
20
Software Components: Only
The Giants Survive1

Butler W. Lampson

Abstract

For many years programmers have dreamed of building systems from a library
of reusable software components together with a little new code. The closest
we’ve come is Unix commands connected by pipes. This paper discusses the
fundamental reasons why software components of this kind have not worked in
the past and are unlikely to work in the future. Then it explains how the dream
has come true in spite of this failure, and why most people haven’t noticed.

Introduction

People have been complaining about the “software crisis” at least since the
early 1960’s. The famous NATO software engineering conference in 1968
brought the issue into focus, and introduced the term “software engineering”.
Many people predicted that software development would grind to a halt because
of our inability to handle the increasing complexity; of course this has not
happened.

What is often overlooked is that the software crisis will always be with us
(so that it shouldn’t be called a “crisis”). There are three reasons for this:

 As computing hardware becomes 100 times more powerful every dec-
ade (because of Moore’s law), new applications become feasible, and

1 This paper is based on a keynote address given at the 21 st International Conference
on Software Engineering, 1999. It was written for a symposium in honor of Roger
Needham, February 2003, and published in Computer Systems: Theory,
Technology, and Applications, K. Sparck-Jones and A. Herbert (editors),
Springer, 2004, pp 137-146.

2 Lampson

they require new software. In other branches of engineering the pace of
change is much slower.

 Although it’s difficult to handle complexity in software, it’s much
easier to handle it there than elsewhere in a system. A good engineer
therefore moves as much complexity as possible into software.

 External forces such as physical laws impose few limits on the applica-
tion of computers. Usually the only limit is our inability to write the
programs. Without a theory of software complexity, the only way to
find this limit is trial and error, so we are bound to over-reach fairly of-
ten. “A man’s reach should exceed his grasp, or what’s a heaven
for.”—Browning.

At the 1968 NATO conference, Doug McIlroy proposed that a library of
software components would make programming much easier [7]. Since then,
many people have advocated and worked on this idea; often it’s called “re-
usable software”, though this term has other meanings as well. Most recently,
the PITAC report [9] proposed a major research initiative in software compon-
ents. This paper explains why these ideas won’t work.

Figure 1: A typical business application

How much progress has there been in software in the last 40 years? Either a
little or a lot: the answer depends on what kind of software you mean.

A little, if you are writing a self-contained program from scratch, or modify -
ing an existing self-contained program. The things that help the most are type-
safe languages such as Pascal and Java, and modules with clean interfaces [8];
both have been around for 30 years. Program analysis tools help with modifica -
tions, and they have been improving steadily [3].

A lot, if you are doing a typical business computing application. You build
your application on top of a few very large components: an operating system
(Linux or Windows), a browser (Netscape or Internet Explorer), a relational

Software Components 3

database and transaction processor (DB2, Oracle, or SQL Server), and a rapid
application development system (Visual Basic or Java); see Figure 1. You use
only a small fraction of the features of each component, and your program con -
sumes 10 or 100 times the hardware resources of a fully custom program, but
you write 10% or 1% of the code you would have written 30 years ago. Certain
kinds of domain-specific programs are also dramatically easier. If a spreadsheet,
SQL, Matlab, Mathematica, or HTML is a good match for your problem, again
you can write your program 10 or 100 times more easily.

The component library: Dream and reality

McIlroy’s idea was a large library of tested, documented components. To build
your system, you take down a couple of dozen components from the shelves
and glue them together with a modest amount of your own code.

The outstanding success of this model is the Unix commands designed to be
connected by pipes: cat, sort, sed, and their friends [6]. There are quite a
few of these, and you can do a lot by putting them together with a small amount
of glue, usually written in the shell language. McIlroy [1] gives a striking ex-
ample. It works because the components have a very simple interface (a charac-
ter stream, perhaps parsed into lines or words) and because most of them were
written by a single tightly-knit group. Not many components have been added
by others.

Another apparent success is the PC hardware industry. PC’s are built from
(hardware) components: processor and chipset, DRAM SIMM, hard disk, mon-
itor, graphics card and driver, etc. Manufacturers really do slap these compon-
ents together to make systems. Reality is uglier than appearance, though. Only a
few components really work well, the ones that can be tested adequately by run-
ning Windows on them for a few days. Others cause lots of problems, as any -
one knows who has tried to build a PC. And Microsoft is responsible for the in-
tegrity of the PC ecosystem.

For the most part, component libraries have been a failure, in spite of much
talk and a number of attempts. There are three major reasons for this:

 There’s no business model.
 It costs a client too much to understand and use a component.
 Components have conflicting world views.

No business model
Design is expensive, and reusable
designs are very expensive. It costs
between ½ and 2 times as much to
build a module with a clean interface
that is well-designed for your system
as to just write some code, depending
on how lucky you are. But a reusable

Reusable component

½ – 2
x

3 – 5
x

Good module for your system

Just code it

4 Lampson

component costs 3 to 5 times as much as a good module. The extra money pays
for:

 Generality: A reusable module must meet the needs of a fairly wide
range of ‘foreign’ clients, not just of people working on the same pro-
ject. Figuring out what those needs are is hard, and designing an imple-
mentation that can meet them efficiently enough is often hard as well.

 Simplicity: Foreign clients must be able to understand the interface to
a module fairly easily, or it’s no use to them. If it only needs to work in
a single system, a complicated interface is all right, because the client
has much more context.

 Customization: To make the module general enough, it probably must
be customizable, either with some well-chosen parameters or with
some kind of programmability, which often takes the form of a special-
purpose programming language.

 Testing: Foreign clients have higher expectations for the quality of a
module, and they use it in more different ways. The generality and cus-
tomization must be tested as well.

 Documentation: Foreign clients need more documentation, since they
can’t come over to your office.

 Stability: Foreign clients are not tied to the release cycle of a system.
For them, a module’s behaviour must remain unchanged (or upward
compatible) for years, probably for the lifetime of their system.

Regardless of whether a reusable component is a good investment, it’s
nearly impossible to fund this kind of development. It’s not necessary for build-
ing today’s system, and there’s no assurance that it will pay off.

It’s also very difficult to market such components:
 There are many of them, so each one gets lost in the crowd.
 Each client needs a number of them, so they can’t be very expensive.
 Each one is rather specialized, so it’s hard to find potential customers.

Cost to understand
To use a component, the client must understand its behaviour. This is not just
the functional specification, but also the resource consumption, the exceptions it
raises, its customization facilities, its bugs, and what workarounds to use when
it doesn’t behave as expected or desired. One measure of this cost is the ratio of
the size of a complete specification (which of course seldom exists) to the size
of the code. For a modest-sized component, this ratio is usually surprisingly
large.

Furthermore, because the written spec is almost always quite inadequate,
there is uncertainty about the cost to discover the things that aren’t in the spec,
and about the cost to deal with the surprises that turn up. If the module has been
around for a while and has many satisfied users, these risks are of course smal-
ler, but it’s difficult to reach this happy state.

Software Components 5

The client’s alternative is to recode the module. Usually this is more predict-
able, and problems that turn up can often be handled by changing the module
rather than by working around them. This is probably feasible if the module is
built as part of the same project, but impossible if it’s a reusable component.

Conflicting world views
The interface to a component embodies a view of the world: data types, re-
source consumption, memory allocation, exception handling, etc. If you take 10
components off the shelf, you are putting 10 world views together, and the res -
ult will be a mess. No one is responsible for design integrity, and only the poor
client is responsible for the whole thing working together. There can easily be
n2 interactions among n components.

Good things that aren’t reusable components

People often ask “What about Corba and COM; aren’t they successful?” Per-
haps they are, but they are ways to run components, not components them-
selves. They play the role of a linker and a calling convention for distributed
computing.

The “components” that you can get for Visual Basic, Java, Microsoft Office,
and browsers are not reusable components either. You can use a couple of them
in your system, but if you use 10 of them things will fall apart, because they are
not sufficiently robust or well-isolated. If you don’t believe this, try it for your -
self.

Nor is a module with a clean interface a reusable component, for all the
reasons discussed above. A clean interface is a very good thing, and it’s cer-
tainly necessary for a reusable component, but it’s not sufficient.

Platforms

The last section shows why a public library of software components is not pos-
sible. Some less ambitious things have worked, however. Most of them are vari-
ations on the idea of a platform, which is a collection of components on top of
which many people can build programs, usually application programs. Win-
dows, Linux, Java, DB2, Microsoft Office, OpenGL, the IMSL numerical lib -
rary, and PC hardware are examples of platforms. So, on a smaller scale, are the
Unix shell and text processing commands discussed in the introduction.

The essential property of a platform is that someone takes responsibility for
its coherence and stability. Often this is a vendor, motivated by the fact that
having lots of application expands the market for the platform. It can also be a
community, as in the case of Linux or OpenGL, in which component builders

6 Lampson

are motivated by status in the community or by the fact that they are also cli -
ents. A platform needs a shared context that everyone understands and a com-
mon world view that everyone accepts; this means that its community must in -
clude both the component builders and many of the clients. A shared context is
much easier when the domain is narrow and there’s a clean mathematical
model, as with graphics or numerical libraries.

Sometimes people try to build lots of components on a common and hospit-
able platform, such as Visual Basic or Java. This can work if the components
come from (or pass through) a single source that takes responsibility for their
coherence. Otherwise the problems of too little generality, cost to understand,
and conflicting world views make it impossible to use more than two or three of
them in a system.

Big components

As we saw in the introduction, big components like browsers and database sys -
tems do work, even though a library cannot. They are five million lines of code
and up, so huge that you only use three or four of them: Linux or Windows,
Netscape or Internet Explorer, Oracle or DB2, Visual Basic or Java. How do
they overcome the problems with component libraries?

Business model: There’s a market for such big things. Lots of people need each
one, there are only a few of them, and the client only has to buy a couple of
them, so marketing is feasible. Building your own, on the other hand, is not
feasible, even if you only use 1% of the features: 1% of 20 million lines is still
200,000 lines of code to write, and that’s a low estimate of the amount of code
for 1% of the features.

Cost to understand: The specification may be large and complicated, but it is
much smaller than the code. Because the market is large, vendors can afford to
invest in documentation; in fact, every such component has a mini-industry of
books about it. They can also afford to invest in customization: operating sys-
tems have applications and scripting languages, browsers have scripts, Java,
plug-ins, and dynamic HTML, and database systems have SQL.

Conflicting world views: If you use three of them, there are only three pairwise
interactions, and only two if they are layered. The vendor provides design integ-
rity inside each big component.

In fact, big components, along with transaction processing, spreadsheets, SQL,
and HTML, are one of the great successes of software in the last 20 years.

People often complain about big components because they are wasteful. A
business application built on a browser and a database system can easily con-

Software Components 7

sume 100 times the resources of one that is carefully tailored to the job at hand.
This is not waste, however, but good engineering. There are plenty of hardware
resources; what’s in short supply are programmers and time to market, and cus -
tomers care much more about flexibility and total cost of ownership than about
raw hardware costs.

Another way to look at this is that today’s PC is about 10,000 times bigger
and faster than the Xerox Alto [10], which it otherwise closely resembles. It
certainly doesn’t do 10,000 times as much, or do it 10,000 times faster. Where
did the cycles go? Most of them went into delivering lots of features quickly,
which means that you can’t have first-class design everywhere. Software de-
velopers trade hardware resources for time to market. A lot of them also went
into integration (for example, universal character sets and typography, drag and
drop, embedding spreadsheets in text documents) and into compatibility with
lots of hardware and with lots of old systems. And a factor of 10 did go into
faster responses to the user’s actions.

What else could work?

If components can’t help us much to build software, what can? Two ap-
proaches are promising: declarative programming, and specifications with teeth.

Declarative programming
“Declarative program” is not a precise concept, but the idea is that the program
is close to the specification, perhaps even the same. For example, in a simple
spreadsheet the program is just the formulas; if there is no higher structure, the
formulas express the user’s intent as simply as possible. Of course, if the user’s
intent was “a capital gains worksheet with data from my brokerage account”,
the raw spreadsheet has a lot of extra detail. On the other hand, when equipped
with suitable templates Excel can come fairly close to that intent.

Other examples of declarative programming are the query language of SQL,
a parser generator like YACC, a system for symbolic mathematics like Math-
ematica, and a stub generator for remote procedure call. What they have in
common is that what you have to tell the system is closer to your intent than an
ordinary program. This makes programming faster and more reliable. It also
opens up opportunities for analysis and optimization; parallel implementations
of SQL are a good example of this.

Specifications with teeth
Specifications are useful as documentation, but they have the same problem as
all documentation: they are often wrong. A spec is more valuable if it has teeth,
that is, if you can count on its description of the program’s behaviour. Such
specs are much more likely to pass Parnas’ coffee-stain test: the value of a spec

8 Lampson

is proportional to the number of coffee-stains on the implementers’ copies. A
type declaration is an example of a spec with teeth.

Teeth mean tools: the computer must check that the spec is satisfied. There
are two kinds of teeth: statically checked, and dynamically enforced by encap-
sulation. A type-safe language, for example, usually is mostly statically
checked, but has dynamic checking of some casts. Static checks are better if
you can get them, since they guarantee that the program won’t crash in Peoria.
We are slowly learning how to check more things statically.

Encapsulation takes many forms. The simplest and most familiar is the
sandboxing provided by operating system processes or Java security permis-
sions. Much more powerful is the automatic concurrency, crash recovery, and
load balancing that a transaction monitor provides for simple sequential applic -
ation programs [5]. Another example is the automatic Byzantine fault-tolerance
that a replicated state machine can provide for any deterministic program [4].

Conclusion

A general library of software components has been a long-standing dream, but
it’s unlikely to work, because there’s no business model for it, it costs the client
too much to understand a component, and components have conflicting world
views. In spite of this discouraging conclusion, very large components do work
very well, because they have lots of clients and you use only three of them.

Two other approaches can make software easier to write: declarative pro-
gramming, and specifications with teeth. The latter guarantee something about
the behaviour of a module. The enforcement can be done statically, as with a
type checker, or dynamically, as with transaction processing.

References

1. BENTLEY, J., KNUTH, D., AND MCILROY, M.D., ‘A literate program,’ Comm. ACM,
vol. 29, no. 6, June 1986, pp. 471–483.

2. BROOKS, F., ‘No silver bullet,’ IEEE Computer, vol. 20, no. 4, April 1987, pp. 10–
19. Reprinted in Brooks, The mythical man-month, 2nd ed., Addison-Wesley, 1995.

3. BUSH, W., PINCUS, J., AND SIELAFF, D., ‘A static analyzer for finding dynamic pro-
gramming errors,’ Software—Practice and Experience, vol. 30, no. 7, June 2000,
pp. 775–802.

4. CASTRO, M. AND LISKOV, B., ‘Practical Byzantine fault tolerance and proactive re-
covery,’ ACM Trans. Computer Systems vol. 20, no. 4, October 2002, pp. 398–461.

5. GRAY, J. AND REUTER, A., Transaction processing, Morgan Kaufman, 1993.
6. KERNIGHAN, B. AND PIKE, R., The Unix programming environment, Prentice-Hall,

1984.
7. MCILROY, M.D., ‘Mass produced software components,’ In P. Naur and B. Ran-

dell, eds., Software engineering, Report on a conference sponsored by the NATO

Software Components 9

Science Committee, Garmisch, Germany, October 1968, Scientific Affairs Divi-
sion, NATO, Brussels, 1969, pp. 138-155.
http://www.cs.dartmouth.edu/~doug/components.txt

8. PARNAS, D., On the criteria to be used in decomposing systems into modules.
Comm. ACM, vol. 15, no. 12, December 1971, pp. 1053–1058.

9. President’s Information Technology Advisory Committee, information technology
research: investing in our future.
http://www.ccic.gov/ac/report/

10. THACKER, C., Personal distributed computing; The Alto and Ethernet hardware, in
A history of personal workstations, A. Goldberg, ed., Addison-Wesley, 1988, pp.
267–290.

http://www.ccic.gov/ac/report/

	Abstract
	Introduction
	The component library: Dream and reality
	No business model
	Cost to understand
	Conflicting world views

	Good things that aren’t reusable components
	Platforms
	Big components
	What else could work?
	Declarative programming
	Specifications with teeth

	Conclusion
	References

