
What's in a name?
In the once upon a time days of the First Age of
Magic, the prudent sorcerer regarded his own true
name as his most valued possession but also the
greatest threat to his continued good health, for—the
stories go—once an enemy, even a weak unskilled
enemy, learned the sorcerer's true name, then routine
and widely known spells could destroy or enslave even
the most powerful. As times passed, and we graduated
to the Age of Reason and thence to the first and
second industrial revolutions, such notions were
discredited. Now it seems that the Wheel has turned
full circle (even if there never really was a First Age)
and we are back to worrying about true names again.
 –True Names, V. Vinge

One of those moments
I was talking to a networking-researcher friend [1] one day, and I suddenly remarked on what a large
percentage of our conversation had to do with names. He looked at me and said: “Well… yeah. Naming
things is one of the fundamental things computer scientists do.”

The light bulb that went off in my head was so blinding, I dropped out of the conversation for about 20 or 30
seconds of dead silence while I tried to deal with his statement.

But, really, I've been dealing with it ever since. I had this conversation around 1993, and since then, it seems
that the concept of names has come up over and over in my life working with information architectures.

Distal access and symbol systems
The best explanation of names I ever got—what they are and why they matter—didn't come from a
programming-languages person, or a networking person. It came from a scientist who worked in Artificial
Intelligence: my thesis adviser, Allen Newell [2].

Newell and Simon's Turing award cited them for their work on “symbol systems.” Newell once told me that
this was just names, and then he explained his understanding of names: “They provide distal access.” That is,
a name is a local piece of data that stands for some other piece of data, which is presumably large and
remote. You can now use that small, convenient, local datum instead of the large, remote thing for which it
stands. The key act you perform with a name (that is, a symbol) is ship it to that remote location, and get
back the chunk of data it named. Newell said the career-making, fundamental “aha” experience of his entire
life was realising that computers were not, as was typically held in the 1960's, “number crunchers.” They
were symbol processors—something much more general. They processed names.

If you accept Newell's definition, you suddenly start seeing names everywhere, at every scale:

Moving a register id from the instruction-fetch unit on one side of a CPU to the register bank on the
other;
Shipping an address from the CPU to the memory system;
Referencing a variable in a tight loop that was bound on entry to the containing procedure;
Sending a host name to a DNS server down the hall;
Sending a URL from my web browser to a server on the other side of the planet;
Using a ten-kilobyte BitTorrent file to download a multi-gigabyte movie off the net.

These are all just names and their associated dereferencing operations. Any time you see a system that has a
notion of “cookies” or “handles:” those are just different names for names.

As far as Newell was concerned, this is the purpose served by names, or symbols, in all computational
systems. Including the one in your head. When he said “distal access,” he assumed that you, too, have

04/10/2024, 12:40 What's in a name?

https://www.khoury.northeastern.edu/home/shivers/papers/whats-in-a-name.html 1/4

structures on one side of your head representing what you know about, say, Neil Armstrong, and a smaller
structure on the other side of your brain encoding the name “Neil Armstrong,” and cognitive mechanisms
allowing you to fetch the former given the latter.

True names, finance and prudent sorcerers
The BitTorrent example above is particularly interesting, since it comes with an unusual, distributed
dereferencing mechanism. A BitTorrent name also has the additional exotic property of being a “true name,”
in that it names one and only one piece of data. You don't need to trust the distributed store: every identifier
includes enough information for you to verify that what your dereference produces is the thing originally
named.

To invoke my opening quotation from the novel True Names, cultures have always attached a kind of magic
to names, reflecting an intuitive understanding that names convey power and control; the reason for this is
reflected in Newell's summary of names as being a means of access. According to the book of Genesis, for
example, the first act of Man was the assignment of names [3], something which symbolically (there's that
word, again) represents a transfer of control over the material world, as it is handed from its divine source
over to human dominion.

Shifting from the sacred to the profane, these days I'm working with a bunch of finance people, who are so
concerned with the issue that they devote really astounding amounts of brainpower and labor to keeping
straight the names of things. An example will show why. Financial people not quite as obsessive about names
as Jane Street's programmers have been known to use the name “TWTRQ” to purchase sizeable lots of
Twitter stock. This is not a very good idea, because that actually gets you shares in the company Tweeter.
Which is bankrupt. Twitter is traded on the stock exchange as “TWTR,” not “TWTRQ.” Likewise, Comcast
has two different listings on the exchange (CMCSA and CMCSK), which get you different kinds of stock.

Oh, and the people who work on this stuff at Jane Street call what they do, “symbology.” They must have
read Newell and Simon's Turing Award lecture, I guess.

Sharing and arrows
Another fundamental property I'd note that names have—besides ubiquity, and this notion of “distal
access”—is that they give you the ability to refer to a thing multiple times. That's always a hint that maybe
you need to be thinking about names. For example, if I have a computation represented by some expression
⟨exp⟩, and I want to do exactly one thing to the value it produces—say, I want to add 5 to it—then I simply
write

⟨exp⟩ + 5

No need to name the value. But if I want to do two things to it, then I need to name it, so I can reference it:

let x = ⟨exp⟩ in

print(x); (* first use *)

f(x+5); (* second use *)

One way to view this is to say that a context-free grammar (like the one that says what strings are legal Java
programs) turns a string of text into a tree structure, the parse tree. Once you put names into a language,
however, your tree can now encode a DAG or (with recursive “letrec” scope) a general graph—names let you
encode control- and environment-structure loops in your tree. When you need to write down something with
DAG or cyclic structure, that's a hint you need to start thinking about some kind of a language with names in
it.

So, I've now said the same thing a couple of times. Why not say it again? A name is an arrow: a link from
arrow tail (reference) to arrow head (binding). (Or as compiler hackers prefer to say, from “use” to “def”)
Some people take this arrow idea quite literally—for example, the Racket language's development
environment will show you these links as actual arrows on your screen when you hover your mouse over a
variable.

The art of names

04/10/2024, 12:40 What's in a name?

https://www.khoury.northeastern.edu/home/shivers/papers/whats-in-a-name.html 2/4

http://racket-lang.org/
http://download.racket-lang.org/
http://download.racket-lang.org/

Echoing my networking friend, I have a lot of respect for people who name well. Name choices inflict
specific thought processes on people who use them; bad name choices inflict perverse or misleading thought
processes, and make it hard to understand what's happening in a system. Good name choices make it easy
and natural to do the right thing—like expressive, well-chosen types, they lead you effortlessly to the terms
you wanted to write.

This is because names used by humans come with baggage. They fit into a larger framework. When you can
get that framework right, and stick to it, then the names come easy—not just when they are minted, but when
someone is trying to recall the name for some existing thing.

For example, when I'm using a library, and discover that

you make new hash tables with hashtable_create,
but new red/black trees with make_rbtree,
and new skip lists with NewSkipList,

I cringe. Much, much better to fix on a single lexeme, such as “create”, and use that everywhere in the names
of functions that make / create / allocate new things: create_hashtable, create_rbtree, and
create_skiplist. Consistently constructing your names from a well-chosen set of such parts means that,
once clients of your system have seen a couple of representative names, they can more or less guess the
existence of functions they've never even seen, without having to paw through documentation or stop and
look things up.

When I see someone agonising over what is just the right name for something he is defining, I relax a little
bit: I know I'm working with someone who gets things right. Because naming things is one of the
fundamental things engineers do.

The logic of names
One final remark about names. We use names all our lives, every day, all day. So they seem obvious and not
so mysterious. But names are subtle. There is a sense in which the λ calculus is nothing more, really, than a
theory of: names. Go look at the fundamental, definitional rules of the λ calculus. They are all about
manipulating names! Consider, for example, β reduction, which slips some tricky renaming steps in behind
the scenes as you proceed down into the redex. Likewise, the α rule tells you what it is about names that
doesn't matter, and what it is about names that is of essence.

The λ calculus was a logician getting the handling of names right. It's amazing to me that this is such a recent
step forward for the human race, something that has happened within living memory. And we've been
working on names formally, not just in the street, for quite a while: a Greek formal-methods friend of mine
[4] gives Aristotle credit for articulating the notion of “variables”—that is, names. When it takes over 2300
years to really nail down an idea, you figure the subject might be a little deeper than you initially supposed.

Another sign this is subtle is how many smart people got this wrong in the '70s and '80s by designing
languages with dynamic scoping for their name handling. (Not that I'm, uh, naming any names.)

Yet another sign is that, in 2014, it's still a hot research topic! All the work on “macro hygiene” that comes
out of the Scheme community? It's about names. The recent work done by Andy Pitts, Francois Pottier and
others on nominal logics and nominal types? Nominal logic is just what the name says: a system whose entire
raison d'être is manipulating names. Bob Harper and Derek Dreyer's work on module structures?
Straightening out names as they are used in type classes and program modules [5].

Names have been significant in my own research life. For example, one of the most fun research results I
ever had was an algorithm I developed with Mitch Wand that exploited a surprisingly simple data structure
for representing the arrows that are names. I did some work in grad school on a family of program analyses
that featured varying degrees of precision in how they abstracted environment structure: the key to the whole
thing lay in the semantic mechanism that manages name spaces and name binding. Two of my top grad
students have both done even more recent dissertations on novel, exciting mechanisms for reasoning about
environments and the names they manage: Dimitrios Vardoulakis jumped the power of the abstraction up
from finite to infinite domains, which is not so easy to do in a finite analysis; Matt Might's dissertation had

04/10/2024, 12:40 What's in a name?

https://www.khoury.northeastern.edu/home/shivers/papers/whats-in-a-name.html 3/4

no less than three distinct innovations concerning the design and management of abstract environments:
abstract counting, abstract GC and frame-string contours.

But that's what's going on at the frontiers of scientific knowledge. Returning to the trenches of designing
information systems and just doing my day-to-day programming: when I worry about handling names right, I
tend to stop and bless the name of Church for getting things sorted for me, and am grateful I get to work in a
tool for expression directly based on his results. As the man said of the λ calculus, “There may, indeed, be
other applications of the system than its use as a logic.”

Well… yeah.
 -Olin

Acknowledgements
Besides the names already mentioned in this essay, I'm also indebted to Harry Mairson and Alan Bawden for
contributing to my ongoing education on the subject of names.

Footnotes
1 John Wroclawski

2 I actually had two thesis advisors: Peter Lee and Allen Newell. This is like winning the lottery two days
consecutively.

3 Genesis 2:19 “And out of the ground the Lord God formed every beast of the field, and every fowl of the
air; and brought them unto Adam to see what he would call them: and whatsoever Adam called every living
creature, that was the name thereof.”

4 Panagiotis Manolios

5 …or so I am reliably assured by my friends who have the intellectual horsepower to understand their
papers.

04/10/2024, 12:40 What's in a name?

https://www.khoury.northeastern.edu/home/shivers/papers/whats-in-a-name.html 4/4

