) step by a O(log N) step in all 
the problems. 
a. 

b. 

C. 

d. 

The itserative step in constructing a Huffman 
code selects the two smallest nodes in the set 
and merges them into a new node; this is im- 
plemented by two ExtractMins followed by an 
Insert. If the input frequencies are presented in 
sorted order, then the Huffman code can be 
computed in linear time; the details are left as 
an exercise. 
A simple algorithm to sum floating point num- 
bers might lost accuracy by adding very small 
numbers to large numbers. A superior algo- 
rithm always adds the two smallest numbers in 
the set, and is isomorphic to the Huffman code 
algorithm mentioned above. 
A l,OOD-element heap represents the 1,000 larg- 
est numbers seen so far; the problem is trivial if 
the elements are sorted. 
A heap can be used to merge sorted files by 
representing the next element in each file; the 
iterative step selects the smallest element from 
the heap and inserts its successor into the heap. 
The next element to be output from N files can 
be chosen in O(log N) time. 

4. Johnson places a heap-like structure over the se- 
quence of bins; each node in the heap tells the 

amount of space left in the least full bin among its 
descendants. When deciding where to place a new 
weight, the search goes left if it can (i.e., the least 
full bin to the left has enough space to hold it) and 
right if it must; that requires time proportional to 
the heap’s depth of O(log N). After the weight is 
inserted, the path is traversed up to fix the weights 
in the heap. 
The common implementation of a sequential file on 
disk has block I point to block I + I. McCreight 
observed that if node I also points to node 21, then 
an arbitrary node N can be found in at most 
1 + 1og2N accesses. The following recursive pro- 
gram prints the access path. 

func Path(N) 

pre integer N>=O 

post Path to N is printed 

if N=O then 

print “Start at 0” 

else if even(N) then 

Path(N/2) 
print “Double to ‘I, N 

else 
Path(N-1 ) 
print “Increment to ‘I, N 

Notice that it is structurally isomorphic to this pro- 
gram for computing XN in O(log N) steps. 

func Exp(X,N) 

we integer N>=O 

post result = X**N 
if N=O then 

return 1 

else if even(N) then 

return square(Exp(X,N/2)) 
else 

return X*Exp(X,N-1) 

The modified binary search begins with I = I, and 
at each iteration sets I to either 21 or 21 + 1. X[l] 
contains the median element, X[2] contains the first 
quartile, X[3] the third quartile, and so on. S. R. 
Mahaney of Bell Labs and J. I. Munro of the Univer- 
sity of Waterloo have found a routine to put an N- 
element sorted array into “Heapsearch” order in 
O(N) time and O(1) extra space. As a precursor to 
their method, consider copying a sorted array A of 
size 2K - 1 into a “Heapsearch” array B: the odd 
elements of A go, in order, into the last half of the 
elements of B, and so on recursively. 
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