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A megastudy on the predictability 
of personal information 
from facial images: 
Disentangling demographic 
and non‑demographic signals
Yegor Tkachenko * & Kamel Jedidi 

While prior research has shown that facial images signal personal information, publications in this 
field tend to assess the predictability of a single variable or a small set of variables at a time, which 
is problematic. Reported prediction quality is hard to compare and generalize across studies due to 
different study conditions. Another issue is selection bias: researchers may choose to study variables 
intuitively expected to be predictable and underreport unpredictable variables (the ‘file drawer’ 
problem). Policy makers thus have an incomplete picture for a risk-benefit analysis of facial analysis 
technology. To address these limitations, we perform a megastudy—a survey-based study that 
reports the predictability of numerous personal attributes (349 binary variables) from 2646 distinct 
facial images of 969 individuals. Using deep learning, we find 82/349 personal attributes (23%) are 
predictable better than random from facial image pixels. Adding facial images substantially boosts 
prediction quality versus demographics-only benchmark model. Our unexpected finding of strong 
predictability of iPhone versus Galaxy preference variable shows how testing many hypotheses 
simultaneously can facilitate knowledge discovery. Our proposed L1-regularized image decomposition 
method and other techniques point to smartphone camera artifacts, BMI, skin properties, and facial 
hair as top candidate non-demographic signals in facial images.

Two distinct modern AI technologies can be applied to human facial images: facial recognition and facial analy-
sis. Facial recognition involves matching a given photo to the one observed in the past, and then to a unique 
identifier for the photo’s owner, subsequently retrieving known information about the individual. Facial analysis 
involves predicting individual data using statistical inference from the image itself and can be performed even 
on individuals one sees for the first time. The focus of this paper is on facial analysis. The cumulative evidence 
from academic research clearly shows that facial analysis, based on machine learning or direct human exami-
nation, can be used to predict different types of personal data directly from facial images of people, including 
age, gender, race1, personality2, names3, social class4, political orientation5, propensity for aggressive behavior6, 
and homosexuality7,8. Reported accuracy rates vary but can reach relatively high levels (e.g., 0.7–0.73 range for 
liberal vs. conservative classification5; 0.81 for male homosexuality7; >0.95 for gender and race classification1). 
Admittedly, the exact causal mechanism that enables predictions from facial images can be controversial. For 
instance, in case of sexual orientation, contrasting explanations have been advanced to explain its predictability 
from facial images, such as self-presentation differences across people with different sexual orientation8 (choice 
to wear glasses, brightness of the image, etc.) vs. biological predisposition story7. The controversy, however, 
does not undermine the ability of facial analysis to strip away privacy, regardless of whether predictions are 
based on biological features or on other potential signals, such as makeup, hair style, picture angle and lighting, 
background, etc.

Given the unprecedented proliferation of facial images through user-generated content online9–12 and CCTV 
surveillance13,14, these research findings create a tension where companies may want to use the technology to 
predict information about individuals, while the public may want to have their privacy protected through new 
laws and policies. This is not a theoretical concern, as facial analysis technology is already being commercial-
ized, mainly for personalization and ad targeting purposes. Amazon facial analysis API can be used to predict 
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from a face gender, age, and emotional expressions, such as surprise, sadness, or happiness15. Face-Six provides 
technology used across US malls to predict customer demographics such as age, gender, and ethnicity16, which 
can then be utilized to show targeted ads on the spot. HireVue provided facial analysis service for job interview 
decision support, but subsequently stopped following some public backlash17. TikTok video platform, which, 
reportedly, has already reached one billion active users18, stated it may collect biometric data, such as ‘faceprints’, 
from its users’ videos for demographic classification and for content and ad recommendations19.

At the same time, individuals enjoy little legal protection against facial analysis. In the US in particular, taking 
photos or videos without sound in locations where there are no expectation of privacy and no special restric-
tions by the property owners is almost universally permitted without consent20. Scraping of publicly posted 
facial images is already a common business strategy, which falls into a legally gray area, with some recent court 
decisions going against the critics of such a practice12,21. Existing legislative initiatives primarily target facial 
recognition—and miss facial analysis. One such recent bill (Commercial Facial Recognition Technology Act 
of 2019) would make it illegal for a company to create a unique identifier connected to a customer’s facial data 
without obtaining customer’s explicit consent first22. Facial analysis, which, it could be argued, is similar to a 
keen inspection of an image by an individual, does not necessarily involve creation of an explicit unique identi-
fier for the person in the photo, and could pass under the radar of such a law, remaining unregulated. Similarly, 
in May 2019, ordinance by the City of San Francisco banned city departments from using facial recognition 
technology, but not facial analysis23.

With the growing use of automated facial analysis, regulators face a decision on whether and how to regulate 
the technology. Unfortunately, there are problems with the existing literature on the capabilities of facial analysis, 
hindering policy makers’ ability to conduct a thorough risk-benefit analysis of the technology. Studies in the 
field tend to assess the predictability from facial images of a single variable or a small set of variables at a time. 
Different data types, evaluation conditions, and possible confounders across studies complicate use of reported 
prediction accuracy results to appraise performance of real life facial analysis systems based on machine learning. 
For instance, images collected in controlled standardized conditions2 could yield more consistently styled facial 
images than selfies sourced online ‘in the wild’ but could also contain fewer signals like makeup, making it hard to 
generalize results of studies that use such curated images. Differences in whether humans or algorithms are used 
to extract facial features24 and to make predictions5 also complicate the comparison and generalizability of results 
across studies. Another serious issue due to the high-stake focus on one or a few variables per paper is potential 
selection bias. On the one hand, researchers may investigate only variables they expect to be predictable25, so 
some privacy risks may remain undetected, underestimating the risk of facial analysis technology. On the other 
hand, variables that are not predictable are likely not to get reported due to the ‘file drawer’ problem26, which 
could lead to exaggerated perceived risk of the technology in the published corpus of works. As a result, we have 
an upsetting state of knowledge, where a comprehensive ranking of personal data types by their predictability 
from facial images cannot be reliably constructed based on existing literature, so it is mostly unclear which types 
of personal information are at a relatively higher or lower risk of exposure through facial images.

In this work, we try to address these limitations by performing a megastudy27 that simultaneously investigates 
the predictability of numerous personal attributes of individuals from their facial images, yielding comparable 
prediction accuracy scores across 349 diverse variables and their ranking by predictability. We assess the accu-
racy of predicting personal information from facial image pixels using only deep image features extracted from 
pixels by neural nets (Figures 2 and 3, Supplementary Table S1). We also investigate how incorporating facial 
image information incrementally boosts prediction quality compared to a demographics-only benchmark model, 
considering prediction improvements from basic face metrics like face width-to-height ratio as well as deep 
image features extracted by neural nets (Figure 4, Table 2). Selection bias concerns are addressed via inclusive 
approach to selection of predicted personal attributes and by reporting both predictable and unpredictable vari-
ables. Further, simultaneous observation of many personal attributes helps us better investigate the mechanism 
of information signaling by facial images.

Methods
Survey data
Our study focuses on prediction of personal data from the facial images of survey respondents. The data for 
the study was collected via Qualtrics panel and MTurk from November 2018 to February 2019. Each individual 
was required to respond to a 30-40-minute questionnaire asking varied information about demographics and 
psychographics and submit three distinct personal facial images. The order of the questions and question options 
was randomized, where applicable. The study has been approved under Columbia University IRB protocol 
AAAS1230. All methods were carried out in accordance with relevant guidelines and regulations. Informed con-
sent was obtained from study participants to release their data, including their facial images, in the publication.

Question selection
Given that commercial use of facial analysis has focused so far on marketing applications, in planning the 
questionnaire, we wanted to ask a range of sample questions covering data types that marketers are typically 
interested in. Unfortunately, a universally accepted typology of data collected and used by marketers does not 
exist, so we needed to first construct one so that it could guide questionnaire creation. Building on our own 
experience, several informal interviews with marketing research practitioners and academics, some professional 
surveys available to us, and a review of frequently used marketing scales28, we came up with a rough classifica-
tion of data types frequently sought by marketers—either actively through surveys, or passively in the course 
of business operations—and with a large pool of questions representative of these data types. See Table 1 for a 
summary of the resulting data classification. While we aspired to develop a clear and systematic data typology, 
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we recognize that the proposed classification is inherently not completely sharp. Some types of data could be 
placed in several categories, for example, gender could be viewed as both a biological (demographic) variable 
and a psychological (psychographic) variable. Additionally, the classification is not fully exhaustive, especially 
in the consumption psychographics section. Despite the drawbacks, it proved to be a useful general map of data 
types for the purposes of this paper. When building out the survey question pool, we tried to optimize for good 
coverage of the constructed data typology, without regard for our prior expectation about whether specific vari-
ables would be predictable from facial images—we hoped that our typology-driven approach would counteract 
the potential bias / tendency to select variables that are expected to be predictable and would allow for discovery 
of unexpectedly predictable characteristics.

Note that we exclude some variables as prediction targets in this study when they are objectively and straight-
forwardly measurable from facial image pixels (even though such variables could be described as ‘personal 
information’). Examples of such variables include gaze direction, clearly defined facial expressions, eye-wear 
presence, skin color measured from pixel values, face width, etc. The reason for their exclusion is that such vari-
ables could be theoretically resolved to an arbitrarily high precision from pixel values if the face is clearly visible, 
so the question about the quality of their prediction from facial images seems ill-posed in our study settings.

Data preparation
As part of data pre-processing, we filtered out all individuals with incomplete questionnaires, including those 
without three valid different facial images (in Qualtrics panel data, over a quarter of otherwise completed ques-
tionnaires contained invalid images—for example, images of random objects, images that were not distinct, or 
photos of celebrities; in MTurk data—under 10%). Invalid image submissions could be attributed to reluctance 
to share personal images—or to automated bot responses, however, it is hard to distinguish these causes and, 
thus, to know to what degree such filtering biases or unbiases the sample.

We used dlib library29 to automatically extract aligned 224×224-pixel face squares, where possible. Continu-
ous and multilevel categorical response variables were binarized—via one-vs-all binarization or by splitting 
scales—to allow for consistent prediction quality comparisons. For example, multilevel ‘Gender’ variable was 
split into separate ‘Male’, ‘Female’, and ‘Other’ binary indicators (where 1 indicates the focal gender level, while 0 
indicates reference gender levels). As a result, 349 binary response variables were extracted from each completed 
questionnaire to be used as prediction targets.

In the end, we have total n=2646 paired image-response observations (969 individuals, ∼76% female): 2312 
observations from Qualtrics (853 individuals, ∼82% female) and 334 observations from MTurk (116 individuals, 
∼37% female). Sample facial images are shown in Supplementary Figure S1, variable-level summary statistics 
are provided in Supplementary Table S1.

Principal component analysis of 349 response variables suggests a complex correlation structure, which 
cannot be summarized well by just a few factors. For illustration, the first 5 principal components explain only 
17% of variance, 50 principal components explain 52% of variance, and 195 principal components are required 
to explain 90% of variance.

Table 1.   Proposed typology of data collected by marketers about consumers.

Category Sub-category (non-exhaustive) Examples (could span multiple categories)

Demographics
Traditional socio-biological population characteristics

Biological characteristics Gender; race; age; body fitness; employment status; education 
achieved; household incomeSocio-economic status

General psychographics
Core psychological and behavioral characteristics

Character and ethical choices

Big 5 personality: neuroticism; regularly felt emotions: stress; 
importance of being beautiful vs. being smart; religiosity; active 
lifestyle; answers to ethical questions, e.g. “What right does your 
friend have to expect you to lie in court to protect him?”

Emotional and cognitive state

Lifestyle

Personality

Values and beliefs

Consumption psychographics
Psychological and behavioral characteristics with respect to 
specific products/services, brands, ads, categories, proposals, 
concepts, ideas

Stated and revealed preferences

Instagram use; preference for iPhone vs. Galaxy; perception of 
bias: FoxNews; likelihood of recommending Netflix to a friend; 
preference for Beatles vs. Michael Jackson; price sensitivity: 
sneakers

Choice motivations

Usage, ownership, and consumption patterns

Awareness and recall

Reactions, attitudes, opinions, satisfaction

Pre-acquisition search

Acquisition mode

Influence/following

Purchase intentions

Switching and churn

Economic outlook

Price sensitivity

...
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Analysis methodology
The first question we address is how well each binary survey response variable can be predicted from facial image 
data alone using a powerful binary classifier. The prediction pipeline (sequence of data processing algorithms, 
where the output of one algorithm is the input of the next one) involves two deep convolutional neural nets each 
extracting 2048 features from a 224× 224 image with 3 color channels, followed by singular value decomposition 
(SVD) that is used to reduce the combined 4096 features output by the two neural nets to 500 features, and then 
a separate Bayesian ridge regression (scikit-learn Python library implementation)30 relating each binary response 
variable to the 500 extracted features. Use of SVD is meant to reduce collinearity between deep image features 
extracted by the neural nets7. Bayesian ridge linear regression automatically selects the optimal L2 regularization 
strength in the estimated linear probability model for each binary prediction. Both neural nets use an advanced 
ResNet-50 deep learning architecture31, one pre-trained on 1000-class ImageNet dataset32, and its last several 
layers fine-tuned on our data to simultaneously predict target variables (similar to the multi-label net33); another 
pre-trained for facial recognition on VGGFace2 data set34 and not fine-tuned on our data. We have found that 
the fine-tuned ImageNet model boosts predictive power of the images beyond demographic variables, whereas 
addition of VGGFace2 model enhances the accuracy of demographic predictions. This neural net setup is tailored 
to our relatively small data sample, which is insufficient to train a full image-processing neural net from scratch, 
so instead we take the approach known as transfer learning35, where we start with a model pre-trained on a large 
data set. Figure 1 illustrates the full prediction pipeline from an image to 349 binary response variable predictions.

To measure holdout quality of a binary classifier, we use the standard AUC metric (area under the ROC 
curve), calculated across observations (separate images). AUC captures the relative frequency with which a 
randomly drawn positive observation is assigned by the classifier a higher probability than a randomly drawn 
negative observation. An advantage of AUC is that it is robust to imbalanced data, as it does not utilize a specific 
prediction threshold. AUC is 1.0 for a perfect classifier and 0.5 for a random one. To ensure reliability of AUC 
estimates, we conduct repeated 5-fold cross-validation36,37: 20 times we randomly split the whole data into five 
disjoint sets, iteratively using one of the five sets for testing, after training the full prediction pipeline—neural 
nets, SVD, and Bayesian ridge regressions—on the other four. This procedure yields k=100 ( 20× 5 ) AUC meas-
ures per classifier. (If a variable is sparse and its realization is unobserved in a given test fold, AUC cannot be cal-
culated, so k could be lower than 100; this is rare, but occurs, e.g., for ‘Gender: Other’ variable.) Cross-validation 
split is at the individual level—any individual with all their pictures is in one of the five folds, but not in any other.

Sampling distribution for AUC statistic is approximately Normal38. We estimate the distribution’s mean 
and standard deviation (i.e., AUC standard error) for each tested variable from AUC values observed in cross-
validation runs. Intuitively, the more likely AUC values for a variable are to fall above 0.5, across different data 
and algorithm realizations, the more confident we are the variable is predictable better than random. When the 
lower bound of the AUC two standard error (2SE) confidence interval is above 0.5, we say that a variable is pre-
dicted significantly better than random based on 2SE criterion. (The word ‘significantly’ should be interpreted 
with some caution considering the biasedness of cross-validation variance estimators39.)

To keep in check the number of false positives under multiple testing across variables, we further use a false 
discovery rate method that ensures the expected false discovery rate—expected proportion of rejected cases 
(null hypothesis H0 : AUC ≤ 0.5) that are wrongly rejected—is under a specified level q=0.05. For each predicted 
variable, we use the cross-validated AUC mean and standard error to calculate a p-value—an area to the left of 
AUC=0.5 under Normal CDF. We then apply Benjamini-Hochberg (BH(q)) step-up procedure40, obtaining a 
conservative adjusted p-value cutoff threshold for rejection of H0 for the set of evaluated variables. Let tp (true 
positive) denote the number of correct rejections of H0 and let fp (false positive) denote the number of incor-
rect rejections of H0 , based on some p-value threshold. Use of the BH(q) adjusted p-value threshold to reject 
H0 ensures E[fp/(tp+ fp)] ≤ q . The procedure is valid even in case of dependence between evaluated variables, 
under empirical Bayes view of BH(q)41.

See Supplementary Information for more details on data collection and pre-processing, model training, and 
inference.

Results
What information is predictable from facial images?
Figure 2 shows the results for ∼23% (82/349) variables that are predicted significantly better than random based 
on BH(q=0.05) procedure with a p-cutoff=0.012 (and thus also based on the less conservative 2SE confidence 
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Figure 1.   Prediction pipeline: a facial image is processed by two distinct ResNet-50 neural nets, followed by 
SVD, followed by the Bayesian ridge regressions predicting 349 binary variables.
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interval with implied p-cutoff=0.023). BH(q=0.05) procedure ensures the expectation of ≤ 5 % of false positives 
among all rejections (82 here, which implies ∼ 4 expected false positives). All variables are ordered in the increas-
ing order of p-values (decreasing significance). Variables predictable from image pixels based on BH(q=0.05) 

Figure 2.   Cross-validation results for 82/349 ( ∼23%) personal attributes, where binary predictions from facial 
images beat random guess (mean holdout AUC values are above 0.5 random threshold) based on BH(q=0.05) 
statistical significance criterion. Predictions are from a Bayesian ridge regression, based only on deep image 
features extracted from facial image pixels by neural nets. Variables are sorted in increasing order of p-values. 
AUC means and 2SE intervals are estimated from k=100 holdout AUC measures.
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criterion are varied and include, among others, age, gender, and race; iPhone vs. Galaxy preference; use of 
Chrome and iPhone Safari browsers (captured in survey metadata); stated Netflix use; preference for Trump 
vs. Hillary; expression of Big 5 neurotic personality; and even an ethical judgment in response to a question 
“What right does your friend have to expect you to lie in court to protect him?” from the Car and the Pedes-
trian experiment42. Many predictable variables, such as browser type, Apple Music use, religious background, 
and employment status, initially surprised us, and we would not have picked them as our focal variable in a 
single-variable study of predictability from facial images, highlighting the value of testing multiple hypotheses 
simultaneously for knowledge discovery. Figure 3 provides a systematic overview of predictability for variables 
grouped by data type. Biological and socio-economic demographics, product and service use and preferences 
tend to be more predictable from facial images, while such data categories as regularly felt emotions, lifestyle, and 
economic outlook are harder to predict. Supplementary Table S1 gives results for all variables, predictable or not.

Controlling for demographics
It is well known that human facial images strongly signal age, gender, and race1. Our analysis confirms that these 
demographic variables are among the strongest signals in facial images. Demographics is also known to be a 
strong predictor of varied individual behavior43, so demographics inferred from facial images could be driving 

Figure 3.   Predictability of variable categories from facial images, without regard for significance. Predictions 
are from a Bayesian ridge regression, based only on deep image features extracted from facial image pixels by 
neural nets. Group mean AUC is calculated as an average of cross-validated AUC estimates for the variables in 
the group. This classification is derived from Table 1, but contains somewhat narrower categories corresponding 
to the specific questions included in the questionnaire.

Figure 4.   Number of variables (out of total 349) predicted significantly better than random, depending on 
the set of input variables in a Bayesian ridge regression. Perfect knowledge of demographics is a powerful 
predictor, with 92 BH(q=0.05) significantly predicted variables. Addition of facial image information—manually 
calculated basic face metrics plus features extracted via deep learning from the facial image—boosts the number 
of predicted variables by ∼38% to 127. Without deep image features, basic face metrics deliver a smaller boost of 
∼24% (114 predicted variables).
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predictions of all other personal attributes in Fig. 2. To understand whether facial images reveal extra personal 
information, beyond what demographics can predict, we estimate three progressively more complicated models 
based on (a) basic demographics stated in the survey (age, gender, race); (b) eleven basic face metrics manually 
computed from facial images, based on dlib facial landmark coordinates (including RGB color channels aver-
aged across face oval and facial width-to-height ratio); (c) deep image features extracted by the deep learning 
model from facial images. Specifically, we track the number of predictable variables, as we sequentially expand 
the information set input into the Bayesian ridge regression—from demographics to basic face metrics, to facial 
features extracted by the neural nets from facial images. See Supplementary Information for details on demo-
graphic controls and the full list of basic face metrics. Figure 4 summarizes our findings. We find that stated 
demographics alone forms a powerful predictor across a variety of data types. However, basic metrics calculated 
from facial features as well as deep image features extracted by neural nets all expand the set of predictable vari-
ables beyond what knowledge of only demographics allows for. In particular, while the reference demographics-
only model BH(q=0.05) significantly predicts 92 variables, adding all information based on facial images to the 
model boosts the number of predicted variables by substantial ∼38% to 127. Thus, with known demographics, 
information in facial images adds extra 35 variables to the predictable set. Average AUC across 349 variables 
also increases with additional model input—from 0.577, to 0.579, and to 0.586 respectively. Compared to the 
number of significantly predicted variables, average AUC across 349 variables shows a more muted increase with 
expanded model input, as it is weighed down by most variables not being significantly predictable from any of 
the considered input sets (AUC​≈0.5).

Table 2 shows variables that benefit the most in terms of prediction accuracy from addition of facial image 
features to demographic information. Addition of basic face metrics boosts our ability to predict reported body 
fitness level, individuals’ satisfaction with their weight, tendency to think about healthy vs. unhealthy food, 
alcohol consumption, religiosity, sexual orientation, consuming media content in large quantities, and quarrel-
some personality, among other variables. Further addition of deep image features boosts our ability to predict the 
browser used by the consumer when completing the survey (iPhone Safari vs. Chrome), iPhone vs. Galaxy pref-
erences, employment status, smoking habits, household income and education levels, Apple, WSJ, and Amazon 
use, etc. Table 2 also shows the variables that are not BH(q=0.05) significantly predictable from demographics 
alone and only become predictable with addition of facial image information—these include alcohol consump-
tion frequency, smoking habits, religiosity, ‘unemployed, but looking’ job status, as well as some media content 
consumption patterns and food habits.

Observed patterns and their possible explanations
We have so far presented evidence that facial images signal personal information beyond what demographics 
alone can reveal. Some high-level patterns emerge. First, our model can incrementally predict the fitness of the 
individuals and their (un)healthy habits, such as smoking and alcohol consumption, from the facial images. 
Prior research has established that body-mass index (BMI)44; smoking and alcohol use24 all correlate with facial 
appearance, indicating external validity of this result. Second, facial images signal social class characteristics 
such as individual’s unemployment status and education level. Prior research has suggested the existence of cor-
relation between facial cues and social class, including employability perceptions4—our results support these 
findings. Third, facial images seem to signal the internal mental states of individuals, as reflected, for example, 
in religiosity and high volume media content consumption. This is also a conceivable result. Facial hair could 
be indicative of religious observance, for example, in Judaism and Islam. Further, prior research has established 
some link between BMI and screen media use45, BMI and depression46, BMI and religiosity47, alcohol consump-
tion and depression48, and depression and religiosity49, which could represent some of the plausible pathways 
for facial images to reveal the mental state information.

Interestingly, facial images also contain a very strong signal about the browser used by the respondent—for 
instance, use of facial images boosts the prediction accuracy of iPhone Safari browser variable to AUC 0.85 vs. 
demographics-only model AUC of 0.66—the boost being driven primarily by the deep image features (Table 2). 
This signal could result from camera artifacts imposed on the images, post-processing by smartphone-specific 
software, or human behavior differences in smartphone owners and audiences. It has also been reported in the 
literature50 that a given smartphone can be uniquely identified based on a single image—due to a unique pat-
tern of photo-response in every camera’s image sensor. Brand-specific photo-response patterns could explain 
our ability to predict browsers and smartphone preferences from facial images, but we are not fully certain if 
this is what the neural nets are picking up. However, if future research can confirm that images can be uniquely 
attributed to a specific smartphone via the camera photo-response fingerprint, this would have wide implica-
tions for our ability to uniquely attribute all the images back to their authors and track consumer activity online, 
with potentially grave privacy implications for image takers who want to preserve the anonymity of their work.

A likely explanation for this variety of significant signals is simply that the personal characteristics tend to be 
correlated with each other. For example, characteristics such as body fitness, skin health, or facial hair, as well as 
user’s browser/device, which are more plausibly predictable from facial images, can be correlated with numerous 
more complex personal characteristics such as social class, religiosity, consumer behavior, and media consump-
tion. It is thus plausible that facial images could signal these higher order personal characteristics in such an 
indirect manner, even if one may view such findings as surprising at first. To illustrate the point, Supplementary 
Table S2 shows the Pearson correlation of the body fitness and iPhone Safari browser variables with 30 variables 
that are most significantly predictable based on deep image features alone. We find the body fitness is strongly 
correlated with employment status, which offers a plausible pathway for inferring the employment status based 
on a facial image—such prediction would not be perfect, but the statistical signal is there. Body fitness is also 
correlated with Tinder use, not having to worry about what one eats, and overall lower levels of stress, which 
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Table 2.   Increase in mean holdout AUC as we incrementally add more inputs to a reference demographics-
only Bayesian ridge regression. Showing top 25 variables by AUC increase. The dagger symbol ( † ) marks AUC 
values that are not BH(q=0.05) significant. This table shows improvements where new AUC is significant by 
BH(q=0.05) criterion and increase in mean AUC is significant at 0.05 level based on one-sided two-sample 
t-test with unequal variance. AUC values are rounded to two decimal places for presentation purposes.

No. Variable % Increase, AUC​ Ref. AUC​ New AUC​

I. Basic face metrics are added—to demographics

 1. Body fitness 8.0% 0.61 0.66

 2. Food habits, attitudes: Is satisfied with his weight 6.7% 0.60 0.64

 3. Prefers: iPhone vs. Galaxy 4.7% 0.59 0.62

 4. Is a frequent alcohol consumer 4.6% 0.56† 0.58

 5. Browser: Safari iPhone 4.5% 0.66 0.69

 6. Considers himself religious 4.1% 0.58† 0.60

 7. Likelihood of following a movie recommendation from a friend 3.8% 0.59† 0.61

 8. Perception of bias: BBC News 3.7% 0.60† 0.63

 9. Religious background: No particular religion 3.4% 0.62 0.64

 10. Food habits, attitudes: Does not have to worry about how he eats 3.0% 0.59 0.61

 11. Prefers: Madonna vs. Lady Gaga 2.9% 0.56† 0.58

 12. Active consumer: BBC News 2.9% 0.59† 0.61

 13. Prefers: Chocolate ice cream vs. strawberry ice cream 2.8% 0.55† 0.57

 14. Uses Telegram 2.8% 0.64 0.66

 15. Sexual orientation (non-hetero) 2.6% 0.63 0.65

 16. Spends 4 hours or more a day on social media 2.4% 0.63 0.64

 17. Big 5 variable: Starts quarrels with others (reverse) 2.2% 0.62 0.63

 18. Food habits, attitudes: Never thinks of healthy or unhealthy food 2.1% 0.57† 0.58

 19. Political party alignment: Independent 1.8% 0.58† 0.59

 20. Religious background: Christianity 1.8% 0.60 0.61

 21. Perception of bias: FoxNews 1.8% 0.59 0.60

 22. Prefers: Clothing vs. tech 1.6% 0.68 0.70

 23. Big 5 personality: Agreeableness 1.6% 0.65 0.66

 24. Lifestyle: Likes hiking 1.6% 0.60 0.61

 25. Browser: Chrome 1.5% 0.61 0.62

II. Deep image features are further added—to demographics and basic face metrics

 1. Browser: Chrome 28.2% 0.62 0.79

 2. Prefers: iPhone vs. Galaxy 25.7% 0.62 0.78

 3. Browser: Safari iPhone 22.7% 0.69 0.85

 4. Employment: Unemployed, but looking 15.6% 0.54† 0.62

 5. Lifestyle: Smokes too much 13.5% 0.52† 0.59

 6. Uses Apple music 10.9% 0.60 0.66

 7. Actively recommends movies to watch to friends 6.7% 0.54† 0.58

 8. Data source: Qualtrics panel vs. MTurk 6.5% 0.77 0.83

 9. Uses WSJ 6.0% 0.55† 0.58

 10. Prefers: Night in club vs. night with a book 5.7% 0.57† 0.60

 11. Education achieved: High school or less 5.5% 0.63 0.66

 12. Household income:<$50K 5.5% 0.57 0.60

 13. Education achieved: Graduate degree 4.9% 0.58† 0.61

 14. Sports programming hours watched per week: >8 4.4% 0.63 0.65

 15. Prefers: Original coke vs. diet 4.3% 0.57† 0.60

 16. Employment: Employed/ student 3.9% 0.68 0.71

 17. Uses Netflix 3.7% 0.63 0.65

 18. More important: Friendship vs. laws 3.5% 0.57† 0.59

 19. Likelihood of recommending Netflix to a friend 3.4% 0.63 0.65

 20. Uses Amazon 3.2% 0.56† 0.58

 21. Body fitness 2.6% 0.66 0.68

 22. Food habits, attitudes: Does not have to worry about how he eats 2.5% 0.61 0.62

 23. More important: Being beautiful vs. being smart 2.5% 0.59† 0.60

 24. Household income: [50K, 100K) 2.4% 0.55† 0.57

 25. Big 5 variable: Tends to be disorganized (reverse) 2.3% 0.56† 0.58



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21073  | https://doi.org/10.1038/s41598-023-42054-9

www.nature.com/scientificreports/

could thus also be plausibly inferred via facial images. Prediction of iPhone Safari browser is also informative 
about other variables—it signals increased likelihood of Snapchat and Apple Music use, a more likely preference 
for iPhone over Galaxy phone, and informs about user’s preference for clothing vs. tech. Thus, prediction of a 
few facts about a person via facial images can lead to a wealth of inferences about them.

Limitations
The following caveats apply. Imperfections in image pre-processing could add noise. Binarization of continuous 
variables may underestimate their predictability51. People control what pictures they submit, so prediction may 
be driven not just by true appearance, but also by how people choose to look online, the edits they make to the 
photos, or camera/device artifacts left in the image (this is generally the case for personal user-generated content 
uploaded online, so is not strictly a limitation as far as generalizability of results to such content is concerned). 
This also means CCTV images may contain less information than selfies, so our study better characterizes the 
latter. People might lie or err when submitting survey responses. Results are primarily correlational in nature. 
Results are true for the present sample of panel participants (in particular, individuals who were comfortable 
with sharing their images and personal responses with us) and do not necessarily generalize to the population. 
The sample size is relatively small. Prediction is based on a single image—forecasts from multiple images for the 
same person are not aggregated. Models we have not considered could offer improved predictive power. Overall, 
the study likely provides a lower bound on prediction quality of facial analysis—companies could do better across 
data types with larger samples, use of revealed preference data, by aggregating over different images of the same 
person, by dropping binarization of continuous variables, and by further fine-tuning the predictive models. Note 
that we focus on predictions from image pixels and exclude from the scope of our study image metadata (text 
information associated with the image, which could contain geolocation, camera device description, and other 
personal information)—the metadata can present significant privacy risks, but, compared to data captured in 
image pixels, it can be relatively easily erased by the user, without altering the image itself52.

What parts of facial images signal the information?
One interesting and important question is what specific parts of a facial image function as the information source 
for predictions. Understanding the origin of these signals could provide face validity evidence (no pun intended) 
for our findings. We can hypothesize that some signals should be straightforward to explain. Width of the face 
could indicate the level of body fitness. Facial skin color could suggest race. Such signals could be inferred from 
specific local areas of the facial image. Other signals, such as the browser used by the respondent, to the extent 
they are driven by pixel-level artifacts, could be imperceptible to a passing visual examination—they could be 
scattered all over the image or concentrated in specific areas. We devise three approaches to empirically exam-
ine which facial image areas originate different signals. First, we explore the correlations between selected face 
metrics and predicted variables. Second, we track which areas of an image, when blocked, lead to the greatest 

Table 3.   Pearson correlations between selected face metrics and predicted variables. Face metrics include 
RGB color channels averaged across face oval; facial width, height, and width-to-height ratio (fWHR); and a 
deep image feature (principal component) with the highest correlation with the smoking frequency variable. 
Correlations are highlighted when significant at two-tailed significance level 0.01 using individual-clustered 
standard errors.

No. Variable

Face color Face shape Deep PC

R G B W H W/H Smoking

1. Race: Caucasian/ White 0.18 0.17 0.22 0.04 0.02 0.04 0.01

2. Race: African American/ Black − 0.22 − 0.22 − 0.24 − 0.06 − 0.06 0 − 0.02

3. Gender: Male − 0.19 − 0.18 − 0.16 − 0.05 − 0.09 0.14 − 0.1

4. Gender: Female 0.19 0.18 0.16 0.04 0.08 − 0.13 0.1

5. Age: <=30 0.13 0.15 0.12 0.07 0.1 − 0.11 − 0.08

6. Age: >50 − 0.06 − 0.09 − 0.07 − 0.06 − 0.11 0.16 0.18

7. Uses Snapchat 0.11 0.14 0.12 0.01 0.05 − 0.09 0.01

8. Browser: Safari iPhone 0.12 0.1 0.05 0.14 0.13 − 0.01 − 0.1

9. Prefers: iPhone vs. Galaxy 0.09 0.04 − 0.01 0.1 0.09 0.01 − 0.08

10. Employment: Unemployed and not looking 0 − 0.01 0 − 0.03 − 0.08 0.13 0.09

11. Body fitness − 0.03 − 0.01 − 0.03 − 0.12 − 0.06 − 0.15 − 0.02

12. Food habits, attitudes: Is satisfied with his weight − 0.09 − 0.08 − 0.08 − 0.16 − 0.12 − 0.06 0

13. Considers himself religious − 0.01 0 − 0.02 − 0.06 − 0.1 0.13 0.12

14. Sexual orientation (non-hetero) 0.05 0.05 0.05 0.08 0.06 0.03 − 0.03

15. Big 5 variable: Starts quarrels with others (reverse) − 0.04 − 0.02 − 0.02 − 0.07 − 0.09 0.06 0

16. Big 5 variable: Gets nervous easily 0.07 0.09 0.08 0.01 0.01 0.02 0.02

17. Lifestyle: Smokes too much − 0.04 − 0.02 0 − 0.04 − 0.01 − 0.07 0.12

18. Is a frequent alcohol consumer − 0.05 − 0.03 − 0.03 − 0.04 0 − 0.07 − 0.02
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decrease in AUC in predictions based on deep image features. Third, we estimate a novel model based on L1 regu-
larization that identifies average linearly decomposable visual imprints of different features on the facial image.

Correlations between face metrics and predicted variables
Table 3 presents correlations between selected representative face metrics and predicted variables. We can observe 
an abundance of weak correlation patterns. Facial pixel luminosity (brightness) across color channels signals 
race, gender, age, weight satisfaction, and proclivity to get nervous easily. Red pixel luminosity in particular 
is weakly but significantly correlated with iPhone browser use and preference for iPhone over Galaxy by the 
respondent. Facial shape weakly signals gender, body fitness, and quarrelsome personality. As an experiment, 
we also extracted a deep image feature (principal component) with the highest correlation with the smoking 
frequency variable. This feature additionally signals religiosity, age, employment status, and preference for Galaxy 
over iPhone—it thus seems to be capturing a person’s facial ageing. Overall, these correlations all seem plausible 
and showcase how even simplest facial color and shape metrics contain personal information hints. It is also 
worth noting that the multitude of small correlations across different sources can compound to form an even 
stronger signal.

Prediction‑critical facial image areas
To get more insight into the mechanism by which facial images reveal information, we examine facial image 
areas that are most critical for quality of the predictions based on deep image features. We sequentially block 
segments of an image on an 8 × 8 grid to measure AUC decrease compared to when the full image is visible, aver-
aged across images and cross-validation steps. Figure 5 shows corresponding heat maps for selected variables. See 
Supplementary Figure S2 for more variables. Localized eye and mouth information seems to be of importance 
in predicting many variables, including gender and browser/device use. As another example, for predicting 
whether a person gets nervous easily, the mouth area tends to be particularly important. For variables such as 
body fitness and weight satisfaction, simultaneous access to information across the face oval seems to be rela-
tively more important to achieve high-quality predictions. These results indicate the importance of specific local 
facial features for prediction. In principle, the downside of this approach is its narrow focus on image areas that 
contain unique (non-redundant) information. If information is redundantly stored all over the image, blocking 
an image segment should not prevent the neural nets from accessing that same information elsewhere—and the 
corresponding area would not be highlighted as important, even though it can serve as an information source. For 
this reason, this approach is unlikely to detect redundantly encoded image properties that can inform prediction.

L1‑regularized facial image decomposition into feature‑specific imprints
To dig deeper into the question of what image areas signal personal information, we propose a novel lasso-based 
model to learn facial prototypes associated with each binary feature in the data. Consider a model of a 224× 224 
facial image X (in gray scale), where it is approximated as a sum of prototypical 224× 224 images Pj correspond-
ing to a set of 349 known binary features yj ( P0 corresponds to an ‘intercept’ image). X and yj are given. Pj are 
unknown and have to be estimated to get X ≈ P0 +

∑349
j=1 Pj · yj . In other words, we are decomposing X into 349 

Pj matrices (imprints) that reflect the average contribution of each yj to the construction of X, plus the intercept. 
We can estimate parameters Pj by solving the following optimization problem across n observations in our data:

where � indicates regularization strength, 1 is a vector of ones, || · ||2F denotes a Frobenius norm, and | · | is 
element-wise absolute value. The use of L1 regularization encourages the redundant parameters to be set to 
exactly zero. If a given feature yj is uncorrelated with the facial image appearance, then the whole corresponding 
matrix Pj should be set zero. The model involves millions of parameters—we use the highly scalable OWL-QN 

min
Pj∀j∈0:349

1

n

n∑

i=1

||Xi − P0 −

349∑

j=1

Pj · yij||
2
F + �

349∑

j=0

1T |Pj|1,

Figure 5.   Importance of image segments for the quality of prediction of selected variables from deep image 
features alone. Heat map indicates relative magnitude of AUC decrease for a variable when a square area of an 
image is masked (more intense color means greater decrease), avg. across images and CV folds. Background is a 
selected representative image.
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algorithm for L1-regularized optimization53 to perform the inference (we use the following Python library: 
https://​bitbu​cket.​org/​rtayl​or/​pylbf​gs/​src/​master/). To aid the estimation, we use reparametrization to enforce 
a symmetry restriction, where the left side of a coefficient matrix is equal to its horizontally flipped right side 
Pj[:, 0 : 112, :] = flip(Pj[:, 112 : 224, :]) , which cuts the number of estimated parameters by half. We set � = 0.01 
for moderate regularization strength and continue training until ten sequential iterations fail to yield a decrease 
in the loss, which happened after 644 OWL-QN iterations. We found � = 0.01 strikes the detail vs. simplicity 
balance in the Pj visualizations (Fig. 6).

The estimated matrices Pj indicate the visually prominent linearly decomposable ‘fixed’ effects of different 
features on the facial images. This analysis capitalizes on our tracking multiple personal attributes simultane-
ously, so each effect is estimated while ‘controlling for everything else’. Importantly, non-linear dependencies 
between images and variables (for example, due to higher-order interactions between pixels in different parts of 
the image, or because a prominent visual effect occurs only when features are interacted) would not be captured 
by this procedure. Nevertheless, Pj matrices can help us understand the relative role of the visually prominent 
facial features in signaling personal information. We visualize the estimated coefficient matrices for selected 
variables in Fig. 6. See Supplementary Figure S3 for more variables. Positive numbers in Pj signify an increase 
in corresponding pixel luminosity (whiter color), negative numbers indicate a decrease in luminosity (darker 
color), and zeros imply no effect. Some results, arguably, make intuitive sense—for example, lighter image is 
associated with a white race, a darker image is associated with an African American/black race. The prototypi-
cal images corresponding to body fitness and weight satisfaction have cheek areas blacked out. The prototypical 
image corresponding to self-perception of religiosity has a beard/chin-and-jaw area highlighted. Other images 
can be tougher to interpret. For instance, the image associated with getting nervous easily has a mouth area 
highlighted, mimicking the result in Fig. 5, but it is unclear what drives this result.

Notice that the absolute value of a prototypical image |Pj| indicates areas in the image that experience change 
under the yj feature variation. We propose a novel quantity, which we call a visual prominence score vj = 1T |Pj|1 . 
High vj indicates high magnitude/prominence of the visual contribution of a feature to a facial image. We hypoth-
esize that features with high visual prominence should also be more predictable from the facial image. Indeed, we 
find a high Pearson correlation between vector v of visual prominence scores and the hold-out AUC of the 349 
features: corr(v, AUC) = 0.56 . This suggests that visually prominent features, as determined by this model, are 
more easily predictable. However, the visual prominence of features in a facial image, thus measured, explains 
only part of the the feature predictability from facial images ( R2 = 0.31)—the rest of it could be attributed, for 
example, to color information lost through use of the gray scale or to higher-order interactions between pixels 
in different parts of the image, not captured by the image decomposition procedure.

Discussion
Our study is conducted on a relatively small sample (969 individuals, 2,646 distinct facial images) but, to the best 
of our knowledge, is the largest as of now in terms of the number of personal attributes (349) assessed simultane-
ously under equivalent conditions for predictability from facial images. Overall, 23% of 349 variables assessed 
were predictable better than random. Figures 2 and 3 and Supplementary Table S1 provide a first-of-its-kind 
comprehensive ranking of personal attributes by their predictability from facial images illustrating what personal 
information is at a relatively higher or lower risk of exposure.

The strongest startling effect we detect, enabled by our generous inclusion of various variables into the 
assessment, is the high prediction quality from facial images alone of the iPhone Safari browser used by the 
respondent at AUC=0.84 (variable captured in survey metadata) and the respondent’s preference for iPhone vs. 
Galaxy phone at AUC=0.78. We hypothesize these indicate our ability to predict the smartphone that took the 
image from image pixels—possibly, due to sensor or algorithm level artifacts imposed by the smartphone cam-
era. The ability to predict the originating device from image pixels deserves further research due to potentially 
grave privacy implications if images turn out to be reliably attributable back to devices that took them, leading 
to deanonymization of image takers who would prefer to keep their identity hidden.

Figure 6.   Selected coefficient matrices Pj from a regression of facial images X on binary features Y under L1 
regularization. Lighter color indicates more positive coefficient values, darker color—more negative coefficient 
values, and gray color indicates values close to zero. Coefficients have been normalized for visualization: 
Pj/max(|Pj|) . The coefficient matrices represent visually prominent imprinting of different features on 
consumer facial images, as identified by the linear model.

https://bitbucket.org/rtaylor/pylbfgs/src/master/
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Outside top 20 predictable variables (demographics, smartphone variables, body fitness, etc.), the majority 
of other significantly predictable personal attributes achieve relatively low prediction accuracy levels around 
AUC​≈0.6. We argue these are representative results on smaller sample sizes, like ours, and on images collected 
outside of controlled/special conditions (e.g., controlled lab settings that may affect levels of signaling by indi-
viduals). In other words, we view our results as a lower bound on what is achievable using facial analysis. We 
hypothesize there is a substantial accuracy upside that could be achieved for our results through a larger sample 
size. For instance, while we report AUC=0.6 for sexual orientation prediction, higher AUC of 0.71 (women) 
and 0.81 (men) has been reported7 on larger training data of around 75 thousand individuals and three hundred 
thousand images. For political orientation (‘Political party alignment: Republican’), while we report AUC=0.6, 
a study on over a million respondents for a similar variable ‘liberal vs. conservative’ has reported AUC in the 
0.7-0.73 range, depending on the evaluation set5. (Yet even such large sample sizes do not allow for perfect AUC 
of ∼1.0 on such attributes).

Our simultaneous observation of multiple personal attributes per person facilitates an investigation of the 
mechanism behind how facial images signal information. Correlation analysis suggests that the most likely 
explanation for the variety of signals in facial images that we observe is that personal attributes predict each 
other—for instance, body fitness (which is plausibly predictable from face bulkiness/width in a facial image) 
turns out to be correlated with employment status in our data and thus offers a plausible mechanism for the 
surprising employment status predictability from a facial image. Our L1-regularized image decomposition tech-
nique reveals specific facial image areas that signal personal information: e.g., cheek areas indicate body fitness 
and weight satisfaction; beard/chin-and-jaw areas indicate self-perception of religiosity. Visual prominence of 
the image areas identified by L1 decomposition is strongly correlated with observed AUC scores across 349 
variables, supporting the validity of our interpretation of these visual areas as drivers behind the predictions. 
Overall, our analyses point to smartphone camera artifacts, BMI, skin properties, and facial hair as top candidate 
non-demographic signals in facial images.

As to implications for policy makers, while there are a few variables that facial images provide a stronger signal 
for (smartphone type or the more visually obvious demographics or body fitness), we find 77% of 349 considered 
variables cannot be predicted from facial images better than random, and the rest of the predictable variables 
achieve only moderate prediction quality at AUC​≈0.6. Even if large sample sizes could boost the accuracy to 
higher levels such as AUC=0.8, observed in larger sample studies5,7 for select variables, these evidence levels 
do not stand as an undeniable proof that a person possesses or does not possess a particular personal attribute. 
Therefore, if the type of risk we worry about is the revelation of some personal trait via facial image pixels in a 
way that is definitive, yet non-obvious to human eye, such risk looks limited across most variables.

At the same time, we do find that pixel values of a single facial image provide a lot of weak versatile statistical 
signals on individual’s behaviors, preferences, character, personality, and beliefs, across a wider range of vari-
ables than previously reported. Such weak information signals can be used by rational agents to inform their 
decisions—more innocently in personalization and ad targeting (ad targeting industry, in particular, is known to 
utilize weak statistical signals54) and far less innocently in hiring or making decisions in court settings. Prejudice 
caused by decision makers’ inappropriate exposure to such statistical information is thus the main policy concern, 
in our view. To address this concern, we advocate for the use of blinded procedures when any risk of personal 
information exposure is unacceptable. The right to be forgotten and similar laws can also help by enabling indi-
viduals to force the removal of their facial images and corresponding private information where they so desire.

We hope that our results will stimulate further research in the area of facial analysis and encourage wider 
use of megastudies that assess multiple variables of interest simultaneously as a tool for knowledge discovery. In 
our view, potentially fruitful directions for future research include: (a) studying ways to improve facial analysis 
accuracy overall and, to minimize possible biases, across specific demographics groups55; (b) investigating the 
possibility of attribution of images to the originating smartphone camera device and the privacy implications 
thereof; and (c) investigating the quality of personal information predictions from more extensive visual infor-
mation about a person, such as full-body video footage.

Data availability
The data and code used to compute the results as well as the questionnaire used in data collection are available 
at https://​github.​com/​compu​tatio​nalma​rketi​ng/​facial-​analy​sis-​megas​tudy.
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