Literate Programming using noweb*

Andrew L. Johnson and Brad C. Johnson
December 19, 2000

Introduction

Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a com-
puter what to do, let us concentrate rather on explaining to humans
what we want the computer to do. (Donald E. Knuth, 1984).

In essence, this is the purpose of literate programming (LP for short). Such
an environment reverses the notion of including documentation, in the form
of comments, within the code, to one where the code is embedded within a
program’s description. In doing so, literate programming facilitates the devel-
opment and presentation of computer programs that more closely follow the
conceptual map from the problem space to the solution space. This, in turn,
leads to programs that are easier to debug and maintain.

When literate programming, one specifies the program description and the
program code in a single source file in the order best suited to human un-
derstanding. The program code can be extracted and assembled into a form
understandable for the compiler or interpreter by a process called ’tangling’.
Documentation is produced by a process of 'weaving’ the description and code
into a form ready to be typeset (most often by TEXor I TEX).

Many different tools have been created for literate programming over the
years and most of the more popular are based, either directly or conceptually,
on the WEB system created by D. E. Knuth [¢f. 1984. Literate Programming.
The Computer Journal (27)2:97-111]. This article focuses on Norman Ramsey’s
noweb—a simple to use, extensible literate programming tool that is indepen-
dent of the target programming language.

Overview of the noweb System.

When you write a literate program using noweb you create a simple text file
(which by convention has a .nw extension) in which you provide all of the tech-

*A version of this article has been previously published in the Linux Journal (issue 42,
1997), and is made available here with permission of the Linux Journal



nical documentation for the various parts of the program along with the actual
source code for each part of the program.

This file (see Listing 1), which we will refer to as the nw source file, is
then processed by noweave to create the documentation in a form ready for
typesetting (the ’typeset version’ of the program; see Fig 1),or processed by
notangle to extract the code chunks and assemble them in their proper order
for the compiler or interpreter (the ’executable version’ of the program; see
Listing 2). These two processes are not stand-alone programs, but a set of
filters through which the nw source file is piped. It is this pipeline system that
makes noweb both flexible and extensible as the pipelines can be modified and
new filters can be created and inserted in the pipelines to change the behavior
of noweb.

Listing 1: The Literate Source

\documentclass[10pt]{article}
\usepackage{noweb}
\noweboptions{smallcode,longchunks}

\begin{document}
\pagestyle{noweb}

@ \paragraph{Introduction}

This is [[autodefs.perl]]\footnote{Copyright 1997, Andrew L.
Johnson and Brad C. Johnson, All rights reserved.},

a Perl script to be used as an [[autodefs]] filter

in the [[noweb]] pipeline to identify and index

some common Perl definitions. Since this

file is also meant to show off some of the

features of [[noweb]] it is purposely verbose

and contorted.

Perl does not require the formal declaration or typing of
variables which makes it difficult to

differentiate between declarations and usages of

variables. We may however find definitions of [[sub]l]’s and
[[package]]’s with little difficulty and that is the purpose of
this module. Before we begin we need to know

some facts about [[noweb]]’s pipeline structure.\footnote{Noweb’s
pipeline structure is described in the \textit{Noweb Hackers
Guide} which is included in the [[noweb]] distribution.}

Actual code in the pipeline lie between lines

of the form [[@begin code]] and [[@end codel].

In Perl these are easily recognized by the following regular

expressions.

<<Global variables>>=
$begin_code_pat = "~\@begin code";
$end_code_pat = ""\Q@end code";

@ %def $begin_code_pat $end_code_pat



@ Within a code block there are many types of lines. Ones
that contain actual code are prefixed by [[@text]].
<<Global variables>>=

$code_line_pat = "~\Q@text";

@ %def $code_line_pat

@ If, on a code line inside a code block, we find something that
should be added to the ‘‘Defines’’ block at the end of the code
chunk and appear in the index, then we need to add a line to the
pipeline of the form ‘‘[[@index defn <ident>]]’’.

<<Global variables>>=

$index_prefix = "\Q@index defn";

@ %def $index_prefix

@ \paragraph{autodefs.perl}
Our actual Perl script has the following simple shape:
<<autodefs.perl>>=
#!/usr/bin/perl
<<Global variables>>
<<[[process_code_chunk]] subroutine>>
while ( <> ) {

print $_;

if (/$begin_code_pat/o) {

process_code_chunk;

}

\paragraph{Processing the code chunk}
To process the code chunk we need to perform a few housekeeping
tasks. First, we only want to consider lines that begin with
[[$code_line_pat]] and second, we want to stop when we find a line
that matches [[$end_code_pat]]. The following loop will suffice
for this purpose.
<<[[process_code_chunk]] subroutine>>=
sub process_code_chunk {
while ( ($_ = <>) && !/$end_code_pat/o ) {
print $_;
if( /$code_line_pat/o ) {
<<Find and print any definitions>>
}
}
print $_; # make sure we print the ‘‘@end code’’ line
}
Q
@ When checking for definitions we first strip off
any comments since [[subl] or [[packagel] may
also occur in a comment. We then build
a list [[@def_list]] which contain all of the



[[sub]] and [[package]] definitions on the line
and print out an [[@index defn]] line for

each.
<<Find and print any definitions>>=
$_ =" s/#.%//o;

@def_list = (/sub\s(\w+)/go, /package\s(\w+)/go);
foreach $item (@def_list) {
print "$index_prefix $item\n";
}
Q

\paragraph{Defined Chunks}\par\noindent
\nowebchunks
\paragraph{Index}\par\noindent
\nowebindex

Q
\end{document}

Listing 2: The Tangled Code

#!/usr/bin/perl

$begin_code_pat = "~\@begin code";
$end_code_pat = ""\Qend code";
$code_line_pat = ""\@text";
$index_prefix = "\@index defn";

sub process_code_chunk {
while ( ($_ = <>) && !/$end_code_pat/o ) {

print $_;

if( /$code_line_pat/o ) {
$_ =" s/#.%//o;
@def_list = (/sub\s(\w+)/go, /package\s(\w+)/go);
foreach $item (@def_list) {

print "$index_prefix $item\n";

}
}
}
print $_; # make sure we print the ‘@end code’’ line
}
while ( <> ) {
print $_;
if (/$begin_code_pat/o) {
process_code_chunk;
}
}




Like most literate programming tools, noweb depends on TgXor KTEX—
(La)TEXto refer to either—for typesetting the documentation (although it has
options for producing html output as well). However, one need not be a
(La)TEXguru to produce good results as all of the hard work of cross-referencing,
indexing, and typesetting the code is handled automatically by noweave.

The Typeset Documentation.

The best way to get a feel for the capabilities of noweb is by reference to the
finished product—that is, the typeset version of a program. Figure 1 represents
the typeset version of a perl script which actually extends noweb’s functionality
by providing a limited ’autodefs’ filter for recognizing and marking package and
subroutine names in Perl for automatic cross-referencing and indexing.

Figure 1

Introduction This is autodefs.perl!, a Perl script to be used as
an autodefs filter in the noweb pipeline to identify and index some
common Perl definitions. Since this file is also meant to show off
some of the features of noweb it is purposely verbose and contorted.

Perl does not require the formal declaration or typing of variables
which makes it difficult to differentiate between declarations and
usages of variables. We may however find definitions of sub’s and
package’s with little difficulty and that is the purpose of this module.
Before we begin we need to know some facts about noweb’s pipeline
structure.2 Actual code in the pipeline lie between lines of the form
@begin code and @end code. In Perl these are easily recognized by
the following regular expressions.

5a (Global variables 5a)= (6b) 5bp
$begin_code_pat = "~\@begin code";
$end_code_pat = "~\Q@end code";
Defines:

$begin_code_pat, used in chunk 6b.
$end_code_pat, used in chunk 6c.

Within a code block there are many types of lines. Ones that contain
actual code are prefixed by @text.

5b (Global variables 5a)+= (6b) <5a 6an
$code_line_pat = ""\Q@text";

Defines:
$code_line_pat, used in chunk 6c.

LCopyright 1997, Andrew L. Johnson and Brad C. Johnson, All rights reserved.
2Noweb’s pipeline structure is described in the Noweb Hackers Guide which is included in
the noweb distribution.



6a

6b

6c

If, on a code line inside a code block, we find something that should
be added to the “Defines” block at the end of the code chunk and
appear in the index, then we need to add a line to the pipeline of
the form “@index defn <ident>”.

(Global variables 5a)+= (6b) <5b
$index_prefix = "\@index defn";

Defines:
$index_prefix, used in chunk 7.

autodefs.perl Our actual Perl script has the following simple shape:

(autodefs.perl 6b)=
#!/usr/bin/perl
(Global variables 5a)
(process_code_chunk subroutine 6c)
while ( <> ) {
print $_;
if (/$begin_code_pat/o) {
process_code_chunk;
}
}

Uses $begin_code_pat 5a and process_code_chunk 6c.

Processing the code chunk To process the code chunk we need
to perform a few housekeeping tasks. First, we only want to consider
lines that begin with $code_line_pat and second, we want to stop
when we find a line that matches $end_code_pat. The following loop
will suffice for this purpose.

(process_code_chunk subroutine 6¢)= (6b)
sub process_code_chunk {
while ( ($_ = <>) && !/$end_code_pat/o ) {
print $_;
if( /$code_line_pat/o ) {
(Find and print any definitions 7)
}
}
print $_; # make sure we print the ‘‘@end code’’ line
}

Defines:
process_code_chunk, used in chunk 6b.
Uses $code_line pat 5b and $end_code_pat 5a.



When checking for definitions we first strip off any comments since
sub or package may also occur in a comment. We then build a list
@def_list which contain all of the sub and package definitions on
the line and print out an @index defn line for each.

(Find and print any definitions 7)=
$_ =" s/#.%//o;
@def_list = (/sub\s(\w+)/go, /package\s(\w+)/go);
foreach $item (@def_list) {
print "$index_prefix $item\n";

3

Uses $index_prefix 6a.

Defined Chunks

(autodefs.perl 6b)

(Find and print any definitions 7)
(Global variables 5a)
(process_code_chunk subroutine 6c)

Index

$begin_code_pat: Ha, 6b
$code_line_pat: 5b, 6¢
$end_code_pat: bHa, 6c¢
$index prefix: 6a, 7
process_code_chunk: 6b, 6¢c

(6¢)



1b

When looking at this example one can quickly see how chunks of actual code
are interspersed throughout the descriptive text. Each code chunk is uniquely
identified by page number and an alphabetic sub-page reference. For example,
in Figure 1, there are four code chunks on the first page labeled in the left
margin as la, 1b, lc, and 1d.

Besides the marginal tag, the first line of each code chunk also has its name
and a chunk reference enclosed in angle brackets at the left margin and perhaps
cross-reference information at the right margin. Lets examine chunk 1b more
closely—a reasonable facsimile of its first line is:

(Globalvariablesla)+= ld < la 1b >

This line tells us that we are now in chunk 1b. The ( Global variables 1a)+=’
construct tells us we are working on the chunk named 'Global variables’ whose
definition begins in chunk la. The '+=’ indicates that we are adding to the
definition of ’Global variables’. At the right margin we encounter ’(1d) jla 1¢;’,
which means that the chunk we are defining is used in chunk 1d, and that the
current chunk is continued from chunk la and will be further continued in chunk
lc. Tt should be noted that all of these visual cross-referencing clues—with the
exception of the chunk name itself—are provided automatically by noweb.

At the end of any chunk there are two optional footnotes— a "Defines’ foot-
note and a 'Uses’ footnote. A user can manually specify, in the nw source file, a
list of identifiers (i.e., variables or subroutines) which are defined in the current
chunk. Some such identifiers may be automatically recognized if an ’autodefs’
filter for the programming language is used (there are autodefs filters available
for many languages including C, Icon, TEX, yacc and pascal). These identifiers
are listed in the 'Defines’ footnote below the chunk where their definition oc-
curs, along with a reference to any chunks which use them. Any occurrence of
a defined identifier is referenced in a ’Uses’ footnote below the chunk the chunk
that uses that identifier.

For example, in Figure 1, we see that chunk 1c defines the term $index _prefix
which is used in chunk 2b. A quick peek at chunk 2b verifies that, indeed, this
term is used and appears in the 'Uses’ footnote for that chunk.

Chunk 1d, named ‘autodefs.perl’, represents the top level description of our
entire program. This chunk is referred to as a 'root’ chunk in noweb and is not
used in any other chunk. Our example has but one root chunk, though you may
define as many as you wish in your nw source file and notangle can extract each
of them into separate files.

The first line of code in chunk 1d is the obligatory #!/usr/bin/perl line
which must begin all perl scripts intended to be invoked as an executable pro-
gram. However, the next two lines are not lines of perl code at all but instead are
references to other named chunk definitions. Such references indicate that the
code from those referenced chunks will be inserted at this point in the executable
program extracted by notangle. Thus we have a broad overview of our pro-
gram uncluttered by the specific global variable initializations and subroutine
definitions.



Looking at chunk 2a, which is included in our root chunk, we see that it
also includes another chunk, chunk 2b. This demonstrates that the inclusion of
chunks can be nested (to practically any level) and can occur in any order in
the documentation (definitions need not preceed uses).

Our documentation ends with two optional indices provided by noweb—an
index of code chunks and an index of idenfiers.

Writing the Program in noweb.

With the knowledge of what comes out the end of the pipeline in hand, we can
now describe the structure of the nw source file itself. The nw source file for our
example program is given in Listing 1.

When you write your noweb program you alternate between explaining some
piece of code and providing the formal definition of that piece of code. You must
indicate whether you are entering documentation or code by use of two noweb
tags.

To begin writing documentation one starts with an @ symbol in the left
column followed by either a space or a newline. This indicates that all of text
which follows, at least up to the next tag, is documentation text. All of the
text which occurs in documentation text is passed through the filtering process
to the (La)TgXfile. Thus, the author is responsible for providing any special
formatting such as sections, tables, footnotes, and mathematical formulae which
may be desired or needed in the documentation. In addition to the standard
(La)TeX command set, noweb provides three additional control sequences: Any
text surrounded by double square brackets in the text is typeset in the same
fashion as literal code; and the
nowebindex and
nowebchunks commands expand into the two types of indices shown at the end
of our example in Figure 1.

To indicate the beginning of a code chunk you simply use double angle
brackets surrounding a name for the code chunk and followed by an equal sign:

<<code_chunk_name>>=

Everything following this construct is considered to be literal code, or a ref-
erence to another chunk name. You reference another chunk name by placing
its name in double angle brackets with no trailing equal sign. As with docu-
mentation, a code chunk is terminated when another tag is encountered. To
continue a code chunk definition you simply start a new code chunk using the
same name within the brackets as the chunk you are continuing from.

The special formatting and cross-referencing of code chunks is handled auto-
matically by noweb and requires no special input by the user—with the exception
of manually specifying identifier definitions.

To manually indicate a list of identifiers which are defined in a given chunk
you terminate that chunk with a line of the form:



@ %def identl ident2

The identifiers given on the line will be placed in a ’Defines’ footnote for
that chunk and will automatically be cross-referenced and indexed by noweb as
described in the previous section.

The process by which notangle extracts the code into a form suitable for the
compiler or interpreter follows just a few simple rules. A root chunk is specified
on the command line as the chunk to be extracted and assembled. This chunk
is then output line by line until a reference to another chunk is encountered.
At this point, the referenced chunk is output line by line—and similarly for
any chunks referenced therein. When the referenced chunk has been output the
process of outputting the root chunk continues.

When dealing with continued chunks—two or more chunks sharing the same
name...notangle concatenates their definintions in order of appearance into a
single named chunk. The extracted code for our example program is in Listing
2, and it can be seen that all spacing and indentation is preserved appropriately
in the executable version.

It is this extraction and assembly process of notangle that allows the ex-
planation of the program and the presentation of each part of the program to
proceed in an order independent of how the program must be ordered for the
compiler or interpreter.

The Incantations.

Now that we know to create a program in noweb we can examine the methods of
generating our typeset and executable versions of the program. The noweb dis-
tribution provides a general shell script called, remarkably, noweb which drives
the notangle and noweave processes. However, this method of invocation,
though simple, is somewhat limited. We will focus here on using each tool
separately as this provides a more flexible approach.

When you invoke notangle you specify a chunk name (a root chunk) to
extract and assemble from the nw source file. If you fail to specify a chunk,
notangle will search for a chunk named "’ to extract (this is the default root
chunk in a noweb program). The notangle tool writes to stdout so you must
redirect this to a file of your choice. The general form of the command is:

notangle [-Rroot_chunk] [-Lformat]
[-filter cmd] source.nw > programfile

Thus, to extract the executable version of our example program we used:
notangle -Rautodefs.perl autodefs.perl.nw > autodefs.perl

The -R option specifies which root chunk to extract. The -L option is used
to embed line directives, if they are supported by the compiler/interpreter you
will be using. The line directives refer to locations in the nw source file, thus,

10



when debugging your code you need not ever refer to the executable version,
rather you can simply edit the code in the nw source file. The default format
of the line directives is for use with the C preprocessor, but also work well with
Perl with one catch. The line directives are emitted whenever a chunk is entered
or returned to, and refer to the next line of code. Therefore, in a script such
as ours, a line directive winds up as the first line of the executable version,
rendering it non-executable. The fix for this is to delete the first line directive,
or move it to below the first line and increment the line number by one.

One can write filters for use with either notangle or noweave to manipulate
the source once in the pipeline. The pipeline representation of the nw source file
in noweb is beyond the scope of this article (see the "Noweb Hacker’s Guide”
included in the documentation of the distribution). We will only mention that
a filter could easily be constructed which automates the solution to the above
mentioned line directive problem.

The typeset version of the program is generated with the noweave tool.
There are several useful options for noweave, all detailed in the man-pages.
Here we will only consider a few of the most important options.

The first options of general interest concern the desired output: you may
specify -latex (default), -tex or -html as the formatting language to be used
for the final documentation. Each of these options will supply an appropriate
wrapper (which can be suppressed with the -n option) for the typeset version.
You may write your nw source file intended for ITEXtypesetting and still have
the option of producing an html document by invoking noweave with the ~html
option and the latex-to-html filter (-filter 12h) included with the distribu-
tion.

The -x option enables cross-referencing and indexing of chunk names and
any identifiers which are automatically recognized by an ’autodefs’ filter. Using
the -index option implies -x and also provides cross-referencing and indexing
for manually defined identifiers—those mentioned in @ %def statements in the
nw source file.

Normally, noweave will insert additional information such as the filename for
use in page headers with its wrapper. The -delay option causes noweave to sus-
pend the insertion of this information until after the first documentation chunk.
This is most useful when you wish to provide your own (La)TeX wrapper to
specify additional packages or defining your own special formatting commands.
This implies a -n (omission of wrapper) option and requires that you make sure
to include a’
enddocument’ control sequence in a documentation chunk at the end of the file
to complete the wrapper. Our example nw source file is written in this fashion.

Our typeset version (Figure 1) was produced by first extracting the au-
todefs.perl root chunk with notangle and making it executable with the chmod
system command. We then placed this executable in the noweb library directory
and invoked noweave as:

noweave -autodefs perl -delay -index autodefs.perl.nw > autodefs.tex

11



This was followed by running KTEXon the resulting file—twice to resolve
page references—to create the dvi file, and then using dvips to create the
postscript version for inclusion with this article.

Additional options allow you to have the index created from an external
file, expand tabs, and to specify alternative formatting options provided by the
included noweb.sty file. The latter includes options to omit chunk numbering
in the left margins, change text size in code chunks, and switch from using
the symbolic cross-referencing of code chunks occurring at the right margin to
simple footnote style cross-referencing similar in style to the 'Defines’ and "Uses’
footnotes.

Conclusion

Admittedly, a literate program in general takes a little more time and effort to
initially produce. However, as much of this initial effort is devoted to explaining
each part of the program, the author is likely to have produced a better quality
program in the end because he or she has put more thought into the program’s
design at each stage of the game. Additionally, by investing in the extra effort
of creating a well documented program, the time saved later in maintaining and
upgrading the program is considerably lessened.

In terms of documentation and explanation, the ability to describe com-
ponents as they come into play in the design of the program—rather than in
the order they must occur for the compiler or interpreter—is a vast improve-
ment over traditional commented code. In addition to the benefits of improved
code and easier maintanence, literate programs can also serve well as excellent
teaching tools.

Availability and Notes

noweb was written by Norman Ramsey, and pointers to obtaining the source
and binary distributions of noweb (among other related resources) can be found
at his noweb homepage (http://www.cs.virginia.edu/ nr/noweb).

The current source distribution contains both awk and Icon versions of the
library files necessary. The binary version is built from the Icon source which is
recommended as the awk version lacks some of the default behavior of the Icon
version. Norman Ramsey has informed us that he is no longer able to maintain
and upgrade the awk version.

Norman Ramsey has also told us of plans for version 2.8 to include a troff
back end (in addition to the TeX, LaTeX and html back ends), conditional
tangling, and some pretty printing macros.

12



