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Preface 

The third volume in the series on Computer Simulation of Biomolecular Systems 
continues with the format introduced in the first volume [1] and elaborated in the 
second volume [2]. The primary emphasis is on the methodological aspects of 
simulations, although there are some chapters that present the results obtained for 
specific systems of biological interest. The focus of this volume has changed somewhat 
since there are several chapters devoted to structure-based ligand design, which had 
only a single chapter in the second volume. 

It seems useful to set the stage for this volume by quoting from my preface to 
Volume 2 [2]. 

"The long-range 'goal of molecular approaches to biology is to describe living systems in 
terms of chemistry and physics. Over the last fifty years great progress has been made in 
applying the equations representing the underlying physical laws to chemical problems involv
ing the structures and reactions of small molecules. Corresponding studies of mesoscopic 
systems have been undertaken much more recently. Molecular dynamics simulations, which are 
the primary focus of this volume, represent the most important theoretical approach to 
macromolecules of biological interest." ... 

"Two attributes of molecular dynamics simulations have played an essential part in their 
explosive development and wide range of applications. Simulations provide individual particle 
motions as a function of time, so they can be used to answer detailed questions about the 
properties of a system, often more easily than experiments. For many aspects of biomolecule 
function, it is these details which are of interest (e.g., by what pathways does oxygen enter into 
and exit from the heme pocket in myoglobin). Of course, experiments play an essential role in 
validating the simulation methods; that is, comparisons with experimental data can serve to test 
the accuracy of the calculated results and to provide criteria for improving the methodology. 
This is particularly important because theoretical estimates of the systematic errors inherent in 
the simulations have not been possible; i.e., the errors introduced by the use of empirical 
potentials are difficult to quantify. Another important aspect of simulations is that, although 
the potentials employed in simulations are approximate, they are completely under the user's 
control, so that by removing or altering specific contributions their role in determining a given 
property can be examined. This is most graphically demonstrated in 'computer alchemy' 
- transmuting the potential from that representing one system to another during a simulation 
- in calculating free energy differences. 

There are three types of applications of simulation methods in the macromolecular area, and 
in other areas as well. The first uses the simulation simply as a means of sampling configuration 
space. This is involved in the utilization of molecular dynamics, often with simulated annealing 
protocols, to determine or refine structures with data obtained from experiments, such as X-ray 
diffraction. The second uses simulations to determine equilibrium averages, including structural 
and motional properties (e.g. atomic mean-square fluctuation amplitudes) and the thermo
dynamics of the system. For such applications, it is necessary that the simulations adequately 
sample configuration space, as in the first application, with the additional condition that each 
point be weighted by the appropriate Boltzmann factor. The third area employs simulations to 
examine the actual dynamics. Here not only is adequate sampling of configuration space with 
appropriate Boltzmann weighting required, but it must be done so as- to properly represent the 
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time development of the system. For the first two areas, Monte Carlo simulations can be 
utilized, as well as molecular dynamics. By contrast, in the third area where the motions and 
their time development are of interest, only molecular dynamics can provide the necessary 
information. Because of their requirements, three sets of applications make increasing demands 
on the simulation method in terms of the accuracy that is required. 

Now that molecular dynamics of macromolecules is a flourishing field and many people are 
working in that area, serious questions have to be asked concerning what more can be done 
with the methodology. What is the present and future role of molecular dynamics in the 
development of our knowledge of macromolecules of biological interest? How does the 
methodology need to be improved to make it applicable to important problems? The present 
volume is concerned with providing some answers." 

Improvements in methodology are needed for present day applications primarily in 
two areas. The first is concerned with the potential energy function for the systems of 
interest and the second with the length of simulations and the sampling of the 
configuration space that is required to obtain meaningful results concerning the 
problems under investigation. 

There are two reviews of empirical energy functions. The one by Hiinenberger and 
van Gunsteren (Chapter 1) is a detailed overview of the form of potential functions, 
and the other by Kollman et al. (Chapter 2) stresses recent developments in one 
particular program. Considerable discussion is given on the validation of such 
functions, but how best to do this is still an unresolved problem. This means that most 
applications of empirical energy functions have an unknown systematic error, in 
addition to the statistical errors which can be estimated by relatively standard 
procedures. 

The empirical potential functions that are used in molecular dynamics simula
tions cannot be used for bond making or bond breaking without introducing 
special terms. An alternative is to represent part of the system (that which under
goes a reaction, for example) by quantum mechanics and the remainder of the 
system by molecular mechanics. Such QM/MM methods are 'coming of age' and 
are being used increasingly, particularly for the determination of polarization effects 
on solvation and for the study of enzymatic reactions. The present status of the 
QM/MM methodology and its applications is reviewed by Cunningham and Bash 
(Chapter 6). 

Because explicit treatment of the solvent often requires most of the computer 
time in actual simulations (e.g., for a protein consisting of a 1000 atoms, adequate 
solvation may require 10 000 atoms of solvent), approaches to simplified solvation 
models are important. Two of these, by Gilson (Chapter 7) and by Elcock, Potter, and 
McCammon (Chapter 9), describe the use of continuum models based on the Poisson
Boltzmann equation. The former is concerned primarily with the use of a known 
structure to calculate pKa values, a rapidly developing area, while the latter empha
sizes the use of forces obtained from Poisson-Boltzmann calculations in molecular 
dynamics simulations. One of the known shortcomings of continuum models is that 
they usually do not treat explicitly water molecules that playa direct role as part of 
the 'structure' of the macromolecule. An interesting analysis of methods to include 
only the essential explicit solvent and represent the rest in terms of boundary effects is 
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presented by Brower and Kimura (Chapter 8). Unfortunately, no results are included 
to permit evaluation of this type of approach. 

Methods for extending the time scales of simulations are needed, even with the 
continuing increase in computer power. A review of approaches to increasing the 
basic time step in simulations that make use of a full atomic representation is given by 
Barth, Mandziuk, and Schlick (Chapter 3), with particular emphasis on recent imple
mentations of implicit methods. Turner et al. (Chapter 4) describe the present stage of 
development of methods that include all atoms of the system but introduce reduced 
representations (e.g., treating helices as 'bodies') to speed up the calculations. It is 
shown by Case (Chapter 12) how a related approach, normal mode dynamics, can be 
extended to calculate not only the modes with respect to a single minimum, but to 
usefully analyze results from molecular dynamics simulations of multiminimum 
potential surfaces. 

Simulations of protein folding require the treatment of large-scale motions that 
cannot yet be achieved with standard molecular dynamics methods. One way of 
guiding the simulation to the native structure is by the introduction of experimental 
information. This type of approach has become a fundamental part of X-ray structure 
refinement and NMR structure determination. An overview of recent advances in 
crystallographic applications is given by Schiffer (Chapter 10) with emphasis on fitting 
the data with an ensemble of structures. Although most refinements have been made 
without explicit solvent (i.e., it is customary to use somewhat special potential energy 
functions, often without any electrostatic terms, corresponding to an infinite dielectric 
constant), the introduction of simplified solvent models for this purpose is described 
by Braun (Chapter 11). Simplified or effective solvation models, sometimes combined 
with simplified representations of the protein, are also being used for studying protein 
folding without including data concerning the target structure. Lattice models are 
described by Skolnick and Kolinski (Chapter 15) and more detailed off-lattice models 
by Abagyan (Chapter 14); the latter chapter presents an overview of the protein 
folding problem and suggests possible solutions, the utility of most of which remains 
to be determined. 

Only two chapters focus specifically on comparisons with and analyses of experi
ments. This is a little surprising since such applications are probably the primary 
objective of the ever-increasing number of papers that are being published on 
computer simulations of biomolecules. Smith (Chapter 13) provides an in-depth 
description of the use of molecular dynamics for the study of X-ray, neutron and 
infrared experiments, an area that is particularly important because detailed compari
sons between simulations and experiment are possible. Another more specialized 
illustration of molecular dynamics and free energy perturbation calculations is pre
sented by Kuramochi and Singh (Chapter 20), who describe studies of modifications 
of a specific position of a B-DNA duplex. 

As already mentioned, an innovation in the present volume is the increase in the 
number of chapters devoted to various computational approaches to ligand design. 
I use the wording 'ligand design' because little is said about the relation between 
a good ligand and a real drug. Rational ligand design is an important and growing 
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field, although the documented successes have so far not lived up to the expecta
tions of many of the pharmaceutical companies. Robson (Chapter 19) discusses 
different computer languages and features that may aid in ligand design. Al
though improvements in computer languages certainly can play a role, the 
physical and chemical problems that still need to be resolved to achieve viable 
ligand and drug design are of even greater importance. One aspect considered by 
Grant and Pickup (Chapter 5) is the evaluation of molecular similarity; this plays an 
important role in QSAR and in pharmacophore generation and can also aid in the 
docking of related ligands. Two chapters survey developments in ligand design for 
known receptors. Rejto et al. (Chapter 17) are concerned primarily with ligand 
docking and make some interesting, although not yet verified, suggestions as to 
possible improvements in methodology, while Green and Johnson (Chapter 16) 
review the many methods that have been proposed for ligand design. One aspect of 
many ligand design methods [3] is that they have an intrinsic combinatorial char
acter based on the fact that they employ a stepwise design procedure. The use of 
methods like the combination of MCSS [4] and HOOK [5] made possible combi
natorial chemistry on the computer before it was invented in the laboratory. More
over, the computational methods can survey 1015 or so ligands with ease, while 
laboratory methods are limited to 106 or less in a given experiment. Of course, 
computationally designed molecules often are difficult to synthesize and accurate 
predictions of their actual binding constants are not yet possible. Thus, a combination 
of combinatorial chemistry on the computer and in the laboratory may be the best 
way to approach the design problem. The question of evaluating binding constants is 
considered in detail by Timms and Wilkinson (Chapter 18). It is clear that it is 
relatively easy to use fitting procedures to find methods that correctly rank the 
binding constants of closely related ligands for a given receptor, but approaches that 
are accurate for general systems and fast enough to be applied to many ligands still 
remain to be developed. 

Overall, the volume presents current material that can be useful to both the novice 
and the expert reader. Particularly for the former, Volume 2 in this series would serve 
as a useful introduction to the present volume. 

3 June 1997 
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Empirical classical interaction functions 
for molecular simulation 

P.H. Hiinenberger and W.F. van Gunsteren 
Laboratory of Physical Chemistry, ETH-Zentrum, CH-B092 Ziirich, Switzerland 

1. Introduction 

With the continuing increase of the power of computers, the past decades have seen 
a rapid increase in the number, performance and accuracy of theoretical computa
tional methods in chemistry [1,2]. One can distinguish three major classes of methods 
for the theoretical study of molecular properties, listed in order of decreasing com
putational expenses: (i) ab initio molecular orbital methods [3]; (ii) semiempirical 
molecular orbital methods [4,5]; and (iii) empirical classical force-field methods. The 
computational expenses of ab initio methods are of order O(Ni) (Hartree-Fock level) 
or higher (configuration interaction, many-body perturbation theory), N r being the 
number of basis functions used. Density functional approaches and semiempirical 
methods scale as O(N;) or lower. The costs of empirical methods scale as O(N;) down 
to nearly O(Na), where Na stands for the number of elementary particles (atoms or 
groups of atoms). Independently of the scaling with the system size, the evaluation of 
an empirical interaction function remains usually much cheaper than any other 
method (size of the prefactor to the scaling) and currently allows for the simulation of 
systems typically up to 105-106 atoms. 

Since the available computing resources are most often the true limiting factor to 
numerical calculations, it has become clear that there is no universal method able to solve 
all possible problems, but that one should rather select the method that is the most 
suitable to a problem of interest. As is schematically represented in Fig. 1, the properties 
of the observable(s) and system under consideration that will, together with the available 
computing power, largely determine which type of method can be used are [6]: 

A. the required system size; 
B. the required volume of conformational space that has to be searched or sampled 

(in terms of dynamics, the required timescale); 
C. the required resolution in terms of particles (determined by the smallest entity, 

subatomic particle, atom or group of atoms, treated explicitly in the model); 
D. the required energetical accuracy of the interaction function. 
These requirements may be incompatible, in which case the observable cannot be 

computed adequately with the currently available computer resources [7]. When 
requirements A and B, together mostly determining the computational effort, are in 
conflict with requirements C and D, this conflict may be resolved by the design of 
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Fig. 1. Schematic representation of the basic choices made while building a model of the molecular 
system in order to simulate an observable of interest. The thick-line boxes represent the three 
essential choices and the global scheme of the present text. 

hierarchical or hybrid models, where only the most relevant degrees of freedom are 
treated with a more expensive, higher resolution method. This is often done, for 
example, in the study of acid- or base-catalysed, organic, or enzymatic reactions in the 
bulk phase [8-11]. Another example is the use of a potential of mean force representa
tion for the solvent, which includes its average effect without including its degrees of 
freedom explicitly [12J. Mean fluctuations in the solvent may also be included 
through a modification of the equations of motion as in stochastic dynamics [6,13]. 

Molecular orbital methods are well suited for the study of small molecules or small 
clusters of molecules (supermolecule) in vacuum [14J, or within an averaged solvent 
environment [15-19J, and give access to properties such as equilibrium geometries, 
vibrational frequencies, heats of formation, relative energies of conformers and 
isomerization barriers. These problems are also addressed with increasing accuracy by 
empirical methods [20-23]. Due to the size of the problem and the volume of 
accessible conformational space, the simulation of organic molecules or macro
molecules in the condensed phase is the domain of atom-based empirical classical 
force fields [6]. Long-timescale (or long relaxation time) problems involving large 
systems, such as protein folding or de novo protein design, can currently be addressed 
only by residue-based force fields [24-28]. Finding an accurate description of the 
interaction at this low particle resolution (i.e. a sufficient energetical resolution) is, 
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however, a major difficulty. Current areas of development with respect to the treat
ment of degrees of freedom are briefly discussed in Sec. 2. 

Choosing the explicitly handled degrees of freedom is the first step in an empirical 
force-field calculation (Fig. 1). The second is the choice of a method to search or 
sample the conformational space [29-35]. This choice will also depend on the 
information required to compute the observable(s) of interest, namely: 

A. Structural information (searching) (Sec. 3.1): The purpose of these methods is to 
search conformational space for one or a number of relevant low-energy conforma
tions. In the latter case, the conformations obtained are not related by any w~ll
defined probabilistic or dynamical relationship, and the method of choice is the one 
that searches the largest extent of conformational space, returning the highest number 
of low-energy structures. 

B. Structural and thermodynamic information (sampling) (Sec. 3.2): The purpose of 
these methods is to sample conformational space or part of it in order to get 
a collection of conformations which build a correct statistical ensemble, that is, an 
ensemble in which the conformations appear with a Boltzmann probability. The 
sequence of the conformations is not relevant and the method of choice is the one 
which achieves the highest sampling efficiency. 

C. Structural, thermodynamic and dynamical information (simulating) (Sec. 3.3): The 
purpose of these methods is to simulate the motion in conformational space or part of 
it, in order to get a sequence of conformations which build a correct statistical 
ensemble, but are also consecutive in time (dynamics). In this case, equations of 
motion which explicitly contain time are required, such as the Dirac, Schr6dinger, 
Newton, Lagrange, Hamilton, Langevin or Liouville equations of motion. 

The third choice to be made in an empirical force-field calculation is the one of an 
interaction function (or, together with the kinetic energy, a Hamiltonian) correspond
ing to the selected explicit degrees of freedom (Fig. 1). In principle, empirical force 
fields are constructed using experimental information (possibly complemented with 
theoretical results) and their only justification is their ability to reproduce or predict 
a large amount of experimental observables. It is, however, instructive to try to relate 
the empirical description to the underlying quantum mechanical reality. Empirical 
classical force fields are formally based on a generalization of the Born-Oppenheimer 
approximation, that is, on an averaging of the quantum mechanical Hamiltonian over 
implicit degrees offreedom (electronic and possibly also of individual atoms) to obtain 
an analytical interaction function depending solely on the explicit degrees of freedom 
of the model. Due to this averaging process, the interaction will be called a potential of 
mean force or effective interaction function. Averaging occurs at three levels: 

A. averaging of the quantum mechanical interaction over the implicit degrees of 
freedom of the model (Sec. 4.1); 

B. averaging of a force-field term over the different chemical/topological environ
ments present in different molecules (Sec. 4.2); 

C. averaging of a force-field term corresponding to an internal coordinate over the 
other force-field terms depending on the same coordinate, that is, over different 
geometrical environments (Sec. 4.3). 
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Empirical classical interaction functions 

The present text will discuss possible options in the three basic choices outlined in 
Fig. 1 (thick-line boxes) and will mainly concentrate on the functional representation of 
the interaction function in atom- and united-atom-based force fields (Sees. 5 and 6). The 
list of methods is by far not exhaustive and the description is somewhat biased towards 
condensed-phase simulations and the simulation of large molecules (biomolecules). 
Finally, the problem of force-field parametrization will be briefly discussed (Sec. 7). 

2. Choice of the explicit degrees of freedom of the model 

The choice of an elementary unit (i.e. the particle that will have no explicit internal 
degrees of freedom) is the first step in the design of an empirical classical force field. 
Possible alternatives for the elementary unit and explicitly treated degrees offreedom, 
together with the corresponding type of interaction function, are summarized in 
Table 1. This choice will determine or strongly influence [6,7,36] the following: 

A. The number of degrees of freedom that will have to be handled explicitly for 
describing a specific molecular system, and thus the computational effort. 

B. The extent of conformational space that can be searched (or in terms of 
molecular dynamics, the reachable timescale). Because available computing power is 
most often a limiting factor, for a system of a given size, the number of possible 
evaluations of the potential energy function will rapidly decrease with the number of 
explicit degrees of freedom. 

C. The maximum resolution, in terms of particles (e.g. subatomic particles, atoms, 
group of atoms, or molecules) and processes (e.g. conformational changes, chemical 
reactions) that can be achieved by the force field. 

D. The type of functions that are likely to describe the interaction between elemen
tary units in an adequate manner, that is, with a reasonable energetical accuracy. 

E. The type of observables the force field may be able to describe correctly, and 
those which will necessarily stay inaccessible. Accessible observables will be those for 
which the extent of searchable conformational space (B), the force-field resolution in 
terms of particles (C) and the force-field accuracy (D) are sufficient. 

Current developments in empirical classical force fields mainly follow five basic 
lines in terms of degrees of freedom [10,12,20,21,25,37], which will be described in 
Secs. 2.1-2.5. Note that in Secs. 2.3-2.5, the number of explicit degrees of freedom is 
reduced essentially by decreasing the force-field resolution in terms of particles. An 
alternative way to reduce the size of the conformational space to be searched is to limit 
the dimensionality or to discretize the coordinates (lattice methods, see e.g. Ref. 38). 
These methods will not be discussed here. 

2.1. Gas-phase force fields 

The primary purpose of gas-phase force fields is the accurate description of 
molecules in vacuum [20-23,39-41]. These force fields may be used to either complete 
or replace more expensive ab initio molecular orbital calculations [22], or to predict 
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experimental gas-phase properties such as equilibrium geometries, vibrational fre
quencies, heats of formation, relative energies of conformers and energy barriers 
for isomerization [41]. Rapid progress in the design of such force fields is made 
possible by (i) the absence of intermolecular forces, (ii) the increasing amount and 
reliability of data from ab initio molecular orbital calculations, and (iii) the use of 
systematic and relatively inexpensive procedures for parameter calibration using both 
theoretical and experimental data (Sec. 7.5). These force fields, sometimes called class 
II force fields [22,23], are usually characterized by a detailed description of covalent 
degrees of freedom, involving anharmonic (nonquadratic) potential energy terms and 
terms that couple the internal coordinates (nondiagonal energy terms). Typical 
examples are the force fields CFF [42-44] and a recently modified version [45,46], 
CVFF [47-50], EFF93 [51,52], MM2 [20,53], MM3 [20,54-56] and QMFF/CFF93 
[22,23,41]. 

The term gas-phase force field does not mean that such force fields cannot be 
extended for applications in condensed-phase simulations. Experimental infor
mation on crystal structures is sometimes used in the parametrization procedure 
[43,46,52]. For applications in liquid-phase problems, however, these force fields 
will suffer from the same difficulties in parametrization as condensed-phase force 
fields (Sec. 2.2), and whether the significantly improved accuracy gained in the gas 
phase by inclusion of anharmonic and off-diagonal terms will result in a significant 
increase of accuracy in the simulated condensed-phase properties is still a matter 
of discussion. 

2.2. Condensed-phase force fields 

The primary purpose of condensed-phase force fields is the accurate description of 
liquids, solutions of organic compounds or macromolecules and crystals [6,57-59]. 
Progress in the development of such force fields is slow, since: (i) the dominant forces 
in the condensed phase are intermolecular forces which are not easily described and 
parametrized adequately; (ii) the relevance of data from ab initio molecular orbital 
calculations in vacuum (even when reaction-field corrections are applied) is limited, 
and the parametrization has to rely mostly on a small amount of experimental data 
concerning the condensed phase; and (iii) the design of systematic optimization 
procedures is in general not possible (see, however, Sec. 7.4). One major reason for this 
impossibility is that the estimation of observables to be compared to experimental 
results generally requires a large number of evaluations of the potential energy 
function, and is therefore computationally expensive. In these force fields, the main 
effort is aimed at the description of non bonded forces and torsional potential energy 
terms. Potential energy terms involving other covalent internal coordinates are often 
either quadratic-diagonal (so-called class I force fields) or simply zeroed by the use of 
constraints. Typical examples are the force fields AMBER [6~3], CHARMM 
[64-67], CHARMm/QUANTA [68], DREIDING [69], ECEPP/3 [70], ENCAD 
[71-73], EREF [74], GROMOS [75,76], MAB [77], MacroModel [78], OPLS [79], 
Tripos [80], UFF [81] and YETI [82]. 
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2.3. Mean-solvent force fields 

The purpose of a mean-solvent force field is the description of molecules in solution, 
but without an explicit treatment of the solvent degrees offreedom [12]. Although an 
accurate description of the structure, mobility, dynamics and energetics of molecules 
in solution generally requires an explicit treatment of the solvent, the omission of ali 
or almost all solvent degrees of freedom dramatically reduces the computational 
expenses, e.g. by a factor of 10-50 for biomolecules in solution. The explicit influence 
of the solvent is approximated here by its mean effect, and possibly also the effect of its 
mean fluctuations, as in stochastic dynamics [13,83]. The main implicit influences of 
solvent, i.e. hydrophobic or structural effect, dielectric screening, random fluctuations 
and viscous drag, are mimicked by a modification of the interaction function (different 
functional form, additional terms, see e.g. Refs. 84 and 85) and of the equations of 
motion (the Langevin equation). 

2.4. Low-resolution force fields 

The purpose of low-resolution force fields is the study of large systems, while 
addressing long-timescale phenomena, such as fold recognition in proteins, protein 
folding, de novo protein design and protein-protein association. With the currently 
available computing power, these problems are difficult to address, using force fields 
at atomic resolution [7,86,87]. Force fields at the amino acid residue level are being 
developed for peptides and proteins [24-28]. The main difficulty is to find an 
adequate expression for the interaction between residues that provides a sufficient 
energetical resolution to discriminate correct from incorrect structures. Once a func
tional form is selected, the interaction function parameters are usually calibrated via 
a statistical analysis of native (and nonnative) protein structures. The effects of solvent 
are normally treated by a mean force term (Sec. 2.3). A correct description of the 
dynamics is not to be expected from such models. 

2.5. Hybrid force fields 

A whole variety of models include the combination of a treatment of a few degrees 
of freedom at a high particle resolution and a treatment of the others at a lower 
resolution. For instance, the first or first few hydration shells of a macromolecule may 
be.included explicitly in it simulMion, the bulk solvent being modelled through a mean 
force (Sec. 2.3). Another typical example is the simulation of chemical, or acid- or 
base-catalysed reactions, in solution or in enzymes [8-11,88,89]. Clearly, a quantum 
mechanical description of the electrons or the protons is required. However, due to the 
computational costs, such a treatment cannot be applied to the full system under 
study, and only a few relevant degrees of freedom can be treated in this way. Finding 
the proper interface between the different degrees of particle resolution in such hybrid 
models is the main difficulty here. 
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3. Choice of a method to sample conformational space 

In addition to the present brief description, good reviews on this topic are available 
in the literature [29-35,90]. 

3.1. Methods that provide structural information 

The purpose of these search methods is to obtain one or a number of relevant (low
energy) conformations for a given molecular system. Among the major issues of these 
approaches, one can cite: (i) the conformation analysis of open-chain and cyclic 
molecules [30]; (ii) the study of docking problems and application in drug design 
[91,92a,93]; (iii) the prediction of oligopeptide and protein tertiary structures and the 
study of the folding problem [32,33]; and (iv) structure refinement based on experi
mental (NMR spectroscopy, crystal X-ray diffraction) data [90,94]. In addition to the 
methods described below, the ones listed in Secs. 3.2 and 3.3 of course also provide 
structural information. However, if a correct thermodynamic and dynamical descrip
tion of the system is not required, they may not be the most efficient techniques. One 
of the ultimate aims of these structural search techniques (except Sec. 3.1.1) is to try to 
locate the global energy minimum in conformational space. In the general case, this 
unique structure need not be functional, that is, it may have a very low statistical 
weight at nonzero temperature, due to entropic effects. When the energy hypersurface 
is highly frustrated (as is typically the case for molecules of medium and large size, like 
macromolecules and polymers), the global energy minimum, if narrow, may be oflittle 
relevance for the description of the macroscopic properties of the system, and other 
(higher but broader) minima are likely to be significantly populated. For large 
systems, it is even unclear whether the correct statistical ensemble corresponding to 
the free energy minimum will be centred on the global minimum of the energy 
hypersurface. In such cases, at least a collection of the lowest energy conformations 
(lowest local minima) should be considered [95-97] or, ultimately, a complete statisti
cal ensemble (Secs. 3.2 and 3.3). Due to the steep increase in the density of states when 
raising the energy above the global minimum, the populations of higher energy 
conformers will increase with the temperature, which is, for example, responsible for 
the reversible thermal denaturation of proteins. In addition to these entropic effects, 
the environment of the molecule will have an influence on the preferred conforma
tions. The lowest local minima will generally not be the same for an isolated molecule, 
a molecule in solution, in a crystalline environment or bound to a receptor. Unfortu
nately, most of the methods described below (especially those in Secs. 3.1.2-3.1.4) are 
not well suited for applications in the presence of explicit solvent. The question of the 
relevance of isolated molecule conformations for a solvated or a receptor-bound 
molecule may be a concern, especially for large molecules (hydrophobic effects), or 
molecules with polar or charged groups (charge solvation, hydrogen bonds). To some 
extent, mean-solvent approaches may improve the results (e.g. Refs. 32, 33 and 98). 

The key problem of searching conformational space is that of dimensionality. If the 
size of the conformational space is estimated as the number of points in a grid defined 
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by n discrete values in each degree of freedom (sampling density), the scaling of the 
conformational analysis problem is of order O{nN), where N is the number of degrees 
of freedom of the system. This exponential increase is sometimes referred to as the 
combinatorial explosion problem. Thus, for all but the smallest systems, searching such 
a grid entirely is an extremely expensive task. One can distinguish two types of 
approaches to this searching problem. In non heuristic approaches, a set of trial 
conformations is generated either systematically or stochastically, and then refined by 
energy minimization to the closest local minimum. Since this refinement step is the 
expensive part of the calculation, one may try to use specificfilters (sometimes referred 
to as constraints) in order to screen out, prior to energy minimization, any trial 
conformation which is unlikely to lead to a relevant minimum, or likely to lead to 
a minimum already encountered. In heuristic approaches, the way configurations are 
generated already follows more or less arbitrary rules (heuristic rules) that prevent the 
appearance of nonrelevant (high energy or in contradiction with experimental results) 
conformations or the reappearance of already known conformations. In both heuristic 
and non heuristic approaches, the rules (or filters, respectively) are usually derived from 
physical or experimental information. One can distinguish the following cases. 

A. Structural and energetical rules or filters: Structures containing van der Waals 
contact violations (highly unfavourable nonbonded contacts), structures not satisfy
ing ring closure or having disfavourable transannular contacts [99J, structures with 
inverted chiral centres [95,100] or incorrect bridgehead isomerism [101J, protein 
loops with wrong terminal atom position [102J or containing fragments in a low
probability conformation (e.g. peptide units in an unallowed region of the Ramachan
dran map) and, in general, all high-energy structures (e.g. heuristically in MC and MD) 
should be avoided. 

B. Nondegeneracy (memory) rules or filters: Structures which are close to an al
ready discovered structure should be avoided. Some methods, like random searches, 
MC or MD, tend to generate similar structures many times, which leads to ineffi
ciency. Typical examples of heuristic methods avoiding the generation of duplicate 
structures are the local elevation method in MD [103] or the combined use of normal 
and retrace pulses in the RIPS algorithm [104]. 

C. Learning-based rules or filters: Knowledge may be accumulated from previous 
searches for molecules that share a common structural element, and used to avoid 
structures of a new molecule presenting this element in an unfavourable conforma
tion. A typical example is the distance between functionally important groups in a set 
of pharmacophores binding to the same receptor, which should be conserved in the 
active conformations of all molecules in the set [91,105]. The learning may also be 
performed by a so-called Expert System, as in WIZARD [106]. 

D. Use of information from NMR experiments as rules or filters: Typical examples 
are the requirement that nuclear Overhauser enhancement {NOE)-derived distances 
or J-coupling constants from nuclear magnetic resonance (NMR) are satisfied 
[94,107-109]. Methods of choice when such information is available are distance
geometry (DG) calculation and (possibly time-averaged or subsystem-averaged) 
distance-restrained MD refinement. 
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E. Use of information from crystal X-ray diffraction experiments as rules or filters: 
The results of X-ray crystallographic measurements on a series of compounds can, 
after a statistical analysis, be used to build conformation libraries for molecular 
fragments (e.g. a protein side-chain conformation library, see e.g. Ref. 110). Alterna
tively, known protein structures can serve as tertiary templates for other amino acid 
sequences, a process called threading (e.g. Ref. 28). In both cases, the X-ray-derived 
information is used as a molecule-adapted way of discretizing conformational space. 
It should, however, be kept in mind [30,106] that (i) crystal packing forces come into 
play in these solid state experiments, (ii) databases may not contain a representative 
sample of compounds (e.g. all must be crystallizable), and (iii) not all representative 
conformations of a given structural element may be present. In a different approach, 
the electron density map derived from the X-ray measurement is directly used during 
the searching phase by inclusion of a penalty term into the interaction function 
depending on the time-averaged simulated electron density [111-113]. 

When experimental data is used (D and E), one may face two problems. First, 
experimental errors may be present (e.g. erroneous assignments of NOE peaks to 
atom pairs, or of electron density peaks from X-ray crystallography to groups of 
atoms). Second, experimental measurements correspond in general to properties 
averaged over a large number of molecules and a long period of time, and the 
requirements that the derived constraints be satisfied in a single structure may be 
unrealistic. Time [90,94,114] or subsystem [115] averaging ofNOE distances may be 
a way to somewhat relax this difficulty in MD. The use of weak coupling is also 
possible, although not recommended due to heating effects [116]. Time averaging has 
also been applied to X-ray crystallographic refinement [111-113]. When time aver
aging is applied, the correct dynamics of the system may to some extent be preserved. 

As a further distinction between search algorithms, we shall call consecutive (walk) 
methods those which generate one molecular conformation from the previous one, 
thereby generating a path in conformational space, and nonconsecutive those which 
do not meet this criterion. In general, consecutive methods (typically MC, MD or 
SD) will have difficulties to cross energy barriers on the potential energy hyper
surface. These difficulties may be partially relaxed by using various tricks (Sec. 3.1.5 
and Ref. 31). Finally, structure search methods are also characterized by the use of 
different coordinate systems. 

A. External (Cartesian) coordinates: The Cartesian coordinate system (3Nat - 6 
coordinates, where Nat is the number of atoms) can be used for random searches 
(Sec 3.1.3) and is the standard coordinate system for MD-related methods (Sec. 3.1.5). 
Algorithms working with Cartesian coordinates are often easier to implement and the 
inclusion of constraints (e.g. bond length or ring closure) for consecutive methods 
(Sec. 3.1.5) is easy, e.g. by using the iterative algorithm SHAKE [117]. 

B. Internal (torsional) coordinates: The torsional coordinate system ( ::;; Nat - 3 
coordinates) is often used together with fixed values for the other valence internal 
coordinates. This reduces considerably the number of degrees of freedom to be 
handled but limits the ability of a molecule to relax nonbonded strain [118]. Ring 
closure constraints are not easily handled in torsional space [30,95] except when 
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algorithms such as corner flapping [119] or torsional flexing [120] are used. Since 
values for torsional dihedral angles are bound to [ -1t; 1t], this coordinate system is 
well suited for systematic search (Sec. 3.1.2). Torsional coordinates may also be used 
in random search (Sec. 3.1.3). 

C. Interatomic distances: Distance-geometry (DG) coordinates (matrices of inter
atomic distances) are particularly well suited when experimental NOE information 
can be included in the search [121,122]. 

A few tentative appraisals of the various search algorithms listed below do exist in 
the literature, using, for example, cyclotetradecane and 11-hydroxydecanoic lactone 
[95], cycloheptadecane [97], alanine dipeptide [123] and cyclosporin A [103,124,125] 
as (vacuum) test systems, application to the determination of side-chain conforma
tions in proteins [110,126], or application of diverse distance-geometry methods to 
polyalanine chains [127]. Finally, a set of benchmark molecules for performing 
evaluations has been proposed [128]. The next subsections list a selection of common 
methods used in searching conformational space. 

3.1.1. Downhill energy search methods 

The aim of downhill energy search methods is to find the nearest low-energy 
conformation starting from a trial conformation. A wealth of energy minimization 
(EM) algorithms are available [129], which will find the closest local minimum in the 
potential energy surface, using information from the potential energy function itself 
and possibly its first (force vector) or second (Hessian matrix) derivative with respect 
to the coordinates. The second-derivative information at the minimum can be used to 
perform harmonic analysis in order to characterize the nearest surroundings of the 
minimum and to get crude estimates for the thermodynamic properties in the 
harmonic approximation. Other techniques can be used to find conformations (e.g. 
transition states) along optimal pathways connecting minima on the potential energy 
surface. 

3.1.2. Systematic or exhaustive search methods 

The aim of these methods is to exhaustively enumerate conformations in all or 
a significant fraction of conformational space [91,97,102,107,118,128,130,131]. The 
coordinates have to be discretized (grid search methods). The local minimum closest 
to a given grid point is then located by energy minimization. Due to the combinatorial 
explosion problem, systematic search is only tractable for systems of small and 
medium size [30]. A number of tree-searching algorithms have been proposed to 
bypass the combinatorial explosion by systematically discarding (pruning) through 
a filtering algorithm whole groups of conformations (branches of the tree) not satisfy
ing a set of given (physical or experimental) constraints, prior to energy minimization 
[30,118]. Systematic search is usually performed in torsional space and may suffer 
from the inefficiency of ring closure constraints. An algorithm based on a Fourier 
representation of the atomic coordinates has, however, been proposed to generate 
systematically Cartesian coordinates for ring systems [99]. Although the idea of an 
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exhaustive enumeration is appealing, a trade-off has to be found between grid 
resolution and computational efficiency, which may lead to the missing of some low
energy minima if the grid resolution is too low to provide a starting geometry in the 
vicinity of each local minimum. 

3.1.3. Random or stochastic search methods 

These methods are also sometimes referred to as Monte Carlo procedures, but we 
prefer to keep this term for the Metropolis algorithm (Sec. 3.2.1). They are based on 
the following common scheme [95,100,101,104,132-136]. Starting from a given cur
rent structure, a new structure is generated through a random change (kick or pulse) in 
the coordinates. The distorted structure is then energy minimized and added to the 
pool of generated structures. Then, a new current structure is taken from the pool, and 
a new iteration of the procedure is started. The working hypothesis is that low-energy 
conformers are generally more closely related to each other than to higher energy 
conformers. This assumption, although reasonable, also introduces a bias against 
finding low-energy conformers which are very different in geometry from the pre
viously discovered ones. The different algorithms proposed in the literature vary with 
respect to the following points [30,97]: 

A. Coordinate system: The random change may be performed in a Cartesian 
[100,101,104,133-135] or internal (torsional) coordinate system [95,132,136]. Changes 
in Cart~sian coordinates tend to generate higher energy structures, and concerted 
torsional motions which in real dynamics would interconvert the conformers are 
unlikely [95]. In contrast, torsional angle changes should facilitate the sampling of 
low-energy regions, but relaxation of strain is limited if bond lengths and angles are 
frozen. 

B. Selection of the current structure: The new current structure selected from the 
pool can be a random structure, the last generated structure [95,100,136], one of the 
lowest energy structures [95] or the currently least used structure [95]. This choice 
will affect the performance of the algorithm, either for finding the global minimum or 
for searching a large amount of conformational space. 

C. The maximum kick size: The maximum size of the random change will influence 
the probability oftransition to a new minimum [133] and the probability ofrejection 
ofthe structure (e.g. due to van der Waals contact violations). If torsional coordinates 
are used, the number of torsional dihedral angles that are changed at each step may 
either be fixed or chosen at random [95]. 

D. The filtering rules: Various filtering rules may be applied to structures prior to 
the (time-consuming) energy minimization in order to discard unreasonable or al
ready generated structures. In some variants, generated conformations are accepted 
or rejected according to a Metropolis scheme, thereby introducing an additional 
parameter, the temperature, and annealing schemes may be designed [136]. 

E. The termination criterion: The number of iterations to be performed for a com
plete search is difficult to estimate. The yield of new structures will decrease as the 
search progresses, but there is no straightforward convergence test to apply as a 
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termination criterion [30,101]. Empirical ways to estimate convergence have been 
proposed based on the number of unsuccessful moves [100,104], the number of 
times each local minimum has appeared during the search [95], the sets of conforma~ 
tions generated in runs of different lengths [95] or using different annealing 
schemes [136]. 

3.1.4. Nonconsecutive heuristic search methods 

Here, we consider nonconsecutive methods, that is, methods that generate confor
mations by fragments or by embedding (reduction of the dimensionality), but use no 
path in conformational space. 

A. Use of molecular models: Hand-held (Dreiding, CPK) or interactive (computer 
graphics) molecular models may be used. In the latter case, assembly of fragments 
taken from a database (CSB or PDB) may be realized using various graphics 
interfaces. Although some insight may be gained by an examination of such models, 
the method is not systematic and becomes impractical for multiconformation 
problems. 

B. Use of artificial intelligence (A/): In these methods (e.g. WIZARD [30,106, 
137,138]), a molecule is first analysed in terms of a set of conformational units, which 
are fragments whose conformational behaviour the program has knowledge of. Each 
known conformation of a conformational unit is attributed a symbol, and corresponds 
to a set of coordinates or a template. The conformational space is then searched 
systematically by successively joining conformational units in all possible conforma
tions. At any step of this buildup procedure, each trial conformation is criticized, first 
at a symbolic level and then at the coordinate level, by a so-called Expert System. If 
problems occur at this stage, an attempt can be made to resolve the problem (e.g. relax 
strain by a given adaptation of internal coordinates). Finally, only guesses that the 
Expert System has approved are minimized. Criticism may be based on (i) chemist's 
supplied rules (i.e. historically known unfavourable assemblies), (ii) self-learned rules 
(i.e. knowledge based on past experience of the program in previous searches on 
related compounds), or (iii) physical rules (van der Waals contact violations, effect of 
other intramolecular forces). The screening by an Expert System largely improves the 
performance of the search, but also increases the likelihood that minima are missed. 
The main difficulties encountered in these types of methods are (i) the design of the 
Expert System algorithm, (ii) the choice of the representative templates, and (iii) the 
generation of guesses, which may become time-consuming with respect to the 
minimization step. 

C. Stepwise buildup procedure: This recursive procedure, used essentially for pro
teins, is based on the assumption that short-range interactions playa dominant role in 
determining the final conformation of a polypeptide chain [32,33,98,139,140]. The 
final conformation is built up stepwise, starting from known conformations of the 
conformational units (for proteins, residues). At each step, two fragments (peptides) 
containing Nl and N2 conformational units, respectively, are assembled to generate 
an enlarged fragment of length M ( :$; Nl + N 2). Possible conformations for the 
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enlarged fragment are generated by systematically combining possible low-energy 
conformations of the two smaller fragments. The combinations are energy minimized 
and only those conformations are stored for which the energy is below an energy 
cutoff. To reduce the high memory requirements of the method, one may choose to 
store only one representative side-chain conformation for a given peptide backbone 
conformation. The choice of the energy cutoff and of the side-chain conformation in 
the single representative structure of a fragment is not straightforward since high
energy conformations at the fragment stage can still correspond to low-energy 
conformations in the assembled molecule. Finally, the choice of the fragment assem
bly procedure (i.e. where should the procedure be started along the polypeptide chain 
and how should it proceed) and the number of overlap residues (M - Nl - N2) may 
influence the result of the search. 

D. Distance geometry (metric matrix method): Distance geometry (DG) is at the 
origin a purely geometric method that does not require a force field or a starting 
geometry [94,121,122,127,141]. If a system of N atoms is specified solely by 
!N(N - 1) pairwise interatomic distances (distance matrix), and all the specified 
distances satisfy triangular, tetrangular, etc. inequalities, a single solution (set of 
atomic coordinates) exists in N - 1 dimensions. In this high-dimension space, the 
metric matrix (matrix of the dot products of the atomic coordinates) is easily gener
ated from the distance matrix. This metric matrix is then gradually embedded in the 
lower dimensional spaces, that is, lower dimensional Cartesian coordinates are gener
ated so that higher dimensional coordinates are closest to zero. In practice, upper and 
lower bounds are specified to each distance, based on the closest allowed van der 
Waals contacts, covalent coordinates (standard geometries), distance information 
from NOE, and possible other problem-specific constraints. The embedding is then 
performed for various random (or chosen according to certain criteria) distance values 
within the bounds (possibly after smoothing to satisfy the triangle inequalities). Since 
bounds to distances are often unevenly spread over the structure and may contain 
errors, and since not all random combinations give rise to a reasonable solution in 
three dimensions, generated structures have to· be refined. This may be done by 
minimizing an error function that describes the quality of the structure, either by EM 
or by other techniques (MD). The error function includes distance bound violations, 
chirality violations and possibly an empirical interaction term. The second term is 
required since chirality cannot unambiguously be defined for dimensions higher than 
three and will often be incorrect in embedded structures. The method requires storage 
of O(N2) and is intrinsically slow for generating new structures with respect to 
random or systematic methods, but becomes competitive when distance constraints 
(NOE) are available for nonbonded atom pairs. The probability distribution of 
structures in the final ensemble may be a concern. 

E. Genetic algorithms: Genetic algorithms (GA) [92,126,142-144] are optimization 
procedures inspired from the natural genetic evolution. A population of individuals 
(conformers), described by a symbolic encoding (string or chromosome), is maintained 
and evolves from generation to generation, keeping its size constant. The symbols may 
represent, for example, discrete values of a given dihedral angle. In addition, each 
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individual is characterized by its fitness (e.g. negative energy or Boltzmann factor). 
Evolution of the population from one generation to the next occurs through four 
types of processes (genetic operators), each regulated by acceptance criteria (selection) 
based on the fitness function and possibly also on a stochastic element: (i) replication, 
i.e. a direct copy of a high-fitness individual to the next generation; (ii) elimination, i.e. 
removal of a low-fitness individual from the population; (iii) mutation, i.e. random 
changes (occurring with a low probability) in some symbols of an individual; and 
(iv) crossovers, i.e. the interchange of regions between a pair of high-fitness individuals 
(parents) generating mixed individuals (children). The crossover mechanism allows 
for the combination into a unique structure of favourable substructures that 
evolved separately, so that larger and larger good substructures will tend to stay 
in the population. On the other hand, the mutations preserve the diversity in the 
population and prevent premature convergence. In this sense, GA is an implicit 
buildup scheme, with a few additional advantages: (i) crossover may imply changes 
in dihedrals which are not close along the chain and thus include nonlocal 
conformational preferences; (ii) every individual in the population is a complete 
structure, and the energy has a more unambiguous meaning than for a fragment; and 
(iii) the selection of good substructures is fully automatic and involves no choices and 
human intervention. In principle, the structure should be energy minimized for the 
estimation of the fitness. The method may then, however, become expensive. Another 
inconvenience is the difficulty to deal with cyclic molecules. The efficiency of the 
algorithm will depend largely on the size of the population, the number of generations, 
the number of symbols per fragment (discretization of conformations) and the muta
tion rate. 

3.1.5. Consecutive heuristic search methods 

These methods, which generate one molecular conformation from a previous one, 
are generally based on Me, MD or SD schemes (Secs. 3.2 and 3.3). The major 
problem of these three techniques is crossing high-energy barriers (~kB T). Since for 
systems of medium and large size, the potential energy surface is generally complex 
with many barriers, all but the smallest ones are surmounted very infrequently and the 
above methods have a small radius of convergence. The aim of the algorithms 
described below is thus to combine them with modifications that spoil their ability to 
give a correct thermodynamic or dynamical description of the system, but substan
tially enhance their search power by lowering barriers or allowing them to be 
circumvented [31]. In general, the corresponding paths in conformational space are 
non-Newtonian and energy will not be conserved. Some kind of temperature regula
tion has thus to be applied (e.g. Ref. 125). 

A. Smoothing of the potential energy function in order to reduce barriers 
1. Reverse collapse methods: These types of methods [33,145,146] have been ap

plied successfully to Lennard-Jones clusters, and are, in principle, generalizable to 
any interaction function which is a sum of pairwise-distance-dependent terms. The 
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potential energy hypersurface is deformed by modifying the atom-atom Lennard
Jones interaction through a deformation parameter y, such that the real surface is 
recovered at y = 0, and the surface collapses into a single basin around the origin 
when y = 1. This is done either by deformation of the Lennard-Jones interaction 
by the diffusion equation method [147] or by shifting the pairwise distance entering 
in the Lennard-Jones function by a y-dependent offset [33,145]. Since the global 
minimum of the collapsed surface is known, the reverse procedure has a meaning
ful starting point. y is progressively decreased from 1· and the structure is energy 
minimized for every new y decrement. Apart from rotation and translation 
and when a single permutation of identical atoms is considered, the method 
is deterministic (independent of any starting configuration). Although there are 
indications that no bifurcation occurs when the deformation parameter is 
decreased (i.e. that the final structure is the global minimum), no formal proof of this 
exists. 

2. Potential energy scaling: In this approach, the magnitude of specific terms of the 
interaction function is scaled down by a scaling parameter ~ [148,149]. If all the terms 
are scaled, the search power is increased in a similar way as upon increasing the 
temperature. Since the temperature is a property of the overall system, the former 
method is advantageous for explicit solvent simulations, since the intramolecular 
terms may be scaled selectively. The original interaction is recovered by letting ~ go 
to 1. The method may also be used as an annealing scheme. 

3. Use of a soft-core potential: The steepest barriers on the potential energy surface 
are due to van der Waals repulsion between atoms, which increases steeply when 
atoms start overlapping each other, and gives rise to a singularity when atoms occupy 
the same location. In the soft-core method [150], the functional form of the non
bonded interaction (the Lennard-Jones and electrostatic term) is changed through 
a soft-core parameter ex. For any ex> 0, the interaction becomes finite at zero in
teratomic distance, and its magnitude decreases on increasing ex. When ex is large 
enough, atoms may pass through each other, which significantly increases the search 
power. At any time, the interaction can be relaxed to its original form by letting 
ex decrease to O. 

4. Extension of the dimensionality: Extension of the dimensionality is a way to 
reduce the number of local minima, and provide energetically tractable pathways to 
pass barriers which could not be crossed in three dimensions. The 4D-MD refinement 
method [125,151] takes advantage of this. The interaction function is modified 
through a 4D coupling parameter J.1, so that when J.1 = 1 the atoms interact according 
to energy terms based on their four-dimensional coordinates, while when J.1 = 0 only 
their three-dimensional coordinates are used, the fourth coordinate being uncoupled. 
The interaction can, at any time of the search, be relaxed to the original interaction by 
letting J.1 decrease to 0 (dimensionality annealing). In order to limit the increase in the 
accessible volume of conformational space in the higher dimension, the dimensional
ity is not increased above 4 and a harmonic restraint prevents atoms from moving too 
far away from the three-dimensional hyperplane. Four-dimensional refinement is also 
used in DG calculations [122]. 
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B. Inclusion of a time-dependent memory term into the potential energy function 
In the local elevation (LE) method [103] the problem of repeatedly visiting the 

same low-energy regions of conformational space is addressed. To persuade the 
system to visit new areas, a penalty term is included into the interaction function in the 
form of a time-dependent memory function. The relevant degrees of freedom (tor
sional) are discretized and the penalty term is defined as a sum of truncated Gaussian 
functions, centred at each grid point, whose magnitude is proportional to the number 
of times the neighbourhood of the grid point was visited. Molecular dynamics is then 
used to integrate the equations of motion and the trajectory progressively maps out 
low-energy regions of conformational space. The method is memory intensive and 
requires a fast storage/comparison routine. It is therefore only applicable to a limited 
number of degrees offreedom, which may be only a subset of the degrees offreedom of 
the real system. Finally, a trade-off has to be found here between grid spacing, search 
power and memory requirement. 

C. Scaling of system parameters 
1. Simulated temperature annealing: The term annealing describes the process of 

slowly cooling a system [152-155]. High-temperature dynamics improves the search 
power of MC or MD, but also favours the selection of high-energy, high-entropy 
conformations. This behaviour is improved in simulated annealing (SA). In SA, one 
starts from a high temperature, where transitions out oflocal minima are facilitated, and 
then progressively decreases the temperature to almost zero. The probability that the 
system ends up in a very low energy conformation is high if the cooling is carried out 
slowly enough. 

2. Scaling of the atomic masses: In this method [156], the atomic masses and the 
temperature of the system are scaled by a common factor. The increased kinetic 
energy and inertia lead to a larger amplitude in vibrational motions and thus increase 
the probability of torsional dihedral angle transitions. On the other hand, by equipar
tition, the atomic mean-square velocities, < vr > = 3kB T /mb are unchanged and 
there is no need to use a shorter timestep for integrating the equations of motion, 
which is not the case if only the temperature is raised (SA). 

3. Potential energy annealing: In PEACS [124], new dynamical laws (equations of 
motion) are defined, which meet the requirements for a good search method The 
potential energy of the system is weakly coupled to an external bath. The reference energy 
level of the bath is slowly decreased (annealed) during the simulation, which should result 
in low potential energy structures at the end. A velocity correction (along the force vector) 
is made to relax the potential energy V to a value V 0 using a weak-coupliog-type equation 
(first-order relaxation). The annealing may be performed automatically by slowly decreas
ing the reference level to the minimal potential energy value encountered during the 
simulation. The RUSH algorithm [123] is based on a similar principle. 

D. Direct search methods 
A direct search method has been used to attack the multiple minima problem [157]. 

The method is essentially a simplex method, but the size of the simplex is adapted to 
the shape of the potential energy surface, so that barriers can be crossed. 
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3.2. Methods that provide structural and thermodynamic information 

The purpose of these methods is to sample conformational space, or part of it, in 
order to obtain a collection of conformations that represent a statistical mechanical 
ensemble from which thermodynamic quantities can be derived. Classical statistical 
mechanics uses the concept of an (infinite) ensemble of Nsys systems, E == {(qj, Pi), 
i = 1, ... ,Nsys} with Nsys -+ 00, where qi == {qi'" ex = 1, ... ,3Nat } is the generalized 
coordinate vector and Pi == {Pi", ex = 1, ... , 3Nat } is the generalized momentum vector 
of system i. When the composition, volume and temperature are held constant (NVT 
or canonical ensemble), the probability distribution of systems in the ensemble, p(q, p), 
obeys the distribution 

e - .Jf"(q. p)/k. T 
p(q,p) = J ... J dqdpe-.Jf"(q·p)/k.T (3.2.1) 

where .1t'(q, p) is the Hamiltonian (total energy) of a system (q, p) (see Sec. 3.3.4), kB is 
the Boltzmann constant and T is the absolute temperature. Under the assumptions 
that the kinetic energy term of the Hamiltonian contains the only dependence of the 
Hamiltonian on P (this is not true when constraints are applied), the kinetic energy 
contribution can be integrated and the description limited to an ensemble of 
Nconf conformations, C == {qj, i = 1, ... , Ncond with Nconf -+ 00. The probability dis
tribution of conformations in C, p(q), obeys 

e - Y(q)!k.T 
p(q) = J ... J dq e - Y(q)!k.T (3.2.2) 

where V(q) is the total potential energy of the system in conformation q. Finally, 
ensembles obtained from finite simulations are of finite size. Under the assumption 
that a representative fraction of conformational space has been sampled, p(q) may be 
written in a discrete form 

e - Y(q,)!k. T 
P(qi) = L. e - Y(CJ;)!k. T (3.2.3) 

J 

An ensemble of conformations that satisfy this equation will be called a Boltzmann 
ensemble. 

Since the sequence of the conformations is not relevant here, the methods of choice 
are the ones which satisfy Eq. 3.2.3 but achieve the highest sampling efficiency. In 
addition to the methods described below, the ones listed in Sec. 3.3 also provide 
structural and thermodynamic information. However, if a correct dynamical descrip
tion of the system is not required, they may not be the most efficient techniques. 

3.2.1. (Metropolis) Monte Carlo sampling methods 

In the Metropolis Monte Carlo algorithm [38,158], random steps are taken and 
accepted with a probability 

p(i\q) = min{1,e-l>Y(l>q)/k.T} (3.2.1.1) 
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It can be shown that the method generates a Boltzmann ensemble. Steps may cross 
barriers higher than kB T in the potential energy surface, provided that these are 
narrow. Internal or Cartesian coordinates can be used, but the method may be 
inefficient in Cartesian coordinate space for systems with many covalent bonds, due to 
the poor trial configuration acceptance probability if steep contributions to the 
potential energy (e.g. from bonds) are present. 

3.2.2. Methods that generate a biased statistical ensemble 

These methods do not generate a correct thermodynamic ensemble, but a biased 
ensemble that can easily be converted to a Boltzmann ensemble. The prototype is 
umbrella sampling, in which a well-defined potential energy term is added to the 
physical potential energy function in order to restrict the accessible conformational 
space. 

3.2.3. Methods that provide differences in thermodynamic observables 

The so-called coupling parameter approach can be used for calculating differences in 
thermodynamic observables between two states A and B (i.e. two Hamiltonians) of 
a given system when individual values of the observable at A and B are inaccessible. In 
practice, the method is used to calculate differences in free energies. In the general 
case, if the Hamiltonian along a given pathway (often unphysical) between states 
A and B can be cast in the form 

Jf'(q,p;A) with Jf'(q,p;O) = Jf'A(q,P) and Jf'(q,p;1) = Jf'B(q,P) (3.2.3.1) 

and if the proper ensemble averages can be sampled along this pathway, differences 
between observables which are state functions may be computed. To achieve a higher 
sampling efficiency, any of the smoothing parameters defined in Sec. 3.1.5A may be 
introduced (soft-core, potential energy scaling, extension of the dimensionality) with 
a specified A-dependence so that, at A = 0 or 1, the original interaction function is 
recovered [148,150,151]. The thermodynamic cycle approach essentially follows the 
same principle: a direct pathway which cannot be sampled accurately is replaced by 
an indirect pathway for which sampling is easier. 

3.3. Methods that provide structural, thermodynamic and dynamical information 

In this case, one wants to simulate the motion, and equations of motion which 
explicitly contain time are required. Possible techniques are classical [83] molecular 
dynamics (MD), quantum [9] molecular dynamics (QMD) or stochastic [83] dynam
ics (SD) simulations. These methods generally have a small radius of convergence for 
potential energy surfaces with many barriers higher than kB T. 

3.3.1. Time-dependent Schrodinger equation 

The time-dependent Schrodinger equation describes the nonrelativistic evolution of 
a quantum system in terms of its time-dependent wave function *"({ri}, t): 
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where {rd denotes the coordinate vectors of all particles in the system and 

N 112 02 

$({rd) = K({rd) + V({r;}) = ~ 2m. or f + V({r;}) 
I I I 

(3.3.1.1) 

(3.3.1.2) 

is the quantum mechanical Hamiltonian operator of the system, assumed here to be 
independent of time (isolated system). The second equality is only valid in a Cartesian 
coordinate system, but can be easily generalized. Integration of this equation of 
motion, where ~ is expanded as a linear combination of basis functions, is called 
quantum molecular dynamics (QMD). Possible discretization schemes have been 
reviewed elsewhere [159]. Due to the difficulty ofthe procedure, QMD is only directly 
applicable to very small systems or small parts of larger systems, the other degrees of 
freedom being treated classically (hybrid methods). Finding the proper coupling 
between the quantum and classical subsystems is then an important area of research. 

3.3.2. Newton's equations of motion 

Newton's (classical) equations of motion are valid only in Cartesian coordinates r. If 
all forces in the system are conservative and derive from a potential V(r), which is 
normally a good approximation at the atomic level, Newton's equations of motion 
can be expressed as 

oV({rd) 
ori 

mifi = Fi({rd) = (3.3.2.1) 

where ri is the Cartesian coordinate vector of particle i, mi is its mass, Fi is the force on 
atom i and a double dot on a quantity denotes its second derivative with respect to 
time. An equivalent expression for the overall system is the following second-order 
differential equation: 

Mf = F(r) = _ dV(r) 
dr 

(3.3.2.2) 

where r == {ri' i = 1, ... ,N} is the 3N-dimensional vector describing the Cartesian 
coordinates of all N particles and M is a diagonal 3N x 3N matrix containing the 
masses. If the velocity vector is introduced, an alternative formulation involves two 
first-order differential equations 

. dV(r) . 
Mv = - -- and r = v 

dr 
(3.3.2.3) 

Numerical integration of Newton's equations of motion is usually performed using 
this last form. Possible discretization schemes are described elsewhere [160,161]. 
Integration of Eq. 3.3.2.2 with respect to coordinates from rO(tO) to r(t), followed by 

22 



Empirical classical interaction jUnctions 

derivation with respect to time, leads to the result of energy conservation: 

d d 
dt [1ttMt + V(r)] = dt [K(t) + V(r)] = 0 (3.3.2.4) 

where K(t) is the kinetic energy. 

3.3.3. Lagrange's equations of motion 

Lagrange's equations of motion are a generalization of Newton's equations of 
motion applicable to any coordinate system q (generalized coordinates). They involve 
a function called the Lagrangian L(q, q) of the system: 

L(q,q) = K(q,q) - V(q) (3.3.3.1) 

where q == {q"" IX = 1, ... ,3N} is the generalized coordinate vector describing the 
system, q == {g"" IX = 1, ... , 3N} is the corresponding generalized velocity vector, and 
K(q, cj) is the kinetic energy, which now also depends on generalized coordinates. In 
terms of this function, the equation of motion is a second-order differential equation 

~(OL(q,cj)) = oL(q,q) 
dt oq oq 

(3.3.3.2) 

This equation is easily converted to Newton's equation of motion in the special case 
where Cartesian coordinates are used, but has a wider range of applicability. This 
formalism is well suited for the inclusion of holonomic, i.e. time-independent, con
straints (freezing of a specified generalized coordinate) and for the inclusion of 
additional artificial degrees of freedom to the system (extended Lagrangian). For
mulae derived in generalized coordinates are most often converted and applied in 
Cartesian coordinates. 

3.3.4. Hamilton's equations of motion 

Hamilton's equations of motion form a symmetrization of Lagrange's equation of 
motion. The conjugate momentum vector p associated to the generalized coordinate 
vector q replaces here the conjugate velocity vector q. The vector p is defined by 

oL(q,q) 
p=_~..:o. 

oq 
(3.3.4.1) 

The Hamiltonian £(q, p) of the system is then defined by 

£(q,p) = K(q, p) + V(q) (3.3.4.2) 

where we recognize the total energy of the system, see Eq. 3.3.2.4. In terms of this 
function, the equations of motion are two first-order differential equations 

o£(q, p) . and o£(q, p) . 
op =q oq =-p (3.3.4.3) 
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This equation is easily converted to Newton's equation of motion in the special case 
where Cartesian coordinates are used, but has a wider range of applicability. p is then 
the usual linear momentum vector. 

3.3.5. Langevin's equations of motion 

Langevin's equations of motion provide a better description of the dynamics when 
some degrees of freedom are not treated explicitly in a model, but one would like to 
include the effect of their mean fluctuations. A typical example of application are 
implicit solvent models. Here, nonconservative forces are included, and the energy will 
not be conserved. The following second-order equation is used: 

(3.3.5.1) 

where V mean is a potential of mean force including the average effect of the omitted 
degrees of freedom, R; is a stochastic force accounting for the effect of random 
collisions, and the last term accounts for dissipative effects and is proportional to 
a friction coefficient y;. Integrating this equation of motion is called stochastic 
dynamics (SD, see Ref. 83). To a first approximation, R; may be assumed to obey 
a simple Gaussian distributed probability. In this case, the width of the Gaussian is 
related to the temperature so that the energy introduced by the random force balances 
the energy removed from the system by the stochastic force, i.e. 

(3.3.5.2) 

where kB is the Boltzmann constant and T is the temperature. This explicit relation to 
the temperature introduces an explicit coupling to a heat bath. More elaborate 
treatments may introduce spatial and/or time correlation in the stochastic force 
(the generalized Langevin equation). When the inertial term, the left-hand side in 
Eq. 3.3.5.1, is small compared to other forces, the equation reduces to the following 
first-order differential equation: 

(3.3.5.3) 

Integration of this equation of motion is called Brownian dynamics (BD) or diffusive 
stochastic dynamics. 

3.3.6. Liouville's equations of motion 

In this representation, interest is focused on the density of states p(q, p, t), i.e. the 
proportion of systems in an infinite statistical ensemble belonging to the hypercube of 
edge (dq,dp) around the point (q,p) in phase space. The conservation of the total 
number of systems in the ensemble at any time can be expressed by the following 
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equation: 

op(q, p, t) 
ot 

3N (Op . OP.) 3N (Op oYf Op OYf) -I -q.+-p. = -I -----
i Oqi 1 0Pi 1 i Oqi 0Pi 0Pi Oqi 

(3.3.6.1) 

where the second equality arises from the Hamiltonian equations of motion, 
Eq. 3.3.4.3. Equation 3.3.6.1 forms the basis for the simulation of non equilibrium 
processes [162,163]. It is easily seen that Eq. 3.2.1 is a solution of Eq. 3.3.6.1 in the 
equilibrium case, which indicates that the classical equations of motion generate 
a Boltzmann ensemble. 

4. Assumptions underlying empirical classical interaction functions 

The only justification of empirical classical atomic interaction functions resides in 
their ability to reproduce and predict a vast amount of experimental results. Usually, 
most of the information used in their design and calibration comes from experiment 
and not from quantum mechanical calculations. Thus, no theoretical justification is in 
principle required as long as a force field is successful at reproducing data from 
experiment. It is nevertheless useful to try to understand the reason of the agreement 
(or the cause of discrepancies) by considering the relationship between the force-field 
building blocks (energy terms) and the underlying quantum mechanical reality. 

4.1. Implicit degrees of freedom and the assumption of weak correlation 

Whatever the degrees of freedom chosen to be treated explicitly within a force field, 
the reality behind remains quantum mechanical and involves the interaction between 
nuclei and electrons. Since the electronic degrees of freedom, and sometimes those of 
a number of nuclei, do not appear in the definition of the empirical classical potential 
energy function, but are still present in the underlying reality, they may be called 
implicit. The fundamental assumption (or approximation) on which empirical classical 
force fields are based is that the correlation between the fluctuations in these implicit 
degrees of freedom and the fluctuations in those which are handled explicitly can be 
neglected. Under this assumption, the fluctuations in the implicit degrees of freedom 
can be averaged out, leaving only their mean effect. This assumption is in essence 
a generalization of the Born-Oppenheimer principle, which allows the separation of 
the nuclear and electronic degrees of freedom based on the large difference between 
nuclear and electronic masses. Within the framework of this principle, a mean or 
effective potential energy function (or potential energy surface, PES) can be defined, 
which describes the interaction of the nuclei in the instantaneously averaged potential 
of the electron cloud. More precisely, if ~ denotes the electronic degrees of freedom 
and i the nuclear ones, the mean potential energy describing the interaction of the 
nuclei, V noe ({ r;}), is defined as the lowest eigenvalue of the electronic time-indepen
dent Schrodinger equation at a given configuration of the nuclei, {ri}: 

(4.l.1a) 
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with 

(4.1.1b) 

where it'll is equal to the total Hamiltonian of the system, it'tOI> minus the kinetic 
energy operator K j corresponding to the nuclear degrees offreedom, and WI1 ({ r,,}; {rj} ) 
is the ground state electronic wave function, which depends on {rj} only paramet
rically. This treatment is valid only for an isolated system (time-independent total 
Hamiltonian), in which electronically excited states play no role. In Eq. 4.1.1, the 
assumption that the nuclei are motionless with solving the electronic problem allows 
for the decoupling of the Ki operator from the Hamiltonian. The nuclear problem is 
then described by a nuclear time-independent Schrodinger equation 

(4.1.2a) 

with 

(4.1.2b) 

where the eigenvalues Etot are the allowed values for the total energy of the system in 
its different vibrational and rotational states, and the <l>i({ri}) are the corresponding 
nuclear wave functions. Very often, the further assumption is made that the motion of 
the nuclei in the mean potential V nue ( {r;} ) can be treated classically. From a thermo
dynamical point of view, this approximation is normally valid for all but the lightest 
atoms and at high enough temperature, that is, when the classical and quantum 
partition functions become equivalent. When this classical treatment is adequate, 
using the Hellmann-Feynman theorem two equivalent formulations can be given to 
Eq.4.1.1: 

or 

Vnue({r;}) = < w,,({r,,}; {ri})Iit'I1({rl1 }, {ri})lwl1 ({rl1}; {rd) >" (4. 1.3 a) 

oV nue ({ rd ) 
orj 

{ } { } { } 
1
0it'I1({r,,}, {r;})I'i' { } { } - Fnue,j( rj ) = < WI1 ( r,,; ri ) orj '1',,( r,,; rj ) >11 (4. 1.3 b) 

where < ... >" denotes integration with respect to the {r,,} variables only and 
F nue,j ({ rJ ) is the Hellmann-Feynman 'classical' force acting on nucleus j. This means 
that when the J.1 degrees of freedom are quantum mechanical, the mean potential (first 
definition) and the potential of mean force (second definition) are equivalent (within 
a constant). This is the case in an all-atom force field, where the classical interaction is 
described by the Born-Oppenheimer potential energy surface. 

When classical degrees of freedom, m, are further removed from the interaction 
function by averaging (e.g. nuclei of solvent molecules or of protein side-chains), the 
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two types of definition are no longer equivalent. Thermodynamic quantities defined in 
terms of an ensemble average of a microscopic (instantaneous) observable depending 
on the explicit degrees of freedom i will be described equivalently by an all-atom 
model and a lower particle resolution model (in an NVT ensemble) if the Boltzmann 
factors are identical, that is if 

(4.1.4) 

where V MF ({ ri} ) is the interaction at the lower particle resolution, kB is the Boltzmann 
constant and T is the (absolute) temperature. Differentiating the negative logarithm 
of Eq. 4.1.4 with respect to the coordinate rj of an explicitly treated particle j leads 
to the correct statistical mechanical definition of V MF( {r;}) as a potential of mean 
force: 

(4.1.5) 

where FMF,j({ri}) and Fnuc,j({rm}, {ri}) are the forces on atom j derived from the 
potential energies VMF({ri}) and Vnuc({rm}, {ri}), and < ... > m denotes (Boltzmann) 
ensemble averaging over all possible sets of coordinates {rm} at a given (fixed) set of 
coordinates {ri}' On the other hand, the derivative of the mean potential energy, 
Vmean ({ri}), is 

(4.1.6) 

When all the degrees of freedom are averaged out from the system, V MF becomes the 
Helmholtz free energy of the system, A (see Eq. 4.1.4), and V mean its internal energy, U. 
The second term in Eq. 4.1.6 can thus be interpreted as an entropic force, which arises 
because each set of explicit coordinates actually maps areas of different Boltzmann 
weighted sizes in the nuclear potential energy surface. This force can be identified by 

27 



P.H. Hunenberger and w.F. van Gunsteren 

subtracting Eq. 4.1.5 from Eq. 4.1.6: 

oVentrop( {ri}) 
arj 

1 [/ ) /avnuc aVnue ) J - kB T \ V nue - < V nue > m m \ ~ - < ~ > m m 

(4.1.7) 

This entropic force is proportional to the covariance between fluctuations in the 
nuclear potential energy and the force derived from it, and vanishes at high temper
atures. In practice, Eqs. 4.1.5-4.1.7 only give access to the derivatives of the quantities 
analogous to the thermodynamic quantities A, U and TS with respect to the coordi
nates of explicit particles, and thus define the corresponding potential energies within 
a constant. The estimation of absolute values would require (i) a complete sampling 
of conformational space and the use of Eq. 4.1.4, and (ii) a knowledge of the absolute 
value of Vnuc with respect to infinitely separated nuclei and electrons. For most 
purposes, absolute values are not required. 

Although it may be very difficult to design in practice, a potential of mean force can 
in principle always be defined through Eq. 4.1.3 or Eq. 4.1.5, in the latter case within 
a constant, which will give the correct thermodynamic representation of the system 
(averages and fluctuations of any quantities expressed as ensemble averages of 
microscopic observables defined in terms of the explicit degrees of freedom i). How
ever, it will only give an acceptable dynamical representation of the system if the 
correlation between fluctuations in the implicit and explicit degrees of freedom can be 
neglected (assumption of weak correlation). This will be the case if the two classes of 
degrees offreedom relax with very different timescales, that is, changes in {r;} are slow 
enough and changes in {rm} (or {r~}) are rapid enough, so that the m (or Jl) degrees of 
freedom generate a full ensemble quasi-instantaneously before any change in {ri} can 
take place. If this condition is satisfied, the effect of the mean force will be a good 
approximation to the cumulative effect of instantaneous forces. Although the approxi
mation is reasonable for electronic degrees of freedom in many cases, this is often not 
the case for the classical ones (e.g. solvent nuclei). Correlation may then be introduced 
through forces acting on explicit degrees of freedom, which attempt to mimic the 
time-dependent effect of fluctuations in the implicit degrees of freedom (Langevin 
treatment) or by inclusion of a few additional degrees of freedom into the system 
(extended Lagrangian treatment). In the Langevin-type treatment [6,13], two addi
tional forces acting on an explicit atom j are added to the mean force, a stochastic 
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force Rj and a frictional force D j: 

Fj(t) = FMF({rj(t)}) + Rj({{rj(t)}, 0 < t < t}) + Dj({rj(t)}, fj(t)) (4.1.8) 

The simplest choice for Rj is a purely random force (components obeying Gaussian 
distributions). If Rj depends on {rj (t)}, correlation in space may be introduced into the 
stochastic force. If it also depends on previous configurations {{ rj( t)}, 0 < t < t}, 
correlation in time (memory) may be introduced into the stochastic force. The 
frictional force is often chosen proportional to the opposite of the velocity fj(t) of 
atom j at time t (viscous drag), although it might be more realistic to consider also 
its degree of interaction with implicit degrees of freedom (e.g. solvent accessibility), 
depending on {rj(t)}. In the extended-Lagrangian-type treatment, classical degrees 
of freedom are introduced into the system and in the interaction function, which 
are easier to handle than the real implicit degrees of freedom, and aim at introducing 
fluctuations in an approximate manner. Typical examples are the approximative 
inclusion of fluctuations in the electronic degrees of freedom using a point charge 
on a spring, by letting the atomic charges fluctuate [164], or using the path-integral 
method. The modelling of a heat bath or pressure bath (surroundings of the system) 
by a single degree of freedom coupled to the system also belongs to this class of 
methods. 

In practice, the averaging over the implicit degrees of freedom can be performed 
either by: (i) quantum mechanical calculation or simulation at high particle 
resolution, and the use of Eq. 4.1.3 or Eq. 4.1.5, respectively; (ii) analytical theories 
for simple systems; or (iii) an educated guess of the functional form of the potential 
of mean force, followed by adjustment of its parameters to reproduce experimental 
or quantum mechanical data. Typical examples of each method are: (i) the use of 
potential energy surfaces from ab initio molecular orbital calculations for tuning 
empirical force-field energies [40], the averaging of a molecular dynamics trajectory 
in solution over the solvent degrees of freedom [165]; (ii) the analytical continuum 
models used to describe solvent around a solute in a cavity, such as continuum 
reaction field models [15,18,166,167] or RISM equations [168,169]; and (iii) the 
expansion of the interaction function in a Taylor series for bonded interactions, 
a cosine series for torsional interactions, Coulomb plus van der Waals functions for 
non bonded interactions, and possibly a solvent accessible surface area dependent 
term for mean-solvent effects [85], followed by parameter tuning. 

Perhaps one of the most striking illustrations that force-field parameters are 
effective parameters (i.e. corresponding to a potential of mean force) is the examination 
ofthe atomic point charges used in condensed-phase force fields. To describe properly 
the effect of the electron cloud on the electrostatic interaction in the bulk phase, 
a polarization term would be required at each interaction site. Since most force fields 
do not contain such a term, charges used for bulk-phase simulations have to incorpo
rate the average polarization effect and are thus considerably increased with respect to 
charges which would be suitable for the gas phase. For example, the dipole moment of 
the SPC water model [170], optimized for condensed-phase properties, is 2.27 D, 23% 
higher than the experimental gas-phase dipole of the water molecule, 1.85 D. Explicit 
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inclusion of a polarizability allows one to reproduce correct condensed-phase behav
iour with much lower charges [171]. 

4.2. Energy terms and the assumption of transferability 

Under the assumption of weak correlation between implicit and explicit degrees of 
freedom (Sec. 4.1), a (classical) effective interaction function V Md {ri}), or loosely 
V({rd), can be defined depending solely on the explicit degrees of freedom. In the 
following, the explicit elementary unit will be called 'atom', whatever this unit actually 
is. For practical purposes, this interaction function has to be modelled in some way by 
an analytical function. If no further approximation is made, this function will, in 
general, be specific to a given molecular system and will depend on the coordinates of 
all atoms simultaneously. This dependence can be very intricate, ifthe required level of 
accuracy is high. Two distinct lines can be followed when designing this analytical 
function. 

In the first approach, a Taylor expansion of the potential energy surface around an 
equilibrium conformation {rn can be performed (in Cartesian coordinates), up to the 
required accuracy, that is, a polynomial approximation is generated depending 
simultaneously on the coordinates of all atoms. The coefficients will be matrices of 
increasing rank, 

N .. avi 
Vana1({rd) = V({rn) + L;;- (rj - rf) 

j Urj {rp} 

N .. N" a2v I + L L ('rj - trf)-- (rk - r~) + 
j k arj ark {rp} 

(4.2.1) 

The eigenvectors of the matrix containing the second derivatives (Hessian matrix) can 
be used to define a unique, nonredundant and orthogonal basis set for the description 
of the system as in a spectroscopic force field. This is mathematically satisfactory, but 
of limited practical application since: 

A. The equilibrium conformation is usually not known but something one would 
like to predict. 

B. A system at equilibrium is generally characterized by more than one 
conformation. 

C. Other conformations (nonequilibrium) are often also of interest - in which cases 
neither the Taylor expansion at {r?} nor the corresponding well-defined basis set are 
usable. 

D. The accurate description through a Taylor expansion for one configuration 
does not provide much insight into other parts of the configurational space, and so 
does not describe the physics of the system. 

E. The accurate description of one molecule is useless for predictions about other 
molecules. 

The second approach relies on the use of a sum of functionally simple analytical 
functions (energy terms) depending on selected internal coordinates, chosen on the 
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basis of chemical intuition. This is justified because: 
A. A wealth of chemical data tells us that entities such as bonds, bond angles, 

torsional angles and nonbonded interactions are physically meaningful, and thus the 
corresponding internal coordinates and distances in space appear as the natural 
choice in which the functional forms of the interactions are likely to adopt the most 
simple forms. 

B. Since such internal coordinate potential energy terms are physically meaningful, 
they may give an appropriate description of a larger part of configurational space. 

C. Since internal coordinates involve a limited number of atoms (one to four), there 
is a hope to obtain building blocks transferable from one molecule to another 
(assumption of transferability). 

In other words, one wants to split the interaction function into a sum of functionally 
simple, physically meaningful (and thus insight-providing) terms, which would in 
addition be transferable from one molecule to another, and thus bear predictive 
power. These terms are called force-field terms. The assumption that these terms exist 
is similar to the one mentioned in Sec. 4.1, i.e. that for each term (e.g. bond, bond 
angle, etc.), the effect of the environment can be averaged out by considering an 
ensemble of molecular systems (topologies) and conformations (geometries). More 
explicitly, one would like to have an analytical expression of the form 

(4.2.2) 
terms C( 

where the notation j E r:t indicates that the atom j is involved in the force-field term 
r:t and V ana1 ( {ri}) is the analytical representation of the potential energy surface as 
a sum of terms r:t. This analytical representation and the mean force defined in 
Eq. 4.1.4 will give the same description of the thermodynamic properties of any 
molecular system if the Boltzmann factors are identical: 

e-VMF({r;})!kBT = TI e-V~"'l({rj,jEc<})/kBT 
C< 

(4.2.3) 

If this equation is integrated with respect to the coordinates {rko kEt~} which do not 
appear in a given force-field term ~, and its negative logarithm is differentiated with 
respect to one of the coordinates rj' j E~, one gets after rearrangement 

OV~nal ({rj,j E~}) 
orj 

(4.2.4) 

where < ... >k denotes ensemble averaging over the coordinates {rko kEt~}. With the 
exception of harmonic spectroscopic force fields where the coordinates are normal 
mode vectors, the second term in Eq. 4.2.4 will always be present in force fields, 
because covalent energy terms and distance-dependent terms often act on the Car
tesian coordinate of the same atom. This equation means that when the coordinate rj 
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is also involved in force-field terms r:t other than ~, the energy term ~ becomes 
correlated to these other terms. The geometric correlation arising from this so-called 
coordinate redundancy may be removed by solving consistently Eq. 4.2.4 for a given 
molecular system. The topological correlation arises from the fact that the term ~ may 
be correlated to a given set of terms r:t for one molecular system, and to a different set 
for another one. This type of correlation may only be removed by considering 
a collection of different molecular systems. A procedure analogous to this is followed 
in the consistent design of force fields using ab initio data (Sec. 7.S). The set of 
conformations used there is, however, not a proper statistical ensemble, but an 
arbitrary selection of conformations. Unlike in the definition of the potential of mean 
force in Sec. 4.1 (Eq. 4.1.4), it is not guaranteed that Eq. 4.2.4 has an exact solution. In 
practice, one fixes functional forms for the energy terms V~nal and calibrates the 
parameters. The quality of the solution will depend on the flexibility and physical 
sensibleness of the selected functions. 

As a consequence of this second averaging process, the parameters characterizing 
the force-field term r:t are not those found in any specific molecule, but rather 
characteristic of an ensemble of molecules and conformations. Thus, a force-field term 
is really a virtual entity incorporating the average effect of various possible environ
ments. This means also that the parameters corresponding to a given term may be 
dependent on the class of compounds for which the term was calibrated (Sec. 7.6.3). 
When the averaging process is performed correctly and the analytical functions 
selected for the energy terms are sensible enough so that Eq. 4.2.4 has a good solution, 
the interaction function will be able to give a correct picture of the thermodynamic 
properties of molecular systems. It is not guaranteed, however, that a correct dynam
ical picture will be obtained. 

4.3. Coordinate redundancy and assumption of transferability 

Force fields are usually defined in terms of internal valence coordinates for the 
covalent interactions, and atom-atom distances for the nonbonded interactions (even 
if in practice the forces are calculated in Cartesian coordinates). When a molecule 
includes atoms with a valence higher than two, the valence internal coordinates 
themselves become redundant, i.e. some of them are linearly dependent from the 
others. The problem of internal coordinate redundancy can be illustrated in the case of 
formamide [21]. A conformation of formamide is fully specified by a set of 
3N - 6 = 12 internal coordinates. By systematic counting, one sees, however, that 
there are five bonds, six angles, four dihedrals and two out-of-plane coordinates, that 
is, 17 available internal coordinates, all likely to have an influence on the energy. Five 
ofthese are necessarily redundant. For example, the HCO, HCN and OCN angles are 
dependent since, due to the planarity of the carbonyl group, they must sum up to 2n. 
This raises the question of whether it is possible to assign specific and transferable 
properties to, say, a generic amide OCN angle, since it cannot vary in an independent 
manner from the other angles. Valence coordinate redundancy is handled differently 
from one force field to another, as is illustrated here for the case of ethane. Out of the 
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nine torsional dihedrals that can be defined in ethane, only one is required to describe 
the relative rigid-body motion of the two methyl groups with respect to one another. 
There are three possibilities: (i) use a torsional coordinate which involves the six 
hydrogens (this is not easily generalizable to less symmetrical cases); (ii) use one of the 
dihedrals only (this induces asymmetry in the system and requires arbitrary choices); 
or (iii) accept the redundancy and calculate the nine four-body torsions with a force 
constant divided by nine (this may be computationally inefficient). Both choices (ii) 
and (iii) are found in current force fields. At last, the definition of relevant internal 
coordinates requires some insight into which choice may lead to the best transferable 
entities. For example, if the pyramidality around a nitrogen centre is maintained by 
three bond-angle potential energy terms, it will be difficult to get at the same time the 
correct bond-angle vibrational frequencies and the pyramidal inversion barrier. 

Even if redundancy in the valence coordinates is avoided by limiting their number 
to 3N - 6, ultimately, it will be introduced by the non bonded interaction. Distances 
within a molecule are dependent on the valence coordinates, and thus the non bonded 
interactions will introduce the strain effects into the valence coordinates. For example, 
nonbonded interaction should induce strain on the central C-C bonds in tri-tert-butyl 
methane so that its length is about 0.16 nm, whereas in most force fields the equilib
rium bond length is about 0.152--0.153 nm. 

4.4. Choices made in the averaging processes 

Choices to be made with respect to the averaging process will be discussed using the 
example of a C-C bond. As pointed out in the previous two sections, the factors that 
will influence the effective length in a given conformation of a given compound are: 

A. The bond potential energy term (a potential of mean force over an ensemble of 
molecules). 

B. A possible explicit dependence on topology through different classes of C-C 
bonds, when different C atom types are used. 

C. A possible explicit dependence on topology and geometry through valence coordi
nate cross-terms (Sec. 6.5). 

D. The implicit dependence on topology and geometry through non bonded strain. 
For example, the DREIDING force field [69] excludes both factors Band C, which 

is perhaps not very accurate, but makes parametrization easy. In most force fields for 
biomolecules, option B is used and different classes of C-C bonds are defined, 
depending on the connectivity and environment of the bonded atoms. This is more 
accurate, allows for a specific calibration of the chemical entities required for a given 
purpose, and leads to a simple interaction function. In class II force fields, which are 
meant to be very accurate for molecules in vacuum, option C is mostly used. The 
inconvenience here is that many parameters are required for all but the simplest 
systems, the interaction function is complicated by the cross-terms, and parameters 
have to be calibrated all together in a consistent way. On the other hand, the 
interaction function is very accurate and elegant, since few atom types have to be 
defined (e.g. in the CFF93 force field for alkanes, only two, C and H). 

33 



P.H. Hunenberger and W.F. van Gunsteren 

5. General characteristics of the empirical interaction function 

5.1. Interaction function parameters and molecular topology 

An empirical interaction function, loosely called a force field, V, is defined 
by its functional form and the parameters that enter into its definition, i.e. its 
interaction function parameters, {sJ In order to express this latter dependence, the 
notation 

(5.1.1) 

can be used, where q i~ the 6N-dimensional vector defining (in any coordinate 
system) the configuration of the molecular system. This information is, however, 
not complete. In order to model a specific system, some information on the molecular 
topology is required. This arises from the fact that, in contrast to first-principles 
techniques, empirical force fields are based on a potential energy function that 
averages out the electronic degrees of freedom. This results in very different interac
tion regimes if different relationships between atoms at the electronic level exist. For 
example [21], the interaction between an Na + and a Cl- ion at 1 nm in the gas phase 
can be calculated by solving the Schrodinger equation for the electrons of the ion 
pair and for two separate ions. However, this is not really required or even 
useful, since one can say quite safely that the potential will have a Kel/R dependence, 
where K is a constant and R is the distance between the ions. If the ions come 
closer and form a molecule, the Schrodinger equation can be solved again for 
different internuclear separations around the equilibrium distance Req. However, 
we know that a function like Kb(R - Req)2 gives a reasonable approximation to 
the true energy. From this example, it is clear that (i) the Schrodinger equation 
contains information that exceeds our needs, (ii) a correct description of relative 
energies is sufficient, and (iii) the analytical approximation does not bypass the 
quantum mechanical character of the interaction, but rather captures the essential 
physics from its solution. On the other hand, if the analytical description is more 
intuitive and computationally cheaper, it will require more information about the 
ions, namely, the electronic regime (bonded, nonbonded) and the parameters 
(Keh Kb, Req) specific to the pair. It is also clear that the transition between the bonded 
and nonbonded regime will be a problem. Even when the interaction between two 
pairs of bonded atoms is described by the same functional form, the best choice of 
function parameters is likely to be different if the bonds are not identical. To 
summarize, the molecular topology information is required to decide which interac
tion is to be treated in the framework of which functional form and using which values 
for the parameters. By analogy, the only proper molecular topology information 
required for an ab initio molecular orbital calculation at a certain level of theory is the 
number of protons and electrons for each atom. Note that due to coordinate 
redundancy (Sec. 4.3), the specification of a molecular topology is in most cases not 
unique. 
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5.2. Atom types and combination rules 

In a number of empirical force fields, the basic unit is the atom, which is usually 
considered as a charged mass point with no directionality and no internal degrees of 
freedom. When simulating large systems of biomolecules, hydrogen atoms are often 
implicitly included into the heavy atoms that are bearing them, to form so-called 
united atoms. This significantly reduces the number of degrees of freedom, since 
hydrogen atoms constitute about 50% of the total atom number in proteins and 30% 
in DNA. From a molecular dynamics point of view, this also offers the advantage of 
removing the high-frequency C-H bond stretching motion and enables the use of 
a larger timestep to integrate the equations of motion. However, since a correct 
modelling of the hydrogen bond becomes problematic when the donor is treated as 
a united atom, some force fields use a mixed method, where polar (and possibly 
aromatic) hydrogens are handled explicitly, whereas all the other (nonpolar) hydro
gens are included into united atoms (see Table 1). The negative effects of the sup
pression of explicit hydrogens are the loss of dipole and quadrupole moments (this is 
not too serious for hydrogens linked to carbons) and a loss of steric effects (the united 
atoms are spherical). Finally, there are cases where the united-atom approach fails 
even for nonpolar hydrogens, and an explicit inclusion of all hydrogens may be 
required for a proper description of the system [172,173]. 

Common force fields usually define a limited number of atom types (possibly united 
atom). These are atoms (or groups) which are physically and chemically (i.e. with 
respect to their physical environment) alike. This number varies from one force field to 
another (e.g. 2 in CFF93/alkanes [41] and 65 in OPLS/proteins [79]). The purpose of 
these atom types is.to facilitate the attribution of interaction function parameters to 
n-body interaction terms, while generating the molecular topology information for 
a specific system. The assumption is that the parameters Si for an n-body interaction 
term between n atoms ex of atom type a", are solely determined by the types of these 
atoms, irrespective of their environment, i.e. 

(5.2.1) 

Such rules are called combination rules and are an important part of the definition of 
a force field. Depending on the structure of the simulation program and on the type of 
rule, they can be weakly (Le. easily overriden) or strongly implemented. The former 
possibility is to be preferred, since generation of the molecular topology information 
using combination rules and possible manual editing offers more flexibility [36]. One 
of the most well-established (and physically based) combination rules is Coulomb's 
law, where the magnitude of the interaction between two atoms is given by the 
product of the (point) charges corresponding to each atom type. Combination rules 
for valence terms (bond, bond angle, torsional dihedral angle and out-of-plane 
coordinates) are generally given in the form of tables as a function of the constituting 
atom types. These tables may include 'wild cards', indicating that the same parameter 
is to be used irrespective of the atom type of the specified atom, which reduces 
significantly the amount of required parameters. For van der Waals parameters, 
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proper combination rules are still a matter of discussion (Sec. 6.6.2). Note that, in 
principle, the combination rules could also include atoms which are not directly 
participating in the interaction, but define the environment more precisely. For 
example, a bond type could be defined by the bonded atoms and the next covalently 
bonded atoms. This would, however, very rapidly increase the complexity of the force 
field and, to our knowledge, has never been done. Instead, when the environment of an 
atom is significantly modified by the type of neighbouring atoms, two different atom 
types are usually defined to distinguish the different environments. The use of few 
atom types has the advantage of simplicity and ease of parametrization. For example, 
if four atom types are defined for carbon (C(Sp3), C(Sp2), C(sp) and C(aromatic)), only 
10 bond types have to be parametrized, but the sensitivity of the bond behaviour to 
the environment is low. Twenty types would surely allow one to account better for the 
detailed influence of the chemical environment, but this would then imply the 
parametrization of as much as 210 bond types, which may be a hard task. 

5.3. Expression for the classical Hamiltonian 

As in the quantum description of a molecular system, the classical Hamiltonian 
(total energy of the system) depends simultaneously on the coordinates and the 
momenta of all particles in the system. In a similar manner as in Hartree-Fock 
calculations, where the electronic Hamiltonian is approximated by a sum of one- and 
two-electron operators, the classical Hamiltonian can be approximated by a sum of 
n-body terms: 

Jfclass({q;,Pi}) ~ L [(l)K(Pi) + (l)V(qi)] + L L (2)V(q;,qj) 
i i j>i 

+ L L L (3)V(q;, qj' qk) + ... (5.3.1) 
i j>i k>j 

where i, j, k, ... are indices running over the N particles constituting the system, 
or a subset of these, qi and Pi are the coordinate and momentum vectors of particle i, 
and the (n) superscripts indicate the order of the terms. The three (single or 
multiple) sums in Eq. 5.3.1 correspond to the first three n-body terms of a force 
field, i.e. n = 1, 2, 3. The principal terms that are used in current force fields, either 
with a physical or a nonphysical (i.e. ad hoc, to perturb the system or impose 
restraints derived from experimental information) meaning, are listed in Table 2. 
The computational effort for calculating an n-body interaction term is either (i) of 
order O(M), M being the length of a list of possible combinations of indices enter
ing the multiple sums of Eq. 5.3.1, if such a list is available, or (ii) of order 
O(N!/(n! . (N - n)!)) if all combinations have to be calculated. Covalent inter
actions are typically of type (i), whereas nonbonded interactions are of type (ii). 
For systems of a reasonable size, N2 will always be larger than M for any list of 
covalent interactions, and the bulk of computer time will be used to calculate 
two-body non bonded interactions. The computation of Jf class is thus essentially an 
O(N2) problem. Even for relatively small systems, the inclusion of three-body 
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Table 2 noBody interaction terms found in common force fields 

(n) Subset Type Term 

1 All atoms P Kinetic energy 
Charged atoms P Interaction with an external electric field 
Surface atoms P Stochastic/frictional force on a macromolecule 
Listed or all atoms U Atomic positional restraining 

2 All-atom pairs P Pairwise nonbonded interaction (point charges, 
point charge/point dipole etc., van der Waals, 
solvent accessible surface area interaction) 

Bonded atoms P Covalent bond 
H-bonded atoms P H-bonding interaction (acceptor-donor) 
Listed atom pairs U Distance restraining 

3 All-atom triples P Triple nonbonded interactions (expensive, seldom 
used) 

Atoms in bond angle P Covalent bond-angle bending 
Pairs of bond P Bond-bond cross-term 
Bond in angle P Bond-angle cross-term 

4 Atoms in dihedrals P Torsional interaction, improper dihedral interaction 
H-bonded atoms P H-bonding (acceptor-antecedent, acceptor, hydro-

gen, donor) 
Pairs of angle P Angle-angle cross-term (around one centre) 
Atoms in dihedral P Bond-dihedral cross-term (central bond), 

angle-angle-torsion cross-term 
Atoms in dihedral U J-value restraining, local elevation 

~5 Covalent neighbours P Other cross-terms among bonds, angles and dihed-
rals 

N All atoms P Point polarizability 
All atoms U Radius of gyration unfolding force 

(n): order of the term, i.e. the number of particles involved in the interaction term, N indicates all 
atoms; Subset: subset of atoms for which the term is calculated, either from a list or all atoms 
(pairs, triples, respectively); Type: physical (P) or 'unphysical' (U) term. 

nonbonded terms is extremely expensive [174,175]' On the other hand, the evaluation 
of a single N-body term is an inexpensive problem. Examples may be the inclusion of 
point polarizabilities at atomic sites (when the interaction between induced dipoles is 
neglected) or the radius of gyration interaction that can be used to force protein 
unfolding in a molecular dynamics simulation [86]. 

6. Interaction function terms used in current force fields 

In this section the most commonly used interaction function terms and correspond
ing combining rules are listed and briefly discussed. Only terms bearing a direct 
physical interpretation will be described here. For the sake of completeness it should 
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be noted that 'unphysical' terms can be incorporated in the interaction function for 
the following purposes: 

A. Modification of the potential energy surface in order to enhance the power of 
a given method to search the conformational space (Sec. 3.1.5). 

B. Description of unphysical pathways linking two physical states of the system, as 
used for example in free energy calculations (Sec. 3.2.3), or restriction of the accessible 
conformational space to the neighbourhood of a given point, as used in umbrella 
sampling (Sec. 3.2.2). 

C. Direct incorporation of experimental information in the form of constraints or 
(possibly time-averaged or subsystem-averaged) restraints, in order to enforce the 
agreement between simulation and experiment. 

D. Various engineering purposes, for example restriction of the motion in selected 
parts of the system (position restraining energy term). 

Finally, terms mimicking the potential of the mean force effect of omitted supra
atomic degrees of freedom (e.g. solvent, the side chain of protein residues) will not be 
discussed here. 

6.1. Bond-stretching term 

6.1.1. Functional forms 

When simulations are performed at room temperature, and when no chemical 
(bond-breaking) reaction is involved, bond lengths usually remain close to their 
equilibrium values. The bond-stretching contribution to the potential energy can then 
be approximated adequately by a Taylor expansion [39] 

Eb({bi }; {br, (2)kb. i , (3)kb.h ... }) 

= (6.1.1.1) 
all bonds i 

where bO is the equilibrium bond length and (n)kb is the 'force constant' corresponding 
to the term of power n. There is no first-order term since the derivative ofthe potential 
energy has to be zero when b = bOo For example, in the MM2 force field [20,53], terms 
are retained till the third (cubic) power. This has the disadvantage that the potential 
becomes negative for high internuclear separation and, thus, an inadequate coordi
nate choice may cause bond dissociation. A quartic expansion is used in the MM3 
[20,54] and CFF93 [22,23,41] force fields, which fixes this problem. Although the 
inclusion of anharmonic terms (n > 2) clearly improves the description of vibrational 
properties of molecules in the gas phase, it may not do so in other applications. When 
oscillations with large amplitudes are considered, when the effect of non bonded strain 
on a bond length and stretching frequency are of interest, or when the breaking of 
a bond is required, other functional forms can be used. For example, as in the CVFF 
force field [47-50], a Morse-type function may be used: 

(6.1.1.2) 
all bonds i 
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where D is the well depth, bO is the equilibrium bond length and (l is a parameter 
determining the width of the well. This equation already encompasses anharmonici
ties and provides a better description than a limited Taylor expansion around and 
away from the equilibrium bond length. Many other functions have been proposed 
[176,177], such as the Linnett, Lippincott, Rydberg and Varshni functions. Most of 
these have been calculated a priori or tailored for diatomic molecules, but at least 
some may be applied successfully to individual bonds in polyatomic molecules [178]. 
In addition to the functional form, the expansion variable may be changed, e.g. 
[179,180] 

(bO - b)/bo 
bO/(bO - b) 
(bO - b)/b 
2(bO - b)/(bO + b) 

Dunham 
Dinur/Hagler 
Simons/Parr/Finlan 
Ogilvie 

(6.1.1.3) 

Note that Eq. 6.1.1.1 corresponds to a Dunham expansion. The use of dissociative 
functions, such as the Morse function, for modelling a bond-breaking process remains, 
however, limited to specific systems and chemical reactions because (i) they are 
difficult to parametrize, and (ii) in the general case, the effect of bond breaking is not 
only local to a single bond and implies corresponding changes in the parameters of 
other covalent and nonbonded interaction terms. 

In a large number offorce fields (e.g. AMBER, CHARMM, GROMOS, OPLS, etc.) 
and especially for the simulation of large molecules or the simulation of systems in 
explicit solvent, the detailed formalisms mentioned above are not used. A Taylor 
expansion limited to the second-order (harmonic) term is assumed to be sufficient 
since (i) the high bond-stretching (and bond-angle bending) frequencies are weakly 
coupled to the rest of the system, and (ii) the low-frequency motions (conformational 
changes, solvent relaxation) largely determine the thermodynamic properties of the 
system. In other words, bond description is assumed not to be critical and the simplest 
function with the fewest parameters is preferred. The evaluation of the bond-stretch
ing interaction may be made less expensive by using the quartic expression 

(6.1.1.4) 
all bonds i 

which avoids a square-root operation in the calculation of the energy and force. In 
molecular dynamics simulations, since a proper integration of the (uninteresting) 
high-frequency bond-stretching vibrations requires timesteps of the order of 0.5 fs, 
a further (and common) time-saving technique is to constrain the bonds to their 
equilibrium lengths using an iterative algorithm such as SHAKE [117], which allows 
for the use of timesteps 4-5 times longer without substantially affecting the dynamics 
[181]. It has been shown, however, that the bond angles should not be constrained 
simultaneously. In virtually all current force fields, bonded atoms (first neighbours) 
are excluded from any non bonded interactions (Sec. 6.6-6.9). This interaction would, 
in most cases, be unrealistically large and should already be encompassed in the 
bond-stretching potential energy term. 
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Representation of bond energy terms 
C-H bond 
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Interatomic distance [nm] 

Fig. 2. Representation of bond energy terms for a C-H bond. The Morse curve (thick line) 
corresponds to D = 438.2 kJ/mol, IX = 17.87 nm- l and bO = 0.112 nm, Eq. 6.1.1.2. Other curves 
correspond to Taylor expansions up to various powers, Eq. 6.1.1.1, and to the quartic expansion of 
Eq. 6.1.1.4. The expansion coefficients have been chosen to give the same curvature at the minimum 
for all functions. The horizontal line at E = 2.5 kJ/mol indicates the value of kB Tat T = 300 K, 
where kB is the Boltzmann constant. 

In Fig. 2, a graphical representation of some of the energy terms described above is 
given for a C-H bond. The force constants have been chosen to give the same 
curvature at the minimum as the reference Morse function. The cubic expansion tends 
towards - oc for large distances (dissociative behaviour). The Morse function levels 
off to D at large distances, whereas all the even-power expansions grow to oc, being 
smoother than the Morse curve below bO and steeper beyond. Except for the 
harmonic expansion, all functions are asymmetric around bO and the average bond 
length will not be equal to the equilibrium length bOo At room temperature and for 
unstrained bonds, all functional forms are virtually equivalent for most purposes. 

6.1.2. Combination rules 

Combination rules for covalent bond interaction parameters are usually given in 
the form of a table as a function of the atoms that define the bond. An exception is the 
DREIDING force field [69], which uses an arithmetic combination rule 

(6.1.2.1) 
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where a and b are the atom types of the atoms forming bond i, and RO(a), RO(b) are the 
covalent radii corresponding to these atom types. The (harmonic) bond-stretching 
force constant is determined solely by the bond order. 

6.2. Bond-angle bending term 

6.2.1. Functional/orms 

Most of the considerations applying to bond-stretching terms also apply here. For 
small deformations around the equilibrium bond angle, a Taylor expansion can be 
used: 

Ee({ai }; {ap,(2)ke,j,(3)ke,i>"'}) 

L [(2)ke)ap - ai )2 + (3)ke,j(ap - a i )3 + ... ] (6.2.1.1) 
all angles j 

where ao is the equilibrium angle and (n)ke is the 'force constant' corresponding to the 
term of power n. For example, an expansion up to the fourth power is used in CFF93 
[22,23,41], the second- and sixth-power terms are retained in MM2 [20,53], and 
MM3 [20,54] uses a full expansion up to the sixth power. An alternative potential 
energy term which is used in some force fields, such as the CHARMM all-atom force 
field for DNA [67], is the Vrey-Bradley energy term 

Ee({ai }; {ap,ke,j,(l)kd, j, (2)kd• d) 

[ke .(a!> - a.)2 + (l)kd .(d!> - d·) + (2)kd .(d!> - d.)2] 
,I 1 1 ,1 1 1 ,1 1 1 (6.2.1.2) 

all angles i 

where d i is the 1,3 distance between atoms forming the extremity of the angle, dP is its 
equilibrium value and (n)kd is the 'force constant' corresponding to the term of power 
n. If Ee is defined to within a constant and dP is replaced by an effective distance, the 
linear term in Eq. 6.2.1.2 can be omitted without loss of information [182]. This 
function includes some anharmonicity and a coupling between the angle and the 
constituting bonds. 

Again, in a number of force fields (e.g. AMBER, GROMOS, OPLS, etc.) dealing 
with large molecules or molecules in the bulk phase, only the harmonic term is 
retained in Eq. 6.2.1.1. A harmonic function in the angle cosine is also sometimes used 
[69] for computational efficiency: 

(6.2.1.3) 
all angles i' 

In virtually all current force fields, atoms separated by one single atom (second 
neighbours) are excluded from any non bonded interactions (Sees. 6.6-6.9). This inter
action would, in most cases, be unrealistically large and should already be en
compassed in the bond-angle bending potential energy term. 
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6.2.2. Combination rules 

Combination rules for bond-angle bending parameters are usually given in the form 
of a table as a function of the types of the atoms that define the angle. An algebraic 
empirical combination rule for estimating harmonic angle bending from ab initio 
results or spectroscopic force fields has, however, been proposed [183]: 

ke,i(a, b, c) = K Z(a)C(b)Z(c)(b~b + bge)-l (e~be)-2 exp (- 2 ~~~b - ~~e~~) (6.2.2.1) 
ab + be 

where a, band c are the atom types of the atoms forming angle i, K is a constant, Z(a), 
C(b) and Z(c) are parameters depending solely on the atom types, and eo, bO are 
equilibrium parameters. 

6.3. Torsional dihedral angle term 

6.3.1. Functional forms 

If small oscillations around an equilibrium conformation are considered, the 
torsional potential energy term can, just as the bond-stretching and bond-angle 
bending terms, be expanded in a Taylor series. In most applications, however, when 
the relative energies of different conformers and the corresponding isomerization 
barriers are of interest, or when conformational transitions are studied by molecular 
dynamics, Taylor series cannot be used. In these cases, the torsional angle potential 
energy term needs to be 21t-periodic and symmetric at ° and 1t, and can be expressed in 
terms of a cosine series 

Eq,({ ~i}; {(l)kq"i' (2)kq"i' (3)kq"i' ... }) 

L [(l)kq,)1 - cos ~i) + (2)kq"i(1 - cos 2~J + (3)kq,)1 - cos 3~i) + ... ] 
dihedrals i 

(6.3.1.1) 

where (n)kq, is the 'force constant' corresponding to the term of order n. For example, 
CFF93 [22,23,41] and MM3 [20,54] use the first three terms in the expansion. The 
terms (of order n) are sometimes formulated slightly differently [6,64,75], as 

(6.3.1.2a) 

or 

(6.3.1.2b) 

where (n)o in the second formulation is a phase shift, which plays the same role as the 
sign of (n)kq, in the first formulation. Since the slope of the potential has to vanish at ° and 1t, the only possible values of (n)Oi are ° and 1t. If (n)kq, is negative or (n)Oi is 0, the 
term has a maximum for ~ = 0. If (n)kq, is positive or (n)Oi is 1t, it has a minimum for 
~ = 0. These latter two formulations ensure that the potential is zero at the minimum 
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of the curve, which may not be true for Eq. 6.3.1.1. Three choices will influence the 
value of the force constants used and the transferability of torsional parameters from 
one force field to another. 

A. The number of terms retained in the cosine expansion varies from one force field 
to another and from one dihedral type to another. Typical choices are the first three 
terms (e.g. CFF93) or a number of terms of selected multiplicity from one to six (e.g. 
CHARMM, GROMOS). 

B. When two bonded atoms each have up to four covalently bound neighbour 
atoms, one to nine dihedrals can be defined. The summation in Eq. 6.3.1.1 need not 
include all these dihedral angles, but may comprise only one or a few of them 
(Sec. 4.3). 

C. Depending on the force field, atoms separated by two other atoms (third 
neighbours) may be excluded from nonbonded interaction (e.g. ECEPP) or may 
interact with modified (e.g. GROMOS) or scaled (e.g. AMBER) van der Waals 
interaction parameters. 

In Fig. 3, the combination of terms constituting the C-C-C-C dihedral potential 
energy term in the CFF93 force field [22,23,41] is illustrated. The overall energy (a) is 
a linear combination of terms of multiplicity one (b), two (c) and three (d). The 
coefficient of the first term is large and negative, which ensures that the energy is 
maximal in the eclipsed conformation. Due to the use of terms described in 
Eq. 6.3.1.1 rather than Eq. 6.3.1.2, the energy is not zero at the minimum of the curve. 
The two representations are otherwise equivalent. Note that curve (a) is not the 
energy profile for butane, since other torsional-angle-dependent terms (valence coor
dinate cross-terms and nonbonded interaction terms) also contribute to the overall 
interaction energy of the molecule. 

6.3.2. Combination rules 

Combination rules for torsional interaction parameters are usually given in the 
form of a table as a function of the atom types of the four atoms, or of the two central 
atoms, that define the torsional angle. 

6.4. Out-ofplane coordinate distortion term 

6.4.1. Functional forms 

In principle, the valence terms of a force field could be entirely defined in terms of 
bond lengths, bond angles and torsional dihedrals, as is for instance the case in the 
alkane CFF93 force field [22,23,41]. There are, however, two reasons for introducing 
out-of-plane coordinate potential energy terms: (i) All the covalent internal coordi
nates mentioned till now can be expressed in terms of scalar products of vectors and 
there is thus no term to enforce chirality (which is just determined by the coordinates 
and sufficiently high isomerization barriers). Enforcing the geometry around a site by 
using six bond angles (tetrahedral case) or three bond angles (planar case) without 
including cross-terms requires an unrealistically stiff energy function. (ii) When 
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Representation of torsional energy term 
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Fig. 3. Representation of the torsional dihedral angle energy term for a C-C-C-C dihedral 
according to the CFF93 force field, Eq. 6.3.1.1: (a) overall energy = (/) k", (1 - cos </J) + 
(2) k", (1 - cos 2</J) + (3) k", (1 - cos 3</J); (b, c, d) representation of these three contributions, with 
(/) k", = - 4.050, (2) k", = 0.042 and (3) k", = - 0.628 k.f/mol. 
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tetrahedral united-atom carbons, CHR3, are used, the hydrogen is not explicitly 
present for the definition of an angle, but pyramidal inversion need be avoided. From 
a certain point of view, out-of-plane coordinate energy terms are 'unphysical', since 
they bias the energy in favour of one of the enantiomeric forms of the system, with the 
purpose of improving the description of this favoured enantiomer. 

The out-of-plane coordinate energy term should describe how difficult it is to 
force a nonplanar geometry (trigonal site) or a nontetrahedral geometry (tetracoor
dinated site or CHR3 united atom). The functional form is most often chosen to be 
harmonic: 

(6.4.1.1) 
out·of-plane coordinates i 

where the summation runs over a specified set of out-of-plane coordinates. The 
definition. of ~ is not unique [21]. Three possible choices are described in Fig. 4 for the 
case of a trigonal site. It can either be expressed in terms of (a) an improper dihedral 
angle, (b) an angle between a bond and the plane formed by the others, and 
(c) a pyramid height. In cases (a) and (b), three choices can be made, depending on the 
selected reference bond. The definition can be made unique by taking the average 
value over the three possibilities. 

6.4.2. Combination rules 

Combination rules for out-of-plane coordinate potential energy parameters are 
usually given in the form of a table as a function of the atom types ofthe four atoms, or 
of the two outer atoms (improper dihedral definition), that define the coordinate. 

a b c 

Fig. 4. Different possible definitions for the out-ol-plane coordinate e Eq. 6.4.1.1, around a trig
onal centre: (a) improper dihedral angle, i.e. the dihedral angle defined by one bond from the 
central atom to a peripheral atom, the vector from this peripheral atom to one of the other 
peripheral atoms, and the vector from this second peripheral atom to the third peripheral atom; 
(b) the angle between one bond from the central atom and the plane defined by the central atom and 
the two peripheral atoms not involved in this bond; (c) the height of the central atom above the 
plane defined by the three peripheral atoms. 1n cases (a) and (b), three choices can be made, 
depending on the selected reference bond. 
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6.5. Valence coordinate cross-terms 

6.5.1. Functional forms 

It has been shown that the inclusion of valence coordinate coupling terms 
(off-diagonal terms) significantly improves the capacity of an empirical function to 
reproduce trendsjn the energy and its first and second derivatives with respect to the 
atomic coordinates from ab initio molecular orbital calculations [22,183] and trends 
from experimental data in vacuum [41], see Sec. 7.5. The MM2 [20,53] and CVFF 
[47-50] force fields contain some of these terms, whereas the MM3 [20,54] and 
CFF93 [22] force fields use them in a systematic way. These terms are seldom found 
in force fields for the simulation of biomolecules since they (i) increase the complexity 
of the interaction function, (ii) lead, to some extent, to a loss of physical insight, 
(iii) do not allow for the use of bond constraints, and (iv) are assumed to be not very 
relevant to these types of problems. The commonly included off-diagonal terms are 
listed below (see also Table 2) and are described pictorially in Fig. 5. Interpretation of 

a ""', b.. d 
"'~' ~ ... ..... '" ... ~ '.;;~ ... ~ ........ ~ ...................... .. ' ...... :,~ .. ~ 

"',9 ........ " ........................ .. 
... ~ 

b ....... 

~ . " ... ~'. 
~ ,ot:. 

.....;-' \ .. 
... ~ 

c e \.eLY ......... , :" .. 
\ .. 

... ~ 

f 

\ ..... ~ 
Fig. 5. Valence coordinate cross-terms commonly included in nondiagonal force fields. Eqs. 
6.5.1.1-6.5.1.6: (a) bond-bond; (b) bond-angle-bond; (c) bond-angle--bond-angle; (d) torsional
angle-bond; (e) torsional-angle-bond-angle; (f) torsional-angle-bond-angle-bond-angle. 
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the terms with respect to the force constants is given here with reference to the force 
constants in the CFF93 force field for alkanes. Note that the inclusion of 1,4 
nonbonded interactions (third-neighbour interaction, see Sec. 6.3.1) implicitly in
cludes terms of type C-F. 

A. Bond-bond coupling (bonds j sharing one common atom with bond i): 
( ,; 6) 

I kbb'.ij(bP - bi)(b7 - bj) (6.5.1.1) 
bonds i bonds j > i 

This term is present in CVFF and CFF93. Since k is positive, this term favours 
asymmetric bond stretching around a given site. 

B. Bond-angle-bond coupling (two bonds j involved in the angle i): 
(2) 

I kSb,ij(9P - 9i) (b7 - bj) (6.5.1.2) 
angles i bonds j 

This term is used in CVFF, CFF93, MM2 and MM3 to reproduce vibrational 
frequencies and the bond length effects in strained molecules where a bond angle is 
stretched or compressed. Since k is positive, bond lengthening is favoured when the 
bond angle is reduced. 

C. Bond-angle-bond-angle coupling (angles j sharing one common bond with 
angle i): 

(,; 10) 

Esw({9j,9j}; {9P,97,ksw,ij}) = I I kS6',ij(9P - 9i)(97 - 9j) (6.5.1.3) 
angles i angles j 

This term is present in CVFF, CFF93 and MM3. It is used to reproduce vibrational 
frequencies for coupled bending modes. k may be positive or negative. 

D. Torsional-angle-bond coupling (central bond or peripheral bonds j involved in 
torsion i): 

Eq,b( {<pj, bj}; {b7, (l)kq,b,i, (2)kq,b,i, (3)kq,b,i, ... }) 

(1) or (2) 

L I (b7 - bj) [(l)kq,b,iCOS<Pi + (2)kq,b,i cos 2<Pi + (3)kq,b,icos 3<Pi + .,,] 
dihedrals i bonds j 

(6,5,1.4) 

This term is present in CFF93 up to order 3 and in MM3 (torsion-central bond 
coupling only). It is used for reproducing the structures of molecules in which different 
conformers exhibit significant differences in bond lengths, Since (l)k is positive for the 
coupling to the central bond, a lengthening of this bond is favoured in the eclipsed 
conformations. For peripheral bonds, k is negative and small. 

E. Torsional-angle-bond-angle coupling (two angles j involved in torsion i): 

Eq,s({<pj,9j}; {97, (l)kq,s,i, (2)kq,s,i, (3)kq,s,i,'" }) 

(2) 

I I (97 -9j) [(l)kq,S,i cos <Pi + (2)kq,s,i cos 2<Pi + (3)kq,s,i cos 3<pi + ".] 
dihedrals i angles j 

(6.5.1.5) 
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This term is present in CFF93 up to order 3 and plays a similar role as the term 
under D. 

F. Torsional-angle-bond-angle-bond-angle coupling (angles j and k involved in 
torsion i): 

EcI>99,({q,;,9j,9k}; {9?,9~,kcl>99";}) = L kcl>oo',;(9? - 9j)(9~ - 9k)coSq,i (6.5.1.6) 
dihedrals i 

This term is present in CVFF and CFF93. Since k is negative, an increase in the bond 
angles is favoured in the eclipsed conformation. 

6.6. Van der Waals interaction 

6.6.1. Functional forms 

It is usually assumed that the nonelectrostatic component of the interaction between 
nonbonded atoms can be described in the same way as the interaction between rare gas 
atoms, i.e. a long-range weak attraction due to induced-dipole- induced-dipole (disper
sioq) interaction and a short-range steep repulsion due to the overlap of the electron 
clouds. This type of interaction is given the generic name of van der Waals interaction. 
Although the features mentioned above are generally accepted, the proper functional 
description of van der Waals interactions is, however, still a matter of discussion 
[184-186]. Due to the availability of a large amount of experimental data and the 
absence of intermolecular forces other than van der Waals interactions, mixtures of rare 
gases can be used as test systems for proposed functional forms and combination rules. 
When the description of the many-body interaction is limited to an effective two-body 
interaction, accurate pairwise interaction functions can be constructed in this way. 
To a good approximation, these functions obey a single reduced form for all pair 
types from He to Xe, except at very short internuclear distances [184,187], i.e. for two 
atoms i andj 

. rij Eij 
llij = llij(Qij) With Qij = R C") and llij = -(' .) 

min I,J e I,J 
(6.6.1.1) 

where Eij is the interaction energy, rij is the interatomic distance, Rmin(i,j) and e(i,j) are 
parameters depending on the atom type of i and j, and the reduced energy llij(Qij) is 
a unique function of the reduced distance Qij' valid for any pair types. By convention, 
Rmin(i,j) is the distance at minimum energy and e(i,j) is the corresponding energy (well 
depth) with respect to infinite separation. The function llij(Qij) thus has to satisfy 

dllijl = 0, 
dQij Q;; = 1 

(6.6.1.2) 
lim llij(Qij) = 0 and lim llij(Qij) = + 00 

QIj-+ 00 QIj-+O 
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Additional characteristic parameters of the interaction function are the distance at zero 
energy O"(i,j), with O"(i,j) < Rmin(i,j), and its reduced value ~(i,j) 

llij(Qij = ~(i,j» = 0 and O"(i,j) = ~(i,j)Rmin(i,j) (6.6.1.3) 

and the equivalent harmonic force constant at the minimum k(i,j) and its reduced value 
K(i,j) 

dd2~j I = K(i,j) and k(i,j) = K(i,j)/R~n(i,j) 
Qij Qij = 1 

(6.6.1.4) 

Finally, the van der Waals interaction energy of the whole molecular system is given by 

EvdW({rij}; {Rmin(i,j), e(i,j)}) = Nt- Nf:~ e(i,j) llij (R ~i(. "») (6.6.1.5) 
i j>i mID I,J 

The following reduced functions have been proposed to describe van der Waals 
interactions in empirical classical force fields: 

A. n-m van der Waals function: 

1 -n -m 
llij = -- [mQij - nQij ] 

n-m 

with 

~(i,j) = (m/n)I/(n-m) and K(i,j) = nm 

(6.6.1.6a) 

(6.6.1.6b) 

Most current force fields use a 12-6 van der Waals function (n = 12, m = 6, also called 
Lennard-Jones function), where the steep repulsion is described by a 1/rt2 dependence 
and the dispersion by a l/r~ dependence. Three equivalent definitions can be found in 
the literature: either 

N.tOlllS Nuom. 

E12_6({rij}; {C12(i,j),C6(i,j)}) = L L C 12(i,j)rijI2 - C6(i,j)rij6 (6.6.1.7a) 
i j>i 

or 

E I2-6({rij}; {Rmin(i,j), e(i,j)}) 

L L C") ij -2 ij N ...... N .. _ [( r )-12 (r )-6J 
i j>i e I,J Rmin(i,j) Rmin(i,j) 

(6.6.1.7b) 

or 

N._ N ... _ [( r )-12 (r )-6J 
E I2-6({rij}; {O"(i,j), e(i,j)}) = L L 4e(i,j) (:j .) - (:j .) 

i j>i 0" I,J 0" I,J 
(6.6.1.7c) 

The conversion between these definitions is straightforward: 

. . 12 I,J . . 12 I,J . . 6 I,J (2C ( .. »)1/6 (C ( .. »)1/6 C2( .. ) 
Rmin(I,J) = C6(i,j) , O"(I,J) = C6(i,j) and e(I,J) = 4Cu(i,j) (6.6.1.8) 
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The 12-6 function has the advantage of being simple (few parameters, i.e. two per i,j 
pair) and computationally efficient (even power of rjj)' It has been suggested that 
a softer van der Waals interaction might perform better than a 12-6 form. A 9-6 van 
der Waals interaction (n = 9, m = 6) is used in CVFF [47-50] or CFF93 [22]: 

(6.6.1.9) 

B. exp-m function: 

'1ij = 1 [me~(~j)[l- Q'j] - SO j)g.-:-m] 
t;(i,j)-m ' I) 

(6.6.1.10a) 

with 

( .. ) _ mt;(i,j)[t;(i,j)-m-1] 
K I,J - Y(' .) 

':> I,J -m 
(6.6.1.10b) 

where t;(i,j) is a dimensionless scaling parameter. The exp-6 function (m = 6) is the 
most used [69]: 

(6.6.1.11) 

When ~(i,j) = 13.77 the function has the same curvature at the minImUm as a 
Lennard-Jones function. Since this parameter can be selected for each individual pair, 
the function offers more flexibility. It is nevertheless less used than the Lennard-Jones 
function since it is computationally more expensive, and involves the calibration of 
three parameters per pair instead of two. Although an exponential repulsion may 
perform better at short distances, the exp-m function does not satisfy the last limit of 
Eq. 6.6.1.2 and tends towards - ex for very short distances. 

C. Double Morse function: 

,.,.. = e - 2a(i,j) [1 - Q,,] _ 2ea(i,j) [1 - Qij] 
• II) 

with 

~(i,j) = 1 - In(. ~) and K(i,j) = 21X2(i,j) 
IX I,J 

(6.6.1.12a) 

(6.6.1.12b) 

Although all types of functions defined above perform similarly at distances close to 
the equilibrium distance, it has been suggested using both theoretical arguments and 
comparison to ab initio results [185,186] that a Morse-type function may perform 
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better over a wider range of distances: 

EMorse( {rij}; {e(i,j), Rmin (i,j), ct(i,j)}) 

N a10nu N atoms 

= L L e(i,j) [e[2at(i,j)(1 - rij/Rmi.(i,j))] - 2e[at(i,j)(1 - rlj/Rmi.(i,j))]] (6,6.1.13) 
i j>i 

D. n-m buffered function: 

n-m[I+<>Jn-m[I+ Y m IJ 
Tjij = -m Qij + <> Qij + y - n - m - (6.6.1.14) 

A buffered 14-7 energy function has been proposed [184]: 

Ebuf-n-m({rij}; <>, y, {e(i,j), Rmin(i,j)}) 

= N~~ N~m. ( .. )[(1 + <»Rmin(i,j)J(n-m) [(1 + y)R:::in(i,j) - 2J 
L... L... e I,J 'i:R ( .. ) m Rm ( .. ) i j>i rij + U min I,J rij + y min I,J 

(6.6.1.15) 

where n = 14, m = 7, <> = 0.07 and y = 0.12, these parameters being obtained from 
a best fit to rare gas experimental data. Note that with these values of <> and y, the 
minimum of Tjij(Qij) is at (0.996; - 1.0006), and thus Eq. 6.6.1.14 nearly satisfies the 
conditions in Eq. 6.6.1.2. The (reduced) curvature at the minimum, K(i,j), is in this 
case 79.6, and the reduced intercept, ~(i,j), is 0.89, both close to the Lennard-Jones 
value. 

In Fig. 6 the various reduced energy functions mentioned above are displayed, with 
parameters corresponding to a curvature at the minimum of 72 (reduced units, the 
curvature of the Lennard-Jones function), except the 9-6 van der Waals function 
(curvature 54) and the 14-7 buffered function (curvature 79.6). As can be seen, the 
range of these interactions is short and they will play an essential role only for direct 
neighbour atoms. Due to the intrinsically small magnitude of the energies involved 
(e ~ - 0.1 kJ/mol for He-He to - 2.3 kJ/mol for Xe-Xe), the divergences between the 
different functions above Qij = 1 are likely to affect the overall energy in a minor way 
in condensed-phase systems. This may of course not be true for gaseous systems. On 
the other hand, the steepness of the function below Qij = 1 will influence the density 
and compressibility of a condensed-phase system. When electrostatic effects are 
present, the balance between this steep repulsion and the electrostatic interaction will 
be the determinant part of packing forces. Since van der Waals parameters (e, Rmin, 
curvature determining parameters), just as atomic charges, are effective parameters, 
they can be adjusted so that virtually anyone of the above functional forms can give 
reasonable results. Of course, after such an adjustment, condensed-phase effective van 
der Waals parameters may not be suitable anymore to give a proper representation 
of the gas-phase state. Since the small energetical contributions for nearest 
neighbours will sum up for a large number of pairs, a proper choice for the e and 
Rmin parameters seems primordial, and combination rules (Sec. 6.6.2) should be 
considered carefully. 
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Fig. 6. Representation of the van der Waals interactions, in a reduced form, corresponding to 
Eq. 6.6.1.6 with m = 6 and n = 12 or m = 6 and n = 9, Eq. 6.6.1.10 with m = 6 and' (i,j) = 

13.77, Eq. 6.6.1.12 with rx(i,j) = 6, and Eq. 6.6.1.14 with n = 14, m = 7, b = 0.07 andy = 0.12. 

6.6.2. Combination roles 

Because the definition of N atom types implies the definition of! N (N + 1) van der 
Waals interaction parameter .sets for atom pairs, most force fields use combination 
rules which depend on sets of N atomic parameters and can be calibrated by studying 
the homonuc1ear case [184,188]. Since the experimental energy functions for rare 
gases follow a single reduced form around the minimum [184,187] Rmin or cr 
combination rules are interchangeable to a large extent, although often formally 
not equivalent. 

A. Geometric means for e and Rmin : 

Rmin(i,j) = JRmin(i, i)Rmin(j,j) and E(i,j) = J E(i, i)E(j,j) (6.6.2.1) 

The following two rules are equivalent to Eq. 6.6.2.1 for the case of a Lennard-lones 
function and any nom van der Waals interaction, respectively: 

(6.6.2.2a) 
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or 

G(i,j) = J G(i, i)G(j,j) and e(i,j) = J e(i, i) e(j,j) (6.6.2.2b) 

B. Geometric mean for e and arithmetic mean for Rmill (Lorentz-Berthelot mixing 
rules): The following rules are equivalent for the case of any van der Waals interac
tion: 

Rmin(i,j) = t [Rmin(i, i) + Rmin(j,j)] and e(i,j) = J e(i, i)e(j,j) (6.6.2.3a) 

or 

G(i,j) = t [G(i, i) + G(j,j)] and e(i,j) = J e(i, i)e(j,j) (6.6.2.3b) 

C. Arithmetic mean for R~in and geometric mean for eR~in: This combination rule 
has been proposed recently and has been tested for rare gases [188]: 

[R6 ( .. ) R6 ( . . )J1/6 R . ( .. ) _ min 1,1 + min J,J 
min I,J - 2 

(6.6.2.4) 

D. Cubic-mean rule for R min and HHG meanfor e: This combination rule has been 
proposed recently and tested for rare gases [184], where the HHG mean is the 
harmonic mean of harmonic and geometric means: 

R . ( .. ) = R!in(i,i) + R!in(j,j) 
min I,J R2 ( .. ) R2 ( .. ) min 1,1 + min J,J 

. . 4e(i, i)e(j,j) 
e(I,J) = [ ( . . )1 /2 ( . . )1/2]2 e 1,1 + e J,J 

(6.6.2.5) 

E. Slater-Kirkwood combination: The Slater-Kirkwood expression [64,181,184] is 
more than a combination rule, since it also allows the estimation of van der Waals 
parameters from experiment: 

. . ot(i)ot(j) 
C6(I,J) = K (ot(i)jN(i»1/2 + (ot(j)jN(jW /2 

Cdi,j) = tC6(i,j) [R(i) + R(j)]6 
(6.6.2.6) 

where K is a constant, ot(i) is the polarizability of atom i, R(i) is its van der Waals 
radius and N(i) its effective number of outer shell electrons. The second rule is very 
similar to an arithmetic mean in Rmin . 

Other combinations have been proposed, which involve additional parameters such 
as polarizbility, ionization potentials or dispersion force coefficients. These are, 
however, not well suited for general empirical force fields, since one would like to 
restrict the number of parameters involved. In Fig. 7, the result of the application of 
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application to rare gas systems 
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Fig. 7. Rmin and e combination rules applied to.mixed rare gas systems. Experimental data are from 
Ref 187. For each indicated gas, mixed combinations in the sequence He-Ne-Ar-Kr-Xe are 
indicated. 

the combination rules mentioned above is reported for mixed rare gas systems and 
compared with experimental values [187]. It can be seen that both the geometric and 
the arithmetic mean rules underestimate Rmin(i,j) for systems composed of very unlike 
atom types (by 8-10% for the He-Xe system), the latter performing slightly better. 
Both other rules perform well in all cases. The best performing rule for E(i,j) is clearly 
the ER~in geometric mean rule. Both the geometric mean rule and the HHG mean rule 
tend to overestimate the values, the latter performing slightly better. Figures 8 and 
9 illustrate the importance of using a combination rule consistently within a given 
force field, by combining the GROMOS Br atom type with other atom types of the 
force field. The original GROMOS combination rule is a geometric rule in both 
parameters. Taking the example of interaction of Br with H, the distance at the 
minimum interaction energy may vary by about 10% by using different combination 
rules. Differences in E vary over a range of about 0.5 kllmol. Note also the oscillatory 
behaviour of the cubic-mean rule for Rmin when the size of the second atom type is 
decreased to zero. 
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6. 7. Electrostatic interaction 

In principle, a correct representation of the behaviour of the electron cloud (implicit 
degrees offreedom) at each atomic site would require a full multipole expansion. Very 
often, the expansion is truncated after the first term, i.e. a monopole approximation is 
used. Although models including polarizability are continuously being developed, the 
present discussion will be limited to the (still dominantly used) monopole interaction. 

6.7.1. Functional forms 

The correct treatment of electrostatic interactions is an essential but difficult 
problem in the design of empirical energy functions [6,189-192]. This is mainly due to 
their long-range nature, which causes dependence on the system size and boundary 
conditions, as well as high computational costs. In condensed-phase simulations, 
these high computational costs, together with the use of periodic boundary condi
tions, require approximations, which will unfortunately influence the properties of the 
simulated system. In most cases, the interaction is defined in terms of a pairwise 
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Fig. 8. Application o/different combination rules/or Rmin (i,j) to a combination o/the GROMOS87 
bromine (Br) atom type, Rmin (i, i) = 0.4098 nm, with other GROMOS87 atom types. 

55 



P.H. Hunenberger and w.F. van Gunsteren 

"0 

i 
'" 

E combination rules 
application to combinations with GROMOS87 Sr atom type 

3.0 r------....,....----.--...---~---.-----..---_r_--.-----.--...-____. 

2.0 

1.0 

-- geometric mean 
----- HHG mean 

• geometric mean for ER6 min 

N 
OW 

S P,Si Br 

0.0 L..-.L..-........ _ ........ u.....--lL.......lL-.L-_...IL-_-'" __ '---'-...I.-_ .......... _ ......... __ ......... -L....I 

0.0 1.0 2.0 3.0 
EO ,j) [kJ/mol] 

Fig. 9. Application of different combination rules for e(i, j) to a combination of the GROMOS87 
bromine (Br) atom type, e(i, i) = 2.921 kJ/mol, with other GROMOS87 atom types. 

Coulomb interaction between point (atomic or virtual site) partial charges. The effect 
of the polarizability of the electron cloud is assumed to be included in the interaction 
between these point charges in an average manner, and these charges are thus effective 
charges. Ideally, the interaction should be calculated by scanning all charge pairs, i.e. 

N N 1 qiqj 
ECb({rd; {qiqj}) = L L ----

i j > i 41tEoE1 rij 
(6.7.1.1) 

where rij is the distance between charges i andj, qiqj is the product of the charges, eo is 
the permittivity of vacuum, e1 is the relative permittivity of the medium and N is the 
number of atoms in the system. Equation 6.7.1.1 is, in principle, exact, but practically 
directly applicable only to vacuum simulations of small isolated molecules, with the 
aim of reproducing vacuum properties. It cannot be used in the following cases: 

A. Medium- and large-scale problems: since the computational expenses grow 
as N 2• 

B. Fixed boundary problems: if the system consists of a molecule, plus possibly 
some layers of solvent, surrounded by vacuum, surface tension effects will distort its 
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properties. In the absence of dielectric screening from outside the system, the electro
static interaction inside the system will be overestimated, and in the absence of van der 
Waals forces with the outside, the surface of the boundary will tend to become 
minimal (spherical shape). When explicit solvent molecules are present, evaporation 
may also occur. 

C. Periodic boundary problems: if the system consists of an infinite series of 
replicas of a central cell (periodic boundary conditions, for crystal or solution 
simulations), the number of pairs in Eq. 6.7.1.1 is infinite. 

A wealth of approximate treatments attempt to remedy these problems, and try to 
find the best compromise between efficiency and accuracy. The following list is 
nonexhaustive: 

1. Boundary corrections (point B): The distortions induced at the interface to 
vacuum can be reduced by corrections which attempt to mimic the effect of solvent 
outside the boundary [193-196]: (i) short-range contacts, by the addition of a soft
wall interaction or position restraining of the atoms in the surface layer; (ii) electro
static effects at the boundary, by the addition of dipole orientation interactions; and 
(iii) dynamical fluctuations, by the use of stochastic boundary condition. These 
boundary corrections are difficult to calibrate and often have to be reparametrized for 
each specific system considered. 

2. Redistribution and reduction of the charges (point B): The distortive effect of the 
absence of the dielectric screening by the solvent outside the boundary can be 
counteracted by reducing net charges of groups of atoms to zero by a redistribution of 
the atomic charges [75]. This method is very ad hoc. 

3. Distance-dependent dielectric (point B): The dielectric screening effect can also be 
mimicked by replacing E1 in Eq. 6.7.1.1 by an effective dielectric constant Eecc, 
pr~portional to the distance between charges, i.e. Eeff = drij' usually with d = 1, 4 or 
8 A - 1. In this approximation, the screening effect is 'assumed to be proportional to the 
amount of bulk solvent between the charges, and thus to the distance. This method is 
also ad hoc and lacks physical meaning. 

4. Screening functions (point B): The approach is similar to the previous one, but 
E1 is replaced by EecceXp(lCrij), where lC is the inverse Debye screening length. The 
choice of an adequate EeCC (constant or function of rij) is problematic and the 
application to heterogeneous systems is not satisfactory. 

5. Continuum methods (point B): The system is assumed to be surrounded by 
a dielectric continuum of permittivity E2 [196]. The influence of the charge distribu
tion in the system on the continuum outside the boundary induces a reaction field 
potential inside the boundary. When the shape of the boundary is highly symmetric, 
the interaction can be computed analytically (Born, Onsager models). In other cases, it 
has to be computed numerically (series expansion of the reaction field, finite difference, 
finite elements or boundary elements methods). The treatment of particles near the 
boundary is the major problem of these methods. 

6. Langevin dipoles (point B): The solvent is modelled by a set of polarizable and 
rotatable dipoles on a grid, of which the average orientation is described by a 
Langevin-type equation [197]. The model is relatively inexpensive and seems more 
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realistic than a continuum approximation. It is, however, difficult to parametrize, 
a proper description of the interface is problematic, and the properties of the system 
may depend on the grid parameters. 

7. Lattice sums (point C): These methods are based on an exact periodic treatment 
of the infinite system in simulations using periodic boundary conditions [57,192, 
198-200]. The infinite sum over all atoms and periodic images in Eq. 6.7.1.1 can be 
rewritten as two finite sums over lattice (real space) and reciprocal lattice (Fourier 
space) vectors, plus a constant self-energy term, which can, in principle, be computed 
exactly. These methods are, however, complicated to implement, sometimes computa
tionally expensive and they may enforce long-range correlations through periodicity. 
These are realistic in simulations of crystals, but may give rise to artefacts in 
bulk-phase systems, although only under special circumstances [201,202]. Lattice 
sum techniques include Ewald summation, particle-particle particle mesh and related 
methods. 

8. Minimum image convention (point C): The interaction is only calculated between 
charge i of the central cell and the closest periodic image of charge j. The number of 
pairs is then finite, but can become large, i.e. O(N2). This convention is not used much, 
since all charges interacting with i belong to a volume of the same shape as the unit 
cell, which induces anisotropy effects. 

9. Simple spherical cutoff (points A,B,C): The long-range correlation problems 
inherent to lattice sum methods (7) and the anisotropy problem inherent to the 
nearest image convention (8) can be reduced if the Coulomb interaction is set to 
zero beyond a given distance between charges, the cutoff distance Re. The sphere of 
radius Re (cutoff sphere) around a charge i has to be smaller than the unit cell, 
so that only nearest images are selected inside the cutoff. This method is simple to 
implement and allows for a significant reduction of the computational costs for 
large systems, since the effort is roughly O(NR~). Although it is a good approxima
tion for nonpolar systems, it may, however, produce serious problems for polar 
systems [203,204], ionic systems [205-207] or biomolecules in solution [208-210], 
since the long-range Coulomb force often differs significantly from zero at the cutoff 
distance. This effect is illustrated in Fig. 10 by considering the radial dipole orienta
tion correlation of water molecules around a sodium ion for different values of the 
cutoff radius. The main problems [57] are nonconservation of the energy in a micro
canonical simulation, heating effects at the cutoff due to a nonzero force, and 
structural, statistical and dielectric distortions over the whole range of intermolecular 
distances. The following points 9a-9d describe possible corrections to the simple 
spherical cutoff approximation, which attempt to minimize these distortions 
[205,211,212]. 

9a. Charge-group interaction: Charges are grouped in terms of chemically (or 
intuitively) based charge groups either neutral (e.g. carbonyl groups) or bearing an 
integer charge (e.g. carboxylate or ammonium groups). The atom-based truncation is 
then replaced by a charge-group, based cutoff criterion [6,75]. For two neutral charge 
groups I and J, the leading term in the electrostatic interaction takes an rij 3 depen
dence, which significantly reduces the effects of truncation. They are, however, not 
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Fig. 10. Radial dipole orientation correlation of SPC water molecules around a (GROMOS87) 
sodium ion. The ion is at the origin, and the function is calculated as the average radial component 
of a unit vector along the dipole of a water molecule, for successive shells of increasing radii around 
the ion. Three different cutoff radii were used in the O. 7 ns simulations for the truncation of the 
electrostatic interaction: Rc = 0.9, 1.2 and 1.4 nm. 
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completely eliminated [203,204,206,207]. The inconvenience of the method is that it 
may require a modification of the original charge distribution. 

9b. Twin-range method: In this method, a second (long-range) cutoff RL is intro
duced. Interactions between charge pairs with Re < rij < RL are calculated every 
n timesteps (n > 1, usually '" 5-10, together with the pair list update) and assumed to 
be constant in between [6]. If the high-frequency fluctuations in the long-range forces 
are negligible, the effective cutoff is increased to RL without significant additional 
computational costs. In a variant, the interactions between charge groups at distances 
between Re and RL are approximated by a multipole expansion, e.g. up to quadrupole 
interactions [64]. 

9c. Switching/shiftingfunction: To avoid abrupt truncation of the interaction at the 
cutoff radius Re, the Coulomb interaction can be multiplied by a so-called switching 
function, S(rij, Rs, Rd with Rs < Re, a continuous function with continuous deriva
tive, which has the value 1 ifrij < Rs and 0 if rij > Re [64,211]. Energy conservation is 
improved, heating effects are reduced, but structural artefacts are still observed. In the 
special case where Rs = 0, the function S(rij, Rd is called a shifting function [64,213]. 
The inconvenience here is that the interaction is changed over the whole range of 
rij distances from 0 to Re. 

9d. Reaction field correction: The medium outside the spherical cutoff cavity may 
be approximated by a dielectric continuum of relative dielectric permittivity equal to 
that of the bulk solvent, 1':2 [166,167,214-218]. The influence of the charge distribution 
inside the cutoff on the continuum outside induces a reaction field potential inside the 
cutoff sphere. This additional interaction can be described as a correction to the 
Coulomb interaction term to give 

N.,_ qr 1':2 - 1':1 1 
Eeb+RF({riJ; {qiqj},RRF,1':2) = - L -4-- --- 2R 

i 1tI':OI':1 1':2 RF 

N.,.~ N ... ~ qiqj [1 1':2 - 1':1 rG 31':2 1 ] 
+ L L -- -+ -- -

i j >i 41tI':01':1 rij 21':2 + 1':1 RiF 21':2 + 1':1 RRF 
(6.7.1.2) 

where RRF is in principle equal to Re. The first summation in Eq. 6.7.1.2 corresponds 
to a Born term, zero when the system is neutral, constant if the total charge of the 
system is constant. All other interactions are defined pairwise, the last term in the 
double sum corresponding to the conducting boundary condition (zero potential) at 
the cutoff. When 1':2»1':1, this correction can be considered as a physically based 
shifting function. It makes a considerable difference whether this additional interac
tion is included during the simulation or as a correction afterwards [219]. This 
treatment is a significant improvement over a straight truncation, but not entirely 
correct when applied to heterogeneous systems. Its use might also require a force-field 
reparametrization [220]. 

6.7.2. Combination rules 

Formally, the Coulomb law has the form of a combination rule. In the 
bond increment method [22,221], the charge of an atom i itself is calculated by the 
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rule 

(4) 

L o(a(i), b(j)) (6.7.2.1) 
1st neighbours j 

where a(i) and b(j) are the atom types of i and j, respectively, and the function 
o satisfies o(a, b) = - o(b, a). A single bond parameter is required to evaluate all 
charges, and electroneutrality is always preserved. 

6."8. Coupling between covalent coordinates and electrostatic interactions 

Conformation-dependent charges may be used to account for the variations of 
electron density (shielding) at atomic sites in different conformations. Such confor
mation-dependent charges are usually derived from molecular orbital calculations 
[222]. 

6.9. Hydrogen-bonding term 

An explicit hydrogen-bonding interaction term is sometimes added to the already 
present nonbonded interactions described above. Its purpose is to avoid too short 
hydrogen bonds due to a strong electrostatic attraction, and to allow for a specific fine 
tuning of hydrogen-bond distances and energies. In some force fields, the van der 
Waals 12-6 parameters for hydrogen-bonded atoms are reduced at the same time. For 
example, in CHARMM [64J, the hydrogen-bond potential energy is described by 
a sum of four-body terms: 

~b({rAD' «(A···H-D), «(AA-A···H)}; {Cy ,C5, y, 0, m, n}) 

L (~y - ~5) cosm «(A··· H-D) cosn «(AA-A ... H) 
H-bonds r AD r AD 

AA-A ···H-D 

(6.9.1) 

where AA, A, Hand D are the acceptor-antecedent, the acceptor, the hydrogen 
and the donor heavy atom, m depends on the type of D (m = 0, 2 or 4) and n on 
the type of A (n = 0 or 2). The cosm function is zeroed if its argument is less than 90° 
and the cosn function if its argument is less than 90° and n > O. Normally a 12-10 
function is used for the radial dependence, i.e. y = 12 and 0 = 10. In other force fields 
(e.g. Ref. 61), only the radial dependence is retained and a two-body 12-10 function is 
used (Le. m = n = 0 in Eq. 6.9.1). The presence of such a specific hydrogen-bonding 
interaction term requires some additional bookkeeping. If the structure is rigid 
enough, a permanent list of hydrogen-bonded groups can be defined. This list can also 
be automatically updated at regular intervals. If one assumes that the radial 12-10 
correction can equally well be modelled by a 12-6 correction, it can be incorporated 
into the normal van der Waals interaction terms, as is done in GROMOS [6,75]. This 
requires the use of a special combination rule for 12-6 van der Waals parameters, 
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namely 

(6.9.2) 

where tij determines if the interaction between i and j is polar or not. This method 
offers the advantage that no special bookkeeping is required for the hydrogen bonds. 
The inconvenience is that even if the orientation of the D-H group is not optimal for 
making a hydrogen bond to A, the special van der Waals parameters will be used for 
the AjD interaction. When no explicit angular dependence is included, the implicit 
dependence of the electrostatic and repulsive van der Waals non bonded interaction 
upon the hydrogen-bond angle is assumed to playa similar role. 

7. Force-field parametrization procedures 

7.1. The basic problem 

Once the degrees of freedom of the model, collectively indicated by D, have been 
selected (Sec. 2) and the functional form, F, combination rules, C, and various 
approximations (especially the ones dealing with nonbonded interactions), A, enter
ing in the definition of the interaction function have been defined (Sec. 6), the task 
remains of finding the proper values of the interaction function parameters, 
{Si> i = 1, ... , Nparam} [37]. These values should be adjusted to formally satisfy 

Xsim({ . - 1 N }. D F C A) - xtarget - 1 N ct Si, 1 - , ... , param, , " - Of: , ex - , ••• , obs (7.1.1) 

where x~im is a simulated observable, generally depending simultaneously on all 
force-field parameters and on the choices mentioned above (D, F, C, A), and x~arger is 
its target value (experimental, calculated by a sufficiently accurate molecular orbital 
technique, or a combination of both). In most cases, the function x~m can be 
calculated either from a single configuration (possibly after energy minimization and 
normal mode analysis), from a statistical ensemble as an ensemble average or a combi
nation of ensemble averages (e.g. fluctuations), or from a dynamical trajectory as 
a time correlation function [57]. In the latter two cases, the size of the ensemble or 
trajectory, respectively, should be large enough so that the observable is converged, 
i.e. that the error bars on x~im are sufficiently small. From a general point of view, the 
problems of existence, stability and uniqueness of a solution to the inversion problem 
defined by Eq. 7.1.1 is a concern [223]. The former two properties are generally 
assumed to be satisfied while attempting to solve the problem. In many cases, 
however, and when a limited number of experimental observables are considered, the 
uniqueness is not satisfied. Consider, for instance, the number of very different force 
fields developed for water or small alcohols that perform similarly well for most 
studied properties. From a practical point of view, the set of Eqs. 7.1.1 can only be 
solved in a consistent way in few cases. This is possible either for simple, few
parameter, systems (Sec. 7.4) or when ab initio energies and derivatives for molecules 
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in vacuum are used as target values (Sec. 7.5). In most cases, however, one faces 
a number of difficult problems. 

A. The computation of a single estimate of x~im, if possible at all, is generally 
expensive since it requires a sufficiently long simulation for its value to be converged 
[7]. This is especially crucial for condensed-phase observables. 

B. Many simulated observables cannot be computed until convergence within the 
current limit of computer power, whereas others cannot be related unambiguously to 
experimental observables or simply cannot be accessed experimentally. Typical exam
ples of ambiguity are encountered in the interpretation of the heat of vaporization of 
liquids in the framework of an effective point charge model [224], the interpretation of 
crystallographic B-factors [87], or of spectroscopic measurements for parametrizing 
vibrational force constants (problem of zero point, possible influence of excited states). 
This usually limits the number of experimental observables against which a force field 
can be parametrized, in favourable cases, to few more than the number of parameters 
(Nobs ~ Nparam). The problem is then only slightly overdetermined and cross-checking, 
that is, reproduction of experimental observables not used in the calibration proce
dure, may become difficult. 

C. Experimental measurements are subject to a certain uncertainty and may 
occasionally be erroneous, or incorrectly interpreted in terms of molecular properties. 
Incompatibility between experimental observables, misinterpretation in terms of 
simulated properties, or choice of an inadequate functional form for the interaction 
function may sometimes cause the absence of a solution to Eq. 7.1.1. 

D. A single observable may not be sensitive to all features of the potential 
energy surface. Thus, a collection of several observables from very different sources 
should be combined, so that minimally one of them is sensitive to any force-field 
parameter. 

E. Several (often related) observables may be determined by the same parameter or 
combination of parameters. Typical examples for fluids are the diffusion constant and 
the viscosity or the radial distribution functions and the density. 

Due to the considerable size and computational costs of the problem, there is, in 
general, no systematic way to proceed, and parametrization procedures rely heavily 
on experience, judgement and intuition, with different choices made from one force 
field to another. A few possible ways to break down the problem into simpler ones can 
be found in the literature. 

A. Buildup approach: Parameters are generated for small model compounds with 
one specific functional group at a time, and are assumed to be also valid for larger 
polyfunctional compounds. A typical example is the buildup of the OPLS force field 
for macromolecules (e.g. Ref. 79) from parameters for hydrocarbons [173,225,226], 
aromatic compounds [227], alcohols [228], sulphur compounds [229], amides 
[230,231] and nucleotide bases [232]. 

B. Hierarchical approach: Parameters are generated set by set, holding the pre
vious set fixed while optimizing the next set. Typically, non bonded parameters may be 
optimized against crystallographic data while holding parameters for the covalent 
interaction terms fixed. 
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Table 3 Possible source of data for force-field parametrization or validation 

Technique Phase Type Property Parameters 

Spectroscopy Gas 1° Vibrational/rotational (n)kb , (n)ke, (2)k~, CT 

(JR, ~-wave) spectra, overtone 
analysis 
Moments of inertia bO, eO 

(small molecules) 
3° Rotational barriers and (n)k", 

populations (estimates, 
small molecules) 

(UV, visible, Solution 3° Time-resolved fluorescence 
~-wave) intensities, depolarization, 

circular dichroism 

(NMR) Solution/ 1° Rotational barriers (n)k"" vdW(I,4) 
membrane 2° Molecular structure, (n)k"" vdW(I,4) 

rotamers at equilibrium 
3° Distances (NOE, chemical 

shift), orientations (J-coup-
ling), equilibrium constants, 
order parameters, relaxation 
times, diffusion constants 
(translation/rotation), 
residence times, 
H/D exchange rates, 
etc. 

Diffraction Crystal 1° Molecular structure bO, eO 

(X-ray, neutron) Force-length inter-
polation (2)kb , (2)ke, 

2° Molecular structure, vdW, q, H-bond 
crystal density, packing, 
lattice dynamics 

3° Electron density map, 
B-factors, occupancy 
factors 

(neutron) Liquid/ 3° Radial distribution 
polymers functions 

Static and dynamic 
structure factors 
(polymers) (n)k"" vdW 

Thermodynamic / Gas 1° Heats of formation E 
kinetic Thermodynamic prop-
measurements erties for rare gas 

mixtures vdW, CR 
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Table 3 (continued) 

Technique 

Thermodynamic / 
kinetic 
measurements 

Ab initio and 
semi empirical 
calculations 

Phase 

Liquid/ 
solution 

Gas 

Solution 

Type 

2° 

3° 

1° 

Empirical classical interaction functions 

Property 

Density, vapour pressure, 
solvation free energy, 
heat of vaporization, heat 
of mixing, partition co
efficients, heat capacity, 
compressibility, viscosity, 
diffusion constant, trans
port properties, etc. 
Chemical equilibrium 
parameters, pKa, 
dielectric properties, 
reaction rates 

Equilibrium geometries 
Vibrational analysis 
Conformers analysis 
Population analysis or 
fit of the electrostatic 
potential 
Van der Waals clusters 
(second-order perturba
tion or higher) 
Energy/derivatives 
Idem, supermolecule 
and/or reaction field 
approach 

Parameters 

vdW, q 

bO, eO 

(n)kb , (n)ke, (2)kl;' CT 
(n)kq, 

q 

Idem 

Type: 1 ° - primary, 2° - secondary, 3° - tertiary data, see Sec. 7.2; Parameters: parameters that 
can be calibrated using the corresponding data; CT: covalent coordinate cross-terms (Sec. 6.5); 
CR: van der Waals combination rules (Sec. 6.6.2); q: charges for Eq. 6.7.1.1; vdW: van der Waals 
parameters (Sec. 6.6); vdW(I,4): third-neighbour van der Waals parameters; k: force constants 
for Eqs. 6.1.1.1, 6.2.1.1, 6.3.1.1 and 6.4.1.1; H-bond: hydrogen-bonding interaction parameters 
(Sec. 6.9). 

C. Sensitivity approach: A specific observable is brought closer to its target value 
by tuning the parameter it is likely to depend upon the most. This is normally done for 
the final fine tuning or subsequent corrections of a force field, for instance when 
repeated inconsistencies with experimental results are observed. A typical example is 
the tuning of the C12 (OW,OW) Lennard-lones parameter used for the interaction 
with neutral carbon in GROMOS87, in order to better reproduce the solvation 
behaviour of proteins or peptides in solution [233,234], the solvation free energies of 
small hydrophobic organic molecules in water [235] and water/chloroform partition 
coefficients of Trp analogs [219]. Due to parameter interdependence (Sec. 7.6.1), such 
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a tuning may cause the breakdown of other parts of the force field, and should thus be 
undertaken very cautiously, that is, only when considerable evidence has been 
gathered on different systems that the foreseen change is an improvement. 

7.2. Source of data for force-field parametrization or validation 

The observables that can be used to parametrize a force field can be experimental or 
theoretical, i.e. coming from ab initio, density functional or semiempirical molecular 
orbital calculations. Three classes can tentatively be distinguished: (i) primary data, 
i.e. data from experimental or theoretical sources that can, in principle, be interpreted 
directly in terms of force-field parameters; (ii) secondary data, i.e. data that can be 
compared reliably to simulation results; and (iii) tertiary data, i.e. data that can be 
compared with simulation results, but currently not accurately enough to be used for 
parametrization. This can be due either to convergence problems in the simulation, 
insufficient force-field resolution in terms of particles, difficulty of unambiguous 
interpretation of the experimental observable in terms of molecular properties, or too 
large experimental uncertainties. Table 3 summarizes various types of accessible data 
to parametrize (or compare) simulation results against. 

7.3. Force-field parametrization using mostly experimental data 

A possible scheme for the design of a force field using mostly experimental data is 
sketched here as an example. In the procedure, small monofunctional model com
pounds may be used to obtain parameters which will be used for larger polyfunctional 
systems. 

A. Obtain the structural parameters (bO, eO, ~O) from X-ray or neutron diffraction 
studies on crystals, or from spectroscopic measurements in the gas phase or on liquids 
(IR, Raman, NMR). 

B. Obtain the corresponding force constants (kb' ke ,k~) from vibrational 
spectra in the gas phase. Possibly estimate the missing values using length-force 
interpolation on crystal structures, or use values from vibrational analysis on ab initio 
structures. 

C. Make an initial guess at the torsional parameters (kq,) from ab initio calculations 
on different conformers, from a molecular mechanics force field, or possibly from 
NMR measurements in solution. 

D. Make an initial guess at the atomic charges (q) using results from ab initio 
calculations together with a population analysis or a fit to the electrostatic potential 
outside the molecule [236-239]. Note, however, that charges have different annota
tions in quantum calculations and in empirical force fields. In the former case, the 
atomic point charges (which are not observables) are tailored to approximate the 
electrostatic field (which is an observable) outside the molecule. In the latter case, they 
are effective parameters to model long-range interactions. The transfer of charges 
between the two techniques is thus often unreliable. A better transferability is ob
tained if the quantum mechanical calculation includes a reaction field correction to 
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mimic bulk solvent, and the derived charges are constrained to reproduce the effective 
dipole moment of the molecule in solution. 

E. Make an initial guess at the van der Waals parameters (vdW), usually from 
another force field or, if not available, by using the Slater-Kirkwood formula. 

F. Refine simultaneously kcl>' q, vdW and possibly H-bond energy term parameters 
in order to reproduce the experimental condensed-phase properties for crystals 
(structure, density, packing) or liquids/solutions (density, thermodynamic observ
ables, fluctuations, transport properties, conformer populations and isomerization 
barriers, radial distribution functions, thermodynamic parameters of mixing). The 
optimization of the intermolecular interaction may be performed in a first step using 
constrained covalent degrees of freedom. Ideally, this fit should be performed consid
ering many different systems (crystals, liquids, mixed liquids) so that the extracted 
parameters hopefully become independent of the choice of a specific system. 

Due to the computational expenses involved in getting converged values of the 
corresponding observables and the number of parameters to be tuned simultaneously, 
point F is usually the most difficult part in the design of a condensed-phase force field. 

7.4. Systematic parameter optimization/or simple condensed-phase systems 

7.4.1. By trial and error 

Most of the condensed-phase force fields (typically liquids) reported in the literature 
have been optimized by trial and error. An initial guess is made and parameters are 
subsequently varied in a more or less systematic manner, until agreement with 
experimental observables is reached. Since many trials have to be performed, only the 
essentials of the optimization process are generally reported, and the final parameter 
set and simulated observables are quoted (see e.g. Refs. 170, 224 and 240-242). 

7.4.2. Using sensitivity analysis 

Sensitivity analysis attempts to elucidate the dependence of the output of a process 
(in the present case, the simulated observables) on either (i) the mechanism that 
transforms the input into the output (the functional form of the interaction function), 
or (ii) the input itself (the force-field parameters). In case (i), the method relies on 
functional sensitivity analysis [223,243]. Except for possible a priori restrictions on its 
asymptotic behaviour, continuity and smoothness properties, no functional form is 
presupposed for the interaction function, which is iteratively constructed so as to 
reproduce experimental observables adequately. Although appealing, the method is 
currently limited to small molecular clusters due to its complexity and expense. 
In case (ii), a functional form is selected and the analysis is performed in terms 
of its parameters. Assuming that Eq. 7.1.1 is solved in a least-squares-fit sense, that 
is by minimizing an objective function, typically 

(7.4.2.1) 
'" 
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where W" is the weight given to observable at, sensitivity coefficients can be evaluated 
such as 

(7.4.2.2) 

and used as guides for parameter tuning, and for the choice of observables to be 
included into the fit. The method has been applied to series of amide and carboxylic 
acid crystal structures in order to evaluate the sensitivities of observables upon 
changes in the nonbonded interaction parameters [244]. In this application, observ
abIes are single- configuration observables like lattice parameters, lattice energy, or 
rigid-body forces and torques on the molecules in the unit cell. Extension of the 
method to observables expressed as ensemble averages would require the use of the 
statistical perturbation formula (see Sec. 7.4.5). The sensitivity approach has also been 
applied to free energy calculations [245]. 

7.4.3. Using the weak-coupling method 

A technique to automatically adjust the value of a force-field parameter to that of 
a given observable (e.g. an experimental liquid property) based on the weak-coupling 
scheme [6,246] has been applied to liquid mercury, treated as a Lennard-Jones fluid 
[247], and to the SPC water model [248]. In this method, the time derivative of 
a parameter is weakly coupled to the difference between the instantaneous value of an 
observable and its target (experimental) value. The technique is only applicable 
when a strong relationship (high sensitivity) exists between a given parameter and 
a corresponding observable. This relationship need not be known exactly, but has 
to be monotonic within the convergence interval of the parameter, i.e. a local 
optimum is to be found in parameter space. As a consequence, the method is 
applicable only to relatively simple systems, where the number of parameters is 
limited, and where the dominating relationships between parameters and observables 
are straightforward. The method is well suited for the final (usually time-consuming) 
step of parameter fine tuning. Multiple parameters can be refined simultaneously 
against the corresponding observables, for instance, Lennard-Jones repulsion para
meters against pressure or density, or charges or Lennard-Jones well-depths against 
enthalpy of vaporization. 

7.4.4. Using a search method in parameter space 

Since the weak-coupling method described above can only locate a local optimum 
in parameter space, it will fail for systems where a good initial guess at the parameters 
cannot be made. Provided, however, that an objective function, S({sJ), can be 
designed to assess the quality of any trial set of parameters, {s;} (e.g. Eq. 7.4.2.1), and 
that its evaluation is reasonably cheap, some of the search techniques described in 
Sec. 3 (e.g. MC or MD) may be applied to search in the space offorce-field parameters. 
They are expected to be more powerful than the weak-coupling method, since they 
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are, in principle, able to cross barriers. When the derivatives of the objective function 
with respect to the parameters can be evaluated, a method related to MD may be used 
[26,27]. 

7.4.5. Using the perturbation formula 

The perturbation formula [249] can be used to make extrapolations of the value an 
observable would take upon a given change in a force-field parameter, using a single 
reference ensemble. The method has been employed for SPC water in order to determine 
self-consistently the value of the dielectric permittivity of the continuum (parameter) in 
a reaction field calculation, so that the value of the simulated dielectric permittivity of the 
liquid (observable) equals the parameter value [250]. It was also applied for the analysis of 
a polarizable SPC water model in order to estimate the impact of a change in parameters 
(e.g. Lennard-Jones interaction parameters, charges, polarizability) on the simulated 
properties of the liquid [171]. In that sense, perturbation analysis can be considered as 
a generalization of the sensitivity analysis described in Sec. 7.4.2 to observables which are 
not single-configuration values but ensemble averages. 

7.5. Systematic parametrization using results from ab initio calculations in vacuum 

Energies and derivatives from molecular orbital calculations can also be used as 
target observables [223,251,252]. In this case, two features may simplify the application 
ofEq. 7.1.1 [41]. First, the target observables are the energies of selected conformations 
and their first and second derivatives with respect to the coordinates. Since these are 
one-configuration observables, their simulated values, x~im, are extremely cheap to 
calculate for a given trial set of parameters. Second, the number of observables Nobs can 
be made much larger than the number of parameters Nparam by increasing the number of 
molecules and conformations entering the fitting procedure. This turns the problem into 
a tractable optimization problem, well suited for the use of a systematic procedure. 
More precisely, an objective function S is minimized [22,23]: 

S({Si}) = L L WA,a. (O)WA,a.[EA,a. - E~';."et]2 + L (l)W~,a. ~ A,a. - ~ 
N~I •• N.~( [ NoO [OE oEtarget]2 

A a. i uXj uXj 

+ L L (2)W~,ja. ~ _ A,a. 
NoON.. [02E 02Etarget]2] 

i j>i OXi OXj OXi OXj 
(7.5.1) 

where Nmolec is the number of molecules of Nat atoms in the training set, and N conC is 
the number of (equilibrium or distorted) conformations used for each molecule. 
EA,a. == EA,a.({~}) denotes the energy calculated by the force field using any trial 
parameter set {Si} (including covalent, covalent coupling and non bonded terms) for 
molecule A in conformation ex, and E:\:';."et is the corresponding quantum mechanical 
energy. Both energies are given relative to the lowest energy conformation of the 
molecule. The weights W can be adjusted to increase the impact of selected terms in 
the fit. Additional advantages of the procedure are that (i) ab initio observables, 
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unlike experimental ones, can be generated easily for new systems, (ii) non-equilib
rium (i.e. distorted) conformations are included in the parametrization set, and (iii) no 
model is required to interpret the observables in terms of molecular properties. 

Such an approach has currently only been used systematically for alkanes. The 
force field for alkanes is constructed by fitting an anharmonic nondiagonal potential 
energy expression to the results ofHF/6-31G* ab initio calculations [22,23]. The force 
field (QMFF) is successful at reproducing (at lower computational costs) the ab initio 
potential energy surface. Since it is known that ab initio calculations at this level of 
theory do not reproduce experimental results very accurately [3], this quantum 
mechanical force field cannot be used as such for comparisons with experimental data 
in the gas phase. Under the assumption that the potential energy surface from the ab 
initio calculations bears the correct trends, and that the errors in each individual term 
of the empirical interaction function are systematic, one may try to scale these terms 
using a limited number of scaling factors (five for QMFF) in order to reproduce 
experimental vibrational frequencies of molecules in the gas phase. Some problems 
and disadvantages of the method are the following: 

A. Dispersion effects are generally only correctly treated at the second order of 
perturbation theory and not at the Hartree-Fock level of theory. 

B. The selected potential energy function (including anharmonicities and cross
terms) is relatively complex and its evaluation may become expensive. 

C. Parametrization has to be performed in a consistent manner over a whole class 
of compounds. Introduction of a new functionality, e.g. the C=C double bond, would 
require a full reparametrization of all terms, including those which do not include 
a C(Sp2) carbon atom. 

D. The number of parameters is likely to increase rapidly with the number of atom 
types. For the alkane force field, 78 parameters define the full covalent interaction 
[22,23]. Inclusion of a third atom type e.g. for C(Sp2), keeping the same terms and 
expansions in the interaction function, would roughly multiply the number of param
eters by a factor of 5. 

E. The choice of the molecules in the training set, and of the selected geometries of 
these molecules, is arbitrary and a given choice may influence or bias the fit. 

F. The nonbonded parameters are optimized solely for intramolecular interaction 
in small molecules. It has been shown, however, in the case of alanine dipeptide in 
vacuum, that the relative energy of conformers and thermodynamic properties are 
weakly dependent on charges [182]. On the other hand, their role in determining the 
solvation behaviour will be large. 

7.6. Technical difficulties in the calibration of force fields 

7.6.1. Parameter interdependence 

Since simulated observables depend, in principle, simultaneously on all the param
eters in Eq. 7.1.1, parameter optimization in force-field development can be made 
difficult due to correlation or anticorrelation among them. As a typical example, 
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torsional angle parameters and third-neighbour (1,4) van der Waals interaction 
parameters are highly correlated and cannot be adjusted independently. When va
lence coordinate cross-terms are included, all covalent internal coordinate energy 
parameters become interdependent, and inclusion of a new functional group may 
require a full reoptimization of the force field. Atomic charges, van der Waals 
parameters and hydrogen-bonding parameters are correlated and should be adjusted 
consistently, in particular when a proper description of hydrogen bonds is required. 
Since correlated parameters cannot be optimized separately, the dimensionality and 
difficulty of the optimization problem is increased. 

A further consequence of parameter correlation is the unclear correspondence 
between parameter and observable. Since usually one observable correlates with 
many parameters, even in the most simple case (use of primary data), this correspon
dence is not always straightforward. For example, the equilibrium bond angle used in 
a force field is the one of a virtual isolated angle, where all the effects of the 
neighbouring groups through nonbonded strain, valence coordinate cross-terms and 
internal coordinate redundancy have been averaged out into a potential of mean force 
(Sec. 4). It is thus not evident how such an effective parameter relates to a single 
bond-angle measured in a real molecule. For example, in methylcyclopropane, the 
effective value of a C-C-C bond angle may vary from 60° to about 120° [23]. Similarly, 
when bond-angle flexibility is introduced into the SPC water model [253], it is found 
that an equilibrium angle eo = 109S leads to an effective average angle of about 
105.4°. The parameter eo has to be increased to 114° in order to get an average value 
of about 109S. 

7.6.2. Parameter dependence on degrees offreedom (D),junctionalform (F), combination 
rules (C) and approximations (A) 

In the general case, a redefinition of the degrees of freedom explicitly treated, or of 
the characteristics of the interaction function, should be followed by a complete 
reoptimization of all force-field parameters, or at least those whose effects are likely to 
be most strongly correlated with the effects of the changed parameters. In the 
following, four important choices are given on which the optimal parameters to be 
used will strongly depend: 

A. Treatment of the electrostatic interaction: The optimum effective charges used in 
a given force field are strongly dependent on the approximations made in the 
functional form chosen for the electrostatic interaction (e.g. cutoff radius, reaction 
field and continuum dielectric constant, shifting function, distance-dependent dielec
tric constant, use of lattice summation) and the specific environment (explicit or 
implicit solvent, low or high dielectric constant). Practically, it has been shown that 
the reparametrization of the SPC water model is required when a reaction field term is 
introduced in the interaction function [220] or when polarizability effects are included 
[171]. Similarly, the optimal ionic nonbonded parameters, when calibrated against 
experimental solvation free energies, will depend on the cutoff radius used for the 
Coulomb interaction (see Fig. 9). 
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B. Van der Waals combination rules: When combination rules are applied to 
determine van der Waals interaction pair parameters, optimum atomic parameters 
will depend on one specific choice. Moreover, a change of the atomic parameters of 
one atom type will change its interaction with all other atom types. 

C. Treatment 0/ the torsional interaction: The choices with respect to the treatment 
of redundancy in torsional coordinates (e.g. one to nine torsions for ethane) will 
directly affect the force constants to be used. Additionally, third-neighbour non
bonded interaction may be (i) normal, (ii) scaled (AMBER), (iii) determined by 
a specific set of parameters, i.e. uncoupled from other non bonded interactions 
(GROMOS), or (iv) absent (ECEPP). Different choices will affect the choice of 
a proper torsional functional form, and the corresponding force constants, if the 
overall torsional barriers are to be reproduced correctly. 

D. Choice o/the constrained degrees o/freedom: For example, when the bond angle 
of the SPC water molecule is made flexible, a full reparametrization of the model is 
required [253]. 

7.6.3. Parameter dependence on the molecule training set and calibration observables 

A force field developed for a given set of compounds using a given set of observables 
can only predict similar properties for related compounds, i.e. in its domain ofvalidity. 
In other words, one should use it for interpolations and not for extrapolations. For 
example, parameters developed for linear alkanes may fail if used for cyclic alkanes. 
Similarly, parameters developed solely to reproduce gas-phase observables will prob
ably fail to reproduce condensed-phase properties. 

7.6.4. Nonconvergence o/important observables 

Since Eq. 7.1.1 can only be used when X:im is a single-valued function (i.e. the 
observable is converged), a number of observables which are important for practical 
applications of a force field cannot be used directly in its parametrization procedure 
due to slow convergence. This problem is also encountered when, in applications of 
a force field, simulation lengths or system sizes grow far beyond the size or timescale 
that was used during its parametrization. In addition, parameters may have a weak 
influence on the local (short-timescale) behaviour of a molecular system, but a strong 
impact on the global (long-timescale) behaviour. A typical example is the effect of the 
parameters determining the electrostatic interaction on the simulated dielectric con
stant of water, which requires simulation times of the order of a nanosecond to be 
converged [220]. Tuning of parameters whose effect can only be detected at the limit 
of reachable computer power is rather difficult. 

7.6.5. Existence 0/ conflicting requirements 

Within a given model (D,F,C,A), Eq. 7.1.1 may have no solution if the model is 
incapable of reproducing, at the same time, two observables, for whatever combina
tion of parameters. This situation occurs, for instance, when a single set of parameters 
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is used to describe both intermolecular and third-neighbour van der Waals interac
tions. The correct description of the density of condensed-phase systems is then 
incompatible with a correct description of torsional barriers (especially when united 
atoms are used). Such conflicts may be resolved by a change in the model (e.g. 
a different set of parameters for the two types of interactions). As another example,. 
application of the weak-coupling method to liquid mercury modelled as a Lennard
Jones fluid [247] has shown that no set of Lennard-Jones parameters can fit simulta
neously the experimental phase behaviour, the density, the heat of vaporization and 
the diffusion constant over the temperature range corresponding to the liquid state. 
Finally, in the development of the MM3 force field [54], conflicting demands appear 
as the impossibility to fit vibrational frequencies simultaneously with structures and 
heats of formations within the MM2 functional form. The conflict has been resolved 
by an adaptation of the functional form and an increase in the number of parameters. 

7.6.6. Force-field mixing problems 

Parameters are generally not transferable from one force field to another [36] and 
difficulties may arise while mixing force fields developed and optimized separately, as, 
for example, when a macromolecular solute is immersed into a solvent. The proper 
solvation behaviour of a macromolecule will depend strongly on the balance between 
solute/solute, solute/solvent and solvent/solvent interactions [12], which is not 
guaranteed to be correct. A potential cause for imbalance is the use of different 
combination rules [36]. Similar problems may arise when two solvent models from 
different origins are mixed. Another example is the combination of the AMBER 
valence force field with the OPLS nonbonded force field [79]. This combination 
requires removal of the AMBER hydrogen-bonding term and modifications in the 1,4 
interaction handling. In general, parameters designed for explicit solvent simulations, 
parameters developed for vacuum simulations intending to mimic solvent environ
ment, and parameters for proper gas-phase simulations can neither be interchanged 
nor combined. 

7.6.7. Validation of a force field and comparison of force fields 

The question of the general quality of a force field cannot be easily answered [37]. It 
should finally be judged by the ability of the force field to reproduce or predict 
experimental data. However, one should keep in mind that each force field has a range 
of validity determined by the systems and experimental or theoretical observables it 
was calibrated with. This makes fair comparison among force fields a difficult task, 
although some attempts can be found in the literature [254-256]. 

From Secs. 7.6.1-7.6.3, it should be clear that force-field parameters are by no 
means physical constants. Thus the direct transfer of parameters from one force field 
to another is a hazardous procedure. Similarly, the usefulness of ab initio results in 
vacuum is limited when designing an empirical effective interaction function for 
condensed-phase systems. In both cases, the transferred parameters can at most serve 
as an initial guess. 
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8. Conclusions 

In the present text, some of the major issues with respect to derivation and use of 
empirical classical force fields have been described. Focusing mainly on models at 
atomic resolution, the terms that are most commonly found in the interaction energy 
function have been listed. From the previous discussion, it should be clear that there is 
no universal force field, but rather a force field best suited to a given system, a given 
state (phase) ofthe system, a given studied property and a given computer budget. The 
overall accuracy of a force field is limited by the crudest approximation that is made 
and not by the best refined part of the interaction function. This crudest approxima
tion may occur in the energy term to which the observable is most sensitive. For 
condensed-phase simulations, the crudest approximation is most likely made in 
modelling the non bonded interactions. 

The main advantages of empirical classical force-field simulations reside in (i) the 
flexibility of the choice of the degrees of freedom, (ii) the limited computational costs, 
(iii) the ability to obtain thermodynamic and dynamical properties in addition to 
structural properties, whenever required, (iv) the possible inclusion of environmental 
effects (explicit or implicit solvent), and (v) the ability to carry out unphysical 
processes. The main drawbacks are (i) the non-first-principles approach, i.e. the only 
justification of empirical force fields resides in their ability to reproduce a large 
amount of experimental data, (ii) the dependence of the results on the approximations 
made and the choice of the force-field training set and parametrization observables, 
(iii) the difficulty of parametrization, and (iv) the limitations in the validity of the laws 
of classical mechanics, i.e. sufficiently high temperature, for all but the lightest (H, He) 
particles, and as long as no chemical reaction or electronically excited state is 
involved. 

Since for many problems the use of molecular orbital methods is currently not 
feasible, there is nevertheless considerable interest in developing empirical force fields. 
Due to the constant increase of computer power, the problems that can be addressed 
by these techniques increase regularly in size, complexity and in terms ofthe volume of 
conformational space that can be sampled. This, almost necessarily, entails further 
development of the force fields themselves. New functional forms are proposed, which 
allow for a better energetic resolution in force fields, and systematic procedures begin 
to emerge for the parametrization of these functions based on both theoretical and 
experimental data. 
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Introduction 

In this chapter, we present an overview on our approach to developing a molecular 
mechanical model for organic and biological molecules and our opinions on what are 
the most important issues that go into the development of such a model. Since 
molecular mechanical models are more thoroughly reviewed by Hunenberger et al. 
[1], it is not inappropriate that we focus more on general principles and philosophy 
here. The main focus on new results presented here are consequences of some recent 
high-level ab initio calculations carried out by Beachy et al. [2]. This leads to a slight 
modification of our previously presented force field; we call this new model C96, 

Development of parameters 

Equation 1 represents the simplest functional form of a force field for studying 
molecules, in which one can vary all the degrees of freedom. The earliest force fields, 
which attempted to describe the structure and strain of small organic molecules, 
focused considerable attention on more elaborate functions of the first two terms, as 
well as cross terms, The modern versions of this are MM2/MM3 [3,4] and CVFF [5], 
which have been built with this 'top-down' philosophy. 

U(R) = I Kr(r - req)2 (bond) + I Ke(9 - geq )2 (angle) 
bonds angles 

" Vn + L... 2 [1 + cos(n9 - y)] 
dihedrals 

(dihedral) 

atoms A.. Boo 
+ I _'J_~ 

i<j Rt/ R~ 

atoms q.q. 
(van der Waals) + i~j €~i: (electrostatics) (1) 

* Present address: Parke-Davis Pharmaceuticals, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A . 
•• Present address: A Chern Forschung/CADD, Dr. Karl Thomae GmbH, D-88397 Biberach, Germany. 
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On the other hand, our approach, guided by our interest in proteins and nucleic 
acids, has been 'bottom-up' [6-8]. Thus, we focused on the atomic charges qj 
first. Building on work by Momany [9] and Cox and Williams [10], we felt that 
the best, most general method to derive the atomic charges was to fit them to 
quantum mechanically calculated electrostatic potentials on appropriately chosen 
molecules or fragments. In our earlier attempt to do this, because of compu
tational limitations in quantum mechanical calculations, we used a minimal basis 
set STO-3G to derive the qj [6,7]. However, in our latest efforts [8], a 6-31G* 
basis set was used. This basis set has the fortunate property in that it leads to charges 
(dipole moments) that are enhanced over accurate gas-phase experimental values 
and, thus, implicitly builds in 'polarization' effects characteristic of polar molecules 
in aqueous solution. The fact that this basis set enhances the polarity just about 
the same amount as the water models TIP3P [11] and SPC [12] (where the charges 
are empirically adjusted to reproduce the water enthalpy of vaporization) is a 
fortunate fact and is key in leading to balanced solvent-solvent and solvent-solute 
interactions. 

Although the 6-31 G* electrostatic potential charges are well suited for intermolecu
lar interactions, a key stumbling block in their use in a general force field is that they 
often are statistically ill-determined [13] for buried charges in the molecule and, in 
that case, can lead to a poor representation of conformational energies. The key 
breakthrough to solve this problem was the RESP model, developed by Bayly et al. 
[14]. By employing a hyperbolic restraint and multi molecule and multiconforma
tional fitting (the latter independently noted as useful by Reynolds et al. [15]), 
a general and powerful method to derive 6-31G* based charges for any organic/ 
biochemical model emerged. 

Van der Waals parameters are generally dominated by the inner closed shell of 
electrons, and thus are fortunately far more transferable than atomic charges. 
Therefore, generally only one set of van der Waals parameters (radius and well 
depth) per atom type need be employed (with the important exception of hydrogen) 
[16,17]. The emergence of a general model that is empirically calibrated to fit liquid 
structures and enthalpies, the OPLS model [18], led us to use this approach in our 
force field. Although we made some adjustments and additions to that model (e.g. 
many different van der Waals parameters on hydrogens), our van der Waals model 
was very similar to OPLS and some parameters were taken from that model without 
modification. 

Why can one not derive the van der Waals parameters for atoms using quantum 
mechanical calculations, as we have done for the charges? Unfortunately, such an 
approach is currently impractical since dispersion attraction is nonexistent at the SCF 
(Hartree-Fock level). Furthermore, it is very important to correctly reproduce the 
density of condensed-phase systems; thus, the empirical approach of OPLS is neces
sary at this time [19]. 

Continuing with the 'bottom-up' development of our force field, we come to the 
torsion energy term, where the V nand y come from either experiment or quantum 
mechanical calculations on small molecule models. At this point, a key conceptual 
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difference with the 'top-down' force fields MM2/MM3 [3,4] should be stressed. 
Whereas MM2/MM3 often uses many terms in the Fourier series for rotation 
around a given bond type and attempts to reproduce the conformational energy 
for a collection of molecules, we have taken a minimalist approach [8]. For example, 
we have only a single V 3 torsional term around an X-C-C-Y bond except when X or 
Yare electronegative, where another term can be rationalized from electronic effects 
and can be derived directly using quantum mechanical calculations. This helps our 
model to be more easily generalized to new molecules, albeit in some cases probably at 
the cost of some accuracy. Exceptions to this minimalist approach are the \jJ, <I> of 
peptides and the X of nucleic acids, where more terms were added to ensure as 
accurate as possible a reproduction of the conformational energies around these key 
bonds. 

Finally, to ensure a reasonable representation of bond and angle terms, 
we use empirical data (structures and vibrational frequencies). The use of this 
simple harmonic model precludes high accuracy, but in our opinion such terms 
are of secondary importance in reproducing conformational and interaction 
energies in molecular recognition, proteins and nucleic acids. Thus, one does 
not want to compromise the simplicity and generality of the model with more 
complex functional forms. On the other hand, in our opinion [20,21], it is 
essential that bond angles are flexible for an accurate reproduction of the above 
properties. 

Testing the model 

A key test of our approach was the ability to reproduce accurately liquid structures 
and energies and free energies of solvation. In a general sense, this is merely testing 
the compatibility of van der Waals parameters derived from simple liquids with 
ESP [22] and RESP 6-31G* [8,23] electrostatic potential based charges. The 
aqueous solvation free energies of a large number of molecules including substituted 
benzenes [22], methanol [23], hydrocarbons [8], N-methyl acetamide [23] and 
dimethyl sulfide [8] as well as the liquid structure and energy of methanol and 
N-methyl acetamide showed very good agreement with experiment. The point to 
emphasize is that little or no adjustment of parameters was done. Recently, Fox 
[24] has shown that our approach leads to a density and enthalpy of vaporizatipn 
of liquid dimethyl sulfoxide (DMSO) within 2% of experiment, using RESP charges 
and van der Waals parameters taken without modification from the corresponding 
values in proteins. Liu et al. [25] have derived a united-atom DMSO model by 
empirically adjusting the molecular mechanical parameters to exactly reproduce the 
experimental density and enthalpy of vaporization. In the process, they had to make 
the equilibrium O-S bond length (R = 1.95 A) significantly different from experiment 
(R = 1.80 A). 

The advantage of the Liu et al. approach is that a rigid united-atom model is 
computationally more efficient and consistent with the approach to the development 
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of the SPC water model. Nonetheless, our all-atom approach allows the use of the 
correct internal geometry, is more consistent with the models of solutes, where bond 
angles are flexible, reproduces the dynamical properties as well as the Liu et al. model, 
and is easily applicable to any other liquid without parameter adjustment and with 
apparently little loss in accurate reproduction of the density and enthalpies of 
vaporization. 

A test of our electrostatic model was provided by Hobza et al. [26]. Applying the 
highest level of ab initio theory practical, they calculated the 29 possible hydrogen 
bonding nucleic acid base-base interaction energies. They then compared these with 
the energies determined by various force fields and semiempirical quantum mechani
cal models. Encouragingly, the Cornell et al. [8] model was, on balance, closer to the 
ab initio model than any of the others, even the OPLS [27] and CHARMM23 [28] 
models. This was despite the fact that the Cornell et al. model simply fit the base 
charges with a RESP model, whereas OPLS and CHARMM23 adjusted them 
empirically to reproduce, among other things, hydrogen bond energies between bases 
or between base and water molecules. 

The ability of our force field to model intramolecular (conformational) energies was 
provided by the studies of Rychnovsky et al. [29]. They studied a well-defined 
conformational equilibrium between chair and twist-boat conformers of substituted 
1,3-dioxanes (see Scheme 1). 

Even though high-level ab initio calculations reproduced the relative energies of 
these molecules well, MM2* /MM3* (Macro Model implementation of MM2 and 
MM3) and MM2/MM3 did not. However, our molecular mechanical model using 
RESP charges [17] had a correlation coefficient relative to these ab initio energies of 
r2 = 0.997 with an average absolute error of 0.45 kcal/mol. In contrast, MM3 pro
duced only an r2 of 0.749 and an average error of 2.37 kcal/mol [30]. The important 
role of the electrostatic term, in determining these energies (the r2 of the relative 
electrostatic energies with the relative total energies was 0.99), explained the superior 
performance of the Cornell et al. approach compared to MM3. A qualitative insight 
into why the electrostatic ~nd total energies were correlated suggested that, in 

chair q twist-boat 

Scheme 1. Chair/twist-boat conformational equilibrium of 2.2-dimethyl-trans-4-methyl-6-R-1.3-
dioxane (R = substituent). 
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addition to a steric effect favoring the twist-boat conformer, electron withdrawing 
substituents favored the chair conformation because of electrostatic attraction with the 
oxygen along the ring. This led to the idea that a 6-CF 3 substituent would have 
a greater tendency than 6-CH3 to be axial in the chair conformation, despite the smaller 
size of 6-CH3' This idea was tested and supported in a joint experimental and 
theoretical study involving Rychnovsky's laboratory and ours [31]. Thus, even though 
this is one limited example, it provides encouragement that the approach described in 
Refs. 30 and 31 will be able to accurately represent intramolecular energies. 

It is worth noting that a referee of Ref. 31 thought we were being unfair to MM3, 
because the Vb V 2 and V 3 parameters had not been further optimized for this system. 
This is precisely the advantage of our model, where the accurate representation of the 
electrostatic charges with the RESP model often obviates the need for further 
parameter adjustment. 

Non-additive and more complex models 

What are the most important weaknesses in the above-described parametrizational 
approach and the use of Eq. 1? In our opinion, the main ones are two: the use of an 
effective two-body potential and the use of only atom centered charges. 

1 atom 

Epol = -"2 t l1i ElO) (polarization) 

ion i 

+ L Aijkecx,jRIJe - OIlkRlke - ~jkRjk (three-body exchange) 
ligands j,k 

(2) 

In the last year, we have made substantial progress in laying the foundation for the 
development of a complete force field including explicit nonadditive effects (adding 
Eq. 2 to Eq. 1). First, we have shown that such models, in contrast to additive models, 
lead to a good agreement with experimental solvation free energies of representative 
organic ions CH3NHt and CH3C02 without any adjustment of van der Waals 
parameters [32]. Secondly, we have shown that such nonadditive terms are essential, 
albeit nonobligatorily [33], in accurately describing cation-1t interactions [34]. Third
ly, we have shown that one can equally well describe liquid CH30H and NMA with 
additive models or a nonadditive model in which the charges are uniformly reduced 
(by 0.88) [23]. Finally, the interaction free energy of Li + with hexa anisole spherand is 
more accurately described by nonadditive than additive molecular mechanical models 
[35]. In addition, considering off-center charges in electrostatic potential fit models of 
atoms with 'lone pairs' shows that they can often be important in leading to a very 
accurate description of hydrogen bond directionality [36]. 

Long-range electrostatic effects 

To accurately describe the energy and structure of complex systems, not only are 
the functional form and parameters of molecular models described by Eqs. 1 and 2 
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important, but also the manner in which the long-range electrostatic effects are 
represented. The standard approach is to use a non bonded cutoff for both electros
tatic and van der Waals interactions, which seems to be a reasonable method for 
proteins, but appears to be a poor method to describe highly charged molecules such 
as nucleic acids. Darden and co-workers have shown the impressive efficiency and 
accuracy of the particle mesh Ewald (PME) method in representing protein crystals 
[37] (0.3 A rms deviation from the observed crystal structure for bovine pancreatic 
trypsin inhibitor (BPTI) in a 1 ns simulation with an increase in computer time of only 
'" 50% over standard cutoff methods); in collaboration with Darden, Cheatham et aI. 

[38] have shown that the PME method leads to very accurate simulations of proteins, 
DNA and RNA in solution. 

Recent ab initio calculations by Beachy et al. 

In the development of the protein part of the Cornell et aI. force field, torsional 
parameters were calibrated to reproduce, as accurately as possible, high-level ab initio 
calculations by Gould and Kollman [39] on the alanyl and glycyl dipeptides in C7eq, 

C7ax, ~ and CXR geometries (in glycyl dipeptide, C7eq and C 7ax are degenerate). Since 
CXR is not a local minimum on the potential surface of these dipeptides, the energy of 
CXR was evaluated by constraining <1>, \jJ to a representative value of - 60.7°, - 40.7°. 
The final molecular mechanical energies exactly reproduced the ab initio relative 
energies for C7eq, ~ and CXR for alanyl dipeptide and were in reasonable agreement for 
the other conformations. 

Thus, it was rather surprising when the results of studies by Beachy et aI. [2] 
appeared. These authors studied 10 local minima of alanyl tetrapeptide (Ace-Ala
Ala-Ala-NMe) where Ace=CH3CO and NMe=NH(CH3), as well as the CXR geometry. 
Given the way the intramolecular torsional potentials were developed by Cornell 
et aI., it was disappointing that the average difference in energy for the 10 local 
minima between the Cornell et al. model and the ab initio calculations was 
2.5 kcaljmoI. (Table 1). A small part of this discrepancy could be attributed to the 
difference in ab initio energies. The difference between C7eq and ~ was 1.5 kcaljmol in 
Gould and Kollman [39] and 0.9 kcal/mol in the Beachy et al. [2] study. This effect 
could be magnified in longer peptides, so for a tetrapeptide one might attribute 
1.8 kcaljmol of a discrepancy in the relative energies of a repeating ~ versus a repeat
ing C7eq conformation to the ab initio data used. 

Nonetheless, one could also note that the 10 conformations chosen by Beachy et aI. 
contained many examples of C7eq and C 7ax conformations which are rarely found in 
peptides or proteins much longer than a few residues. Thus, this particular choice of 
conformations is somewhat unrepresentative of protein structures. Beachy et al. did 
study a constrained CXR conformation, given its importance in peptide and protein 
conformations (with <1>, \jJ constrained to - 52°, - 53°). They were kind enough to 
communicate their results on it to us, but for some reason they did not include it in 
their initial report [2]. 
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In fact, the largest concern to us in the Beachy et al. study was that the Cornell 
et al. model found the constrained (XR only 4.0 kcaljmol above the most stable 
conformation # 3, compared to 6.3 kcaljmol for the ~-structure (conformation # 1), 
whereas (Table 1) Beachy et al. found ~ more stable than constrained (XR by 
6.4 kcaljmol. 

We thus decided to create a model that reproduced exactly the (XR - ~ energy 
difference and to compare its performance with the Cornell et al. force field in protein 
molecular dynamics and conformational free energy calculations on a model peptide. 
We simply changed the torsional potentials around <I> and W for simplicity, keeping 
just the same onefold and twofold Fourier components around each. This led to the 
model C96 presented in Table 1. Not only does it reproduce the ~ - (XR difference 
significantly better than the original Cornell et al. model, but the average error for the 
conformational energies goes from 2.5 to 1.6, with the largest error occurring for those 
conformations of relatively higher energy. 

We also explored three other models in an analogous way, simply adjusting V 1 and 
V 2 for the <1>, W torsional potentials in order to approximately reproduce the relative 
ab initio energies for conformations # 1 and # 3. The model labeled '88' simply has 
scaled the charges for the Cornell et al. force field by 0.88, which, as we have shown 
elsewhere [23], is an appropriate scale factor to make these charges 'gas-phase'-like; 
this model leads to a relatively small average error of 1.4 kcaljmol. 

Instead of scaling the 6-31G* ab initio electrostatic potential derived charges, one 
could evaluate them with a basis set which more accurately represents the gas-phase 
dipole moments of small molecules, rather than enhancing them by '" 10-20% as 
6-31G* does. We have shown that a density functional based electronic structure 
approach does this well for small molecules, using a triple zeta plus polarization basis 
set [40]. We call this model DFT and the results of deriving the charges for the alanyl 
dipeptide using that approach and empirically altering the <1>, W torsional potentials 
analogously to the C96 and 88 models (approximately reproducing the ilE between 
conformations # 1 and # 3) are given in Table 1. Also reported in the table are given 
energies if one does the same approach using a nonadditive force field with atomic 
polarizabilities from Caldwell and Kollman [23]. 

As one can see, all the new models significantly improve the agreement with the ab 
initio calculations for the tetrapeptides, at the expense of the relative dipeptide 
energies. On the other hand, calibrating a model to reproduce tetrapeptide energies is 
probably a better, more transferable approach to proteins, provided a suitably 
representative set of conformations is included. 

One should reemphasize, as discussed above, that the choice ofa 6-31G* basis set to 
derive the charges was done to implicitly include polarization effects, since this basis 
set uniformly overestimates polarity. The use of 'gas-phase' charges may be more 
appropriate to compare with the ab initio gas-phase calculations by Beachy et al. [2] 
What Table 1 shows is that, whereas one can reproduce the ab initio data on average 
better with such models (88, DFT, DFTPOL), one can also adjust torsional potentials 
with the 6-31G* charges and create a model that compares nearly as well to ab initio 
and correctly represents the most important (XR - ~ energy difference. If one excludes 
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Table 1 Relative energies of different models of alanyl tetrapeptide and alanyl dipeptide 

Conformation # a Model (kcaljmol) 

Ab initiob Cornell C96d 88 e DFTf DFTPOLg 
et al.e 

Tetrapeptide 
1(~)' 2.0 6.3 2.5 2.4 2.4 
2 2.3 5.9 3.1 2.8 2.3 
3 0.0 0.0 0.0 0.0 0.0 
4 3.3 6.8 3.6 2.9 2.9 
5 3.3 4.7 4.9 3.6 3.7 
6 2.3 1.2 1.8 1.9 
7 5.4 4.4 3.8 3.0 
8 4.3 5.6 7.9 6.2 5.8 
9 7.0 5.5 6.6 7.2 6.5 

10 6.7 5.6 12.0 10.3 9.1 
CXR( - 52, - 53)h (8.4) (7.0) (8.9) (3.7) (4.0) 

Average deviationi 2.5 1.6 1.4 1.3 

Dipeptideb 

Conformationi 

~ 0.9 1.5 0.2 0.1 0.6 
C 7eq 0.0 0.0 0.0 0.0 0.0 
C7• x 2.8 1.5 1.9 1.9 1.8 
CXR( - 60.7, - 40.7)h (3.9) (3.8) (5.4) (3.5) (3.6) 

a This is a ~-sheet conformation; these 10 conformations are from Beachy et al. [2]. 
b See Beachy et al. [2] and unpublished results on CXR and dipeptides. 
e Energies using the Cornell et al. force field [8]. 

2.4 
2.3 
0.0 
2.9 
3.0 
2.8 
2.8 
5.2 
7.3 
8.1 

(2.4) 

1.3 

0.7 
0.0 
2.3 

(2.7) 

d Cornell et al. force field with dihedral energies around both C-N-CT-C (<1» and N-C-CT-N ("') 
changed to V tl2 = 0.85 kcal/mol, 1) = 0° and V 2/2 = 0.30, 1) = 180°. 

e Cornell et al. model with charges reduced by 0.88 and dihedral values changed as in footnote 
d with V d2 = 0.55 kcaljmol, 1) = 0° and V 2/2 = 0.30, 1) = 180°. 

f Cornell et al. model with charges changed to those derived for alanyl dipeptide in Ref. 8, but 
using DFT calculations with the basis set from St-Amant [40]. Torsional parameters changed 
as in footnote d to Vd2 = 0.75,1) = 0° and V 2/2 = 0.30 kcal/mol, 1) = 180°. 

g As in footnote d with polarization turned on using the approach in Ref. 23. V d2 = 0.50, 
1) = 0° and V 2/2 = 0.30 kcaljmol, 1) = 180°. 

h <1>, '" constraint value used. 
i Average magnitude of deviation from ab initio energy. 
i See Gould and Kollman [39] for the definition of these conformations. 

the high-energy conformations # 9 and # 10, the C96 model has an average difference 
versus ab initio of only 1.2 kcaljmol, comparable to those of 88, OFT and OFTPOL 
(1.3, 1.2 and 1.4 kcaljmol), and it represents the CXR - ~ energy difference much more 
accurately. 
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Given the excellent performance versus ab initio of nucleic acid base pairing and 
stacking of the Cornell et al. [8] model, as demonstrated by Hobza et al. [26], why 
does the model do much more poorly in representing these tetrapeptide energies? As 
noted by Cornell et aI., intramolecular torsional energies in cases like the <1>, '" torsion 
in peptides and X in nucleic acids are much more difficult to represent with simple, 
transferable torsional potentials, in contrast to the success of transferability noted 
above in 1,3-dioxanes. Of course, the ab initio data are not perfect for these systems, 
with the largest error probably coming from the dispersion attraction, but the average 
error of the relative conformational energy is likely in the range of 0.5 kcaljmol, much 
less than the deviations of these molecular mechanical models. 

Comparing the two force fields on complex systems 

Given that we have shown that ~ns trajectories of the Cornell et aI. force field 
on ubiquitin [41] were in very good agreement with the X-ray structure and that 
this level of agreement was in the order Cornell et aI. (PME) > Cornell et aI. 
(cutoff) > Weiner et aI. (PME) > Weiner (cutoff), we carried out molecular dynam
ics trajectories with the new C96 model for 600 ps with PME, for comparison with the 
earlier studies. As shown in Table 2, the difference between the results of the two 
trajectories in terms of rms movement from the crystal structure is quite small. A more 
detailed examination of the hydrogen bonding pattern, in terms of agreement with 
NMR and X-ray data, revealed that the new modelled to better agreement in some 
areas and worse in others; all in all, the difference between the models was not 
significant. We also initiated free energy calculations on small peptides, determining 
the free energy of a ~ -+ ex a transition to a partially formed ex-helix for both the Cornell 
et al. and C96 models. 

Whereas the calculations discussed above were performed on isolated molecules, 
perhaps the most relevant issue is the behavior of peptides and proteins in solution. 
To address this issue, we used both the Cornell et aI. and the C96 force fields to study 

Table 2 Rmsd from crystal structurea 

Final structure (A) 

Heavy Backbone CO! 

C96 
Cornell et al. 
C96 
Cornell et al. 

(300ps)" 
(300ps) 
(600ps) 
(600ps) 

atoms 

1.336 
1.445 
1.405 
1.533 

0.965 
1.020 
0.975 
1.108 

• For details on ubiquitin simulation, see Ref. 41. 
b Model used, see Table 1. 
" Length of simulation. 

0.903 
1.011 
0.931 
1.060 

Average structure (A) 

Heavy Backbone CO! 
atoms 

0.925 0.637 0.616 
0.878 0.572 0.554 
0.667 0.647 0.647 
1.010 0.671 0.640 
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a model oligopeptide in aqueous solution. As an example, we selected the Ac- and 
-NHMe terminally blocked undecamer ofpoly-L-Ieucine. This choice was motivated 
by its relevance to the studies of model transmembrane proteins [42]. Folding of this 
molecule during the transfer across the water-hexane interface was recently studied in 
multi-ns computer simulations using the Cornell et al. [8] model [43]. For the 
undecamer in the cx-helical conformation in water, the free energy of unfolding the first 
residue from the N-terminus was determined in molecular dynamics simulations by 
varying discretely the 0/ angle of this residue from -90° to + 170°. 

The simulation system consisted of a single peptide solvated by 2191 TIP4P water 
molecules in a box, the x, y, z dimensions of which were 41.09 x 41.09 x 41.09 A 3 . 

Periodic boundary conditions were applied in all three directions. The equations of 
motion were solved employing the Verlet algorithm with a time-step of 2.5 fs. The 
simulations were carried out in the (N, V, E) ensemble, with a periodic rescaling of the 
velocities to maintain the temperature at 300 K. Peptide-water and water-water 
interactions were truncated smoothly beyond 9 and 7 A, respectively. 

The free energies were evaluated as a function of the 0/ angle, using the 'umbrella 
sampling' [44] approach. The range of values accessible to 0/ was divided into four 
sequentially overlapping 'windows'. A harmonic restraining potential was applied to 
ensure that the values of 0/ remained within the defined window. In addition, a biasing 
potential was included to yield a more uniform probability distribution of 0/ in each 
window and, thereby, improve the accuracy of the calculation. The remaining 10 
residues of poly-L-Ieucine were restrained to the CXR conformational region using soft 
harmonic potentials. The lengths of the molecular dynamics trajectories in the 
different windows varied between 1.4 and 3.9 ns. The total lengths of the simulations 
using the Cornell et al. and the C96 models were 9.3 and 9.7 ns, respectively. For each 
window, the probability distribution of 0/ was accumulated/computed. The complete 
free energy profiles (or potentials of mean force) were obtained by matching the four 
individual curves in the overlapping regions, using the weighted histogram analysis 
method (WHAM) [45]. 

As seen in Fig. 1, the difference in stability between the folded (CXR) and the 
extended (13) states depends on the force field used. Whereas the Cornell et al. potential 
energy function favors CXR by 3.5 kcal/mol, the preference is reduced to only 1.2 
kcal/mol with the C96 model. Thus, compared to the Cornell et aI., the C96 stabilizes 
the f3-conformation by 2.3 kcal/mol. This is close to the stabilization by 2.7 kcal/mol 
obtained for alanyl dipeptide in the gas phase (Table 1). In addition, the C96 
model yields a free energy barrier 1.70 kcal/mol lower than the Cornell et al. force 
field. In the transition state approximation, this corresponds to an almost 20-fold 
increase in the average time of unfolding. This, in turn, means that the denaturation of 
poly-L-Ieucine in water will progress much slower using the Cornell et al. model than 
the C96 model. 

An alternative approach to investigating the cx-helix propensity of poly-L-Ieucine as 
a function of the force field is to calculate the free energy of breaking the first hydrogen 
bond along the cx-helix. The distance R(O-N) between the first carbonyl oxygen and 
the amino group three residues away was used as the reaction coordinate. The free 

92 



Development of a molecular mechanic force field 

Poly-L in bulk water 
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Fig. 1. Calculated free energy, plotted as afunction ofljJ from a IjJ value characteristic ofa to that 
characteristic of a fJ-conformation. Solid line: Cornell et al.; dotted line: C96 force field. 

energy profile was generated from the simulations described previously by construct
ing the unbiased two-dimensional probability distribution P[R(O-H), \j!], and integ
rating the latter over \j! along the hydrogen bond distance. As can be seen from Fig. 2, 
the profiles generated using the two potential energy functions are markedly different. 
The Cornell et al. force field predicts the IX-helix to be 3.5 kcaljmollower in free energy 
than the extended form, whereas the same difference is only 1.2 kcaljmol with the C96 
model. Using the Cornell et al. model, the extended structure is separated from the 
IX-helical one by a very low free energy barrier, indicating that transitions from the 
extended structure to the IX-helix should be very rapid. In contrast, the C96 model 
yields a barrier from the extended state that is approximately 1 kcaljmol higher. In 
addition, the free energy profile for this model exhibits a small minimum around 4.3 A, 
absent in the Cornell et al. model, suggesting that a 31o-helix might be an intermediate 
in coil-to-helix transitions. 

A similar study on capped oligopeptides of various lengths, built from L-alanine, 
has been recently performed by Young and Brooks [46] using the CHARMM23 force 
field. The reported profiles along both \j! and R(O ... H) are similar to those obtained 
here using the C96 model. Specifically, both models yield a similar relative stability of 
the IX-helical conformation compared to the extended (P) form, and a 31O-helix as an 
intermediate in the unfolding. The main difference is that the free energy barrier 
process separating the IXR and the p-states is much smaller for poly-L-alanine than for 
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Poly-L in bulk water 

7 .-----r-----r-----.-----.-----.-----.---~._----~ 

o 
II 

U 
it 
<" 
<l 

6 

5 

4 

3 

2 
............ 

''''-''''' I 

""""'------, 

2 345 6 7 

R(C=O ... H-N) (A) 

, 

, 

, , , , 

8 

, 
, 

, , 
, , 

, , , , , , , , , , , 

9 

Fig. 2. Calculated free energy. plotted as a function of the hydrogen bond distance for the 
N-terminal hydrogen bond in the rx-helix. Solid line: Cornell et al.; dotted line: C96 force field. 

poly-L-Ieucine. In particular, it is predicted that the first residue in the undecamer of 
poly-L-Ieucine unfolds 80 times slower than in the decamer of poly-L-alanine. This is 
not surprising, considering that the closely packed side chains of poly-L-Ieucine 
prevent the surrounding water from disrupting the intramolecular hydrogen bonds 
along the backbone. 

In summary, the differences in energies between the r:J.. and ~ energies found by 
Cornell et al. and C96 for the isolated peptides persist in aqueous solution. It is not 
clear whether simple modifications of the torsional potentials such as employed in 
C96 are the most appropriate way of bringing the Cornell et al. potentials in 
agreement with the results of Beachy et al. Furthermore, there are no experimental 
data to assess which force field gives results closer to reality. Thus, further experi
mental and theoretical studies on these systems are in order. 
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Introduction 

In molecular dynamics (MD) simulations, the Newtonian equations of motion are 
solved numerically, and a space/time trajectory of the molecular system is obtained 
[1,2]. Typically, explicit integration algorithms are used: new positions and velocities 
for all atoms are computed in closed form through simple relations involving posi
tions and velocities at previous steps. Standard explicit schemes are simple to formu
late and fast to propagate, but they impose a severe restriction on the integration 
timestep size: .::\t must resolve the most rapid vibrational mode [3]. This generally 
limits .::\t to the femtosecond (10- 15 s) range and the trajectory length to the 
nanosecond (10- 9 s) range. This feasible simulation range is still very short relative to 
motions of significant biological interest. 

Implicit integration algorithms [4] are widely used to increase the timestep for 
multiple-timescale problems where the rapid components of the motion limit numeri
cal stability. However, implicit integrators impart two difficulties. First, the formula
tion is more complex, and enhanced stability is achieved at the expense of the iterative 
solution of a large system of nonlinear equations at each timestep. This makes the 
overall method computationally expensive [5]. Second, implicit integrators can damp 
the rapidly varying part of the solution; this is only suitable for problems where this 
component is rapidly decaying, with a negligible influence on the solution as time 
increases, which is not the case for biomolecules (at atomic resolution). Even in 
implicit symplectic methods, numerical damping can be realized due to a lower kinetic 
energy at large timesteps [6]. Both aspects (complexity and damping) introduce 
problems for the physical and computational effectiveness of implicit schemes for 
biomolecules [7-9]. The resulting trajectories at large timesteps must be carefully 
assessed by comparison with small-timestep trajectories, experiment, or enhanced
sampling simulations. 

Clearly, there are two separate goals for MD simulations at large timesteps. First, if 
computational time were fixed per step, then certainly a larger timestep would allow 
the generation of trajectories spanning longer for the same computational effort. In 
reality, the additional cost associated with a larger integration step can still lead to an 
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overall competitive method if the timestep is sufficiently large. The details are method
dependent. Second, larger-timestep methods can also be useful for the enhanced 
sampling of configuration space. Standard explicit schemes are generally restricted, 
even within the nanosecond range, to a relatively small region of the thermally 
accessible conformation space. Thus, larger-timestep methods, which can be viewed as 
cruder walks in conformation space, may reveal a larger range of molecular conforma
tions and, possibly, paths of transitions among them. Of course, larger-timestep 
methods do not automatically lead to enhanced sampling. In practice, they might 
enhance configurational sampling at the expense of full dynamical detail. Therefore, 
the method used should be tailored to the target problem and assessed accordingly. 

To evaluate current progress in this area, it is worthwhile to trace the history ofMD 
simulations. Since the pioneering work of Rahman [10], MD has become an impor
tant tool in many areas of biophysics and biochemistry. In the 1970s, the dynamics of 
molecular liquids was treated by modeling molecules as rigid rotors in generalized 
coordinates [11-14]. The Cartesian coordinate representation for all degrees of 
freedom [15] soon followed with increasing interest in larger molecular systems. In 
the Cartesian representation, the number of degrees of freedom is increased, but the 
equations of motion become simpler, allowing the simulation of larger systems. 
Another advantage was not fully understood until later: In Cartesian coordinates, the 
Hamiltonian of the system is separable - the kinetic energy depends only on the 
momenta and the potential energy depends only on the coordinates. This separability 
makes possible the use of the second-order explicit Verlet algorithm [16]. The 
favorable energy preservation of Verlet has long been known and was more recently 
explained by its symplecticness [17]. (For a comprehensive discussion of symplectic 
integrators, see Ref. i8.) In the absence of direct experimental data for comparison, the 
Verlet family of methods has become the 'gold standard' for MD simulations. 

With the advent of supercomputers, dynamic simulations of biological macro
molecules became possible. In the pioneering work of McCammon, Gelin and 
Karplus [19], the small-scale motions of the protein BPTI (bovine pancreatic 
trypsin inhibitor, 58 residues) were followed in the Cartesian coordinates of the 
heavy atoms ('" 500). The hydrogen atoms were excluded, but their etrect was 
incorporated implicitly via effective potentials and adjustments in the masses of the 
heavy atoms. 

Researchers quickly realized that the total feasible length of MD simulations was 
severely limited by the small time step required to resolve the bond vibrations. This led 
to the SHAKE algorithm [15] and the family of multiple-time step (MTS) methods 
[20,21], applied to biomolecules in the pioneering work of Grubmuller et al. [22]. 

By constraining the bond lengths and effectively removing the most rapidly oscilla
ting degrees of freedom, SHAKE enables timesteps two times larger compared to 
unconstrained methods, at a relatively small additional cost per step. MTS methods 
exploit the idea that the slowly varying forces can be evaluated less often than the 
faster components. The contribution of the slower forces to the motion can be 
incorporated by a Taylor expansion of the force [20,21], interpolation [23], or 
extrapolation [24] techniques. 
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System sizes of modeled biomolecules have increased steadily with the progress in 
computer hardware and the advent of parallel machines. Significantly, the total 
simulation time has increased far less dramatically [3,25]. Timescales of microseconds 
and milliseconds are still out of reach for macromolecules, and so the search for novel 
methodologies of simulating the dynamics of biomolecules continues. 

In this chapter, we review current approaches for large-time step MD and describe 
the progress in our normal-mode-based technique, LIN (for Langevin/Implicit 
integrationjNormal modes), and a related method termed LN (LIN without the 
implicit-integration component). The separating framework of LIN solves the Lan
gevin equations of motion in two steps: linearization and correction. The linearized 
equations of motion are solved numerically by an iterative technique, the cost of 
which is dominated by sparse-Hessian/vector products; the resulting 'harmonic' 
solution is then corrected by an implicit integration step, which requires minimization 
of a nonlinear function. LN includes LIN's linearization, but not correction, step and 
emerges as more competitive in terms of CPU time. We show here through applica
tions to the model systems of alanine dipeptide and BPTI that LIN and LN become 
competitive methods in comparison with traditional Verlet-like algorithms, giving 
similar results and a computational gain, even for small systems (e.g., a dipeptide of 22 
atoms). 

In the next section, we briefly summarize, for a perspective, existing approaches for 
increasing the timestep. A description of the basic LIN framework follows, with recent 
algorithmic advances to improve energetic fluctuations and reduce the computational 
time detailed. Computational efficiency is achieved by sparse-matrix techniques, 
adaptive timestep selection, and fast minimization. Simulation results for alanine 
dipeptide and BPTI are then presented, showing good agreement with explicit-scheme 
simulations at 0.5 fs timesteps with respect to energetic and geometric behavior 
(angular distributions, rms deviations, etc.). The range of validity of the harmonic 
approximation is also discussed, and the performance of LN is presented. For BPTI, 
we demonstrate a speedup factor of 1.4 for LIN at.::\t = 15 fs, and a factor of 4.38 for 
LN at .::\t = 5 fs, in comparison with explicit-Langevin integration at .::\t = 0.5 fs. 
Already for the dipeptide, LIN at .::\t = 30 fs gives a speedup of 1.3, and LN at 
.::\t = 5 fs gives a factor of 2.1. These speedups for small systems contrast typical results 
of MTS methods, which only become more competitive as the relative number of 
long-range (soft) forces increases. LN, in particular, is simple to implement in general 
packages and should yield greater speedup for larger systems. This unexpected 
windfall in computational performance illustrates the value of developing novel 
approaches (e.g., based on normal modes) that might initially appear to be not 
practical for macromolecules. We conclude with a brief summary and discussion of 
the future applications of LIN and LN. 

Approaches for increasing the timestep 

Methods for increasing the timestep in MD can be divided into two general types: 
(i) constrained and reduced-variable formulations, and (ii) separating frameworks 
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(for the system, potential, etc.). In the first category, various SHAKE-like methods are 
included, as well as techniques for MD in torsion space. In the second category, we 
consider MTS methods and reference-system methods for splitting the equations of 
motion, as well as novel approaches for modeling biomolecules. 

Constrained and reduced-variable formulations 

In the various SHAKE-like methods [15,26-29], the equations of motion in 
Cartesian space are augmented by algebraic constraints via the formalism of 
Lagrange multipliers. In this way, the fastest degrees of freedom are frozen at their 
equilibrium values. Since the Hamiltonian remains separable, symplectic integrators 
which are explicit in the coordinates but implicit in the constraints can be used [30]. 
Recent advances in the mathematical treatment of the nonlinear systems arising in 
SHAKE make the method quite efficient [31]. 

The related reduced-variable formulations attempt to eliminate the fast degrees of 
freedom by modeling the system in a generalized coordinate system [32-34]. In 
torsion-angle dynamics [35,36], the polypeptide chain is treated as a chain of rigid 
bodies using a recursive rigid-body formulation [37]. Unfortunately, the reduced
variable formulations used in this class of methods destroy the separability of the 
Hamiltonian. Symplectic integrators like Verlet are implicit when applied to these 
models [18]. Therefore, in general, explicit non symplectic methods are used to 
propagate the dynamics in these approaches. This often leads to a drift in energy, 
especially at large timesteps [18]. In addition, due to constrained bond lengths and 
angles, the effective potential in torsion-angle dynamics is different from the original. 
For all these reasons, internal-variable dynamics is best suited for configurational 
searches (e.g., for structure refinement) at high temperatures where the interconfigura
tional barriers are effectively lowered. Recent results reinforce this [35,36]. 

Separating frameworks 

MTS approaches for updating the slow and fast forces [20,22,38] form the 
first prototype of separating frameworks. These methods certainly provide speedup 
for systems with a clear division of timescales. For hydrocarbon systems such 
as fullerenes, the speedup is impressive (e.g., factors of 20-40) [39]. The speedup 
factor for biomolecules (e.g., 4) [40,41], however, is limited because such a 
clear division of timescales is lacking and the intramolecular coupling of modes is 
strong. 

In reference-system methods, a subset of the forces or a suitable approximation to 
the full force is selected for which the solution is more easily obtainable, either 
analytically or numerically. Examples in this category are NAPA [42] and LIN 
[43,44]. These methods assume that the correction to the motion - due to the 
complementary forces - can be obtained with a much larger timestep than that 
associated with the reference system. A splitting ofthe forces into linear and nonlinear 
parts is the premise of LIN [43,44], described in detail below. 
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Table 1 Assessment of some MD algorithms: Constrained dynamics (SHAKE and RAITLE), reduced
variable molecular dynamics (RVMD), multiple-timestep methods (MrS), LIN, and MOLDYN 

Method Advantages Disadvantages Typical 
overall 
speedup 

SHAKE" A doubling of feasible timestep Angles cannot be constrained '" 2 
RATTLEb (1 --+ 2 fs) is possible when bonds without affecting dynamics or 

RVMDC 

MTS· 

are constrained convergence rate 

RVMD is useful for enhanced 
sampling, structure refinement, 
or global optimization 

Speedup can be achieved 

Vibrational spectrum can be 
more accurate in the high
frequency region in comparison 
to standard MD schemes 

Overall motion is affected due 
to altered potential, especially 
increased barriers; only in
creased temperature or modifi
cation of potential parameters 
can counteract this effect 

More frequent evaluation of the 
hard forces than in standard 
MD might be necessary (e.g., 
0.25 fs) 

Significant speedup is achieved 
as the relative number of soft 
forces increases 

4-5 
[40, 46r, 
2--4 for 
BPTI [41] 

LIN and 
LNg 

Speedup can be achieved, mod- Langevin approach is necessary 1.4 (LIN) 
est for LIN, more substantial for for stability (energy drift without 4.4 (LN) 
LN a heat bath) for BPTIh 

These two general approaches Implicit step in LIN (but not 
are effective for systems without LN) is costly, due to minimiz-
clear separation of timescales ation 

Very good agreement with small
timestep methods for LIN up to 
15 fs and LN up to 5 fs has been 
demonstrated 

MOLDYNi Large overall speedup might be Flexible substructure descrip- NEd 
obtained tion is limited to propagation of 

a linearized, constrained system 

Assignment of substructures is 
system-dependent 

a Reference 15. 
b Reference 28. 

respect to explicit schemes at 0.5 fs time
steps. 

C References 33-36. 
d Not yet established; see text. 
• References 22,40 and 41. 
f Speedup for MTS, LIN, and LN is given with 

g Reference 43 and this paper. 
h See this paper; greater speedups are ex

pected for larger systems. 
i Reference 45. 
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The recent MOLDYN sub structuring approach of Turner et al. [45] applies 
multibody dynamics to molecular systems by considering a collection of rigid and 
flexible bodies. The motion of the atoms within these bodies is propagated via their 
normal-mode components, of which only the lowest frequency modes are included. 
The dynamics between bodies is modeled rigorously. Large overall computational 
gains might be possible because the number of variables is dramatically reduced (by 
modeling the system as a collection of large flexible bodies), and larger timesteps can 
be used for the flexible substructures (since the fast oscillations are absent). However, 
like all the novel methods above, the resulting trajectories must be carefully assessed 
through a comparison with all-atom, small-time step trajectories, or experiment. It is 
expected that the selection of substructures and associated timesteps will influence the 
resulting motions significantly. 

Table 1 summarizes the advantages and disadvantages of the above methods, 
together with effective speedup, as compared to all-atom explicit simulation. It 
appears that the well-known SHAKE and MTS methods certainly provide speedup at 
present, but separating frameworks like LIN and LN are emerging as competitive 
methods as well, with LN giving speedup already for small systems and both methods 
having the additional potential for enhanced sampling. The speedup factor of 2 for 
constrained dynamics usually refers to the timestep increase from 1 to 2 fs. Note that 
the performance of MTS schemes depends on the subdivision of forces into classes 
and the associated timestep combination used in each implementation (e.g., 0.25 [46] 
or 0.5 fs [41] for the rapid components). The speedup factors for LIN and LN are 
compared with 0.5 fs explicit simulations, following the same comparisons used in 
MTS methods [40,41]. For LN the factor of 4.4 applies to BPTI (904 atoms), and 
greater speedups are expected for larger systems. 

It is also interesting to note that the introduction of fast multi pole methods for 
computing the electrostatic energy increases the overall speedup in relation to 
a direct electrostatic treatment with no cutoffs, but decreases the relative speedup 
of larger-timestep methods. Although this will only be significant for very large 
systems, the trend can be inferred from the recent data of Zhou and Berne [46] 
for a 9513-atom protein: a speedup factor of 4.5 for RESPA alone compared to 
about 4 for the MTS method when fast multi pole methods were introduced into 
both Verlet and RESPA. Such behavior might be relevant to other methods 
as well. 

The LIN algorithm 

Our algorithm LIN consists of linearization and correction steps, and thus com
bines, in theory, normal-mode (NM) techniques with implicit integration [43,44]. Let 
us write the collective position vector of the system as X(t) = Xh(t) + Z(t). The first 
part of LIN solves the linearized Langevin equation for the 'harmonic' component of 
the motion, Xh(t). The second part relies on implicit integration to compute the 
residual component, Z(t), with a large timestep. 
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To describe the process formally, we start from the continuous form of the Langevin 
equation (in its simplest form): 

MV(t) = - VE(X(t» - yMV(t) + R(t) 

X(t) = V(t) 
(1) 

The overdots denote differentiation with respect to time, V is the vector of collective 
velocities, M is the diagonal mass matrix, VE(X(t» denotes the gradient vector of the 
potential energy E, and y is the collision parameter. The random-force vector, R, is 
a stationary, Gaussian process with statistical properties (mean and covariance 
matrix) given by 

(R(t» = 0, (R(t)R(t')T) = 2ykB TM3(t - t') (2) 

where kB is Boltzmann's constant and 3 is the usual Dirac symbol. 
With a linear approximation to VE(X(t» at some reference position X., the system 

of equations for the 'harmonic' components Xh and V h is given by 

MVh = - VE(Xr) - Hh(Xh - Xr ) - yMVh + R 
(3) 

Xh = Vh 

Here Hh is the Hessian matrix of E at X., but below we discuss an approximation 
to Hh, resulting from cutoffs, that is cheaper to use. System (3) can be solved by 
standard NM techniques [47-49]. This involves the determination of an orthogonal 
transformation matrix T that diagonalizes the mass-weighted Hessian matrix 
H' = M- 1/2HM- 1/2, namely 

D = TH'T- 1 (4) 

Eigenvalues of the diagonal matrix D will be denoted as A.i. With the transformations 

Q = TM1/2(X - Xr ) and F = TM- 1/2R (5) 

applied to the NM-displacement coordinates Q and random force F, system (3) is 
reduced to the set of decoupled, scalar differential equations 

Vq = -DQ-yVq+F 

Q = Vq 
(6) 

Here, the force F is a linear combination of the components of R; it also has 
a Gaussian distribution and autocorrelation matrix that satisfies the same properties 
of R(t) as shown in Eq. 2, with I (the n x n unit matrix) replacing M [43]. The initial 
conditions coincide with those for the original equations: Xh(O) = xn and Vh(O) = Vn, 
where the superscript n refers to the difference-equation approximations to solutions 
at time n.1t. The reference point, X., may be chosen either as the configuration of the 
last step, Xn , or a minimum of E near xn (we use the former). Appropriate treatments, 
as discussed in Ref. 44, are essential for the random force at large timesteps 
(3(t - t') --+ 3n ml.1t) to maintain thermal equilibrium. Thus, the above equations can 
be solved analytically for all the Qi and associated velocities V qi [43]. 
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Once Xh(t) is obtained as a solution to system (3), the residual motion component, 
Z(t), can be determined by solving the following set of equations [43]: 

MW(t) = - VE(Xh + Z(t)) - yMW(t) + VE(Xr ) + Hh(Xh - Xr ) 

Z(t) = W(t) 
(7) 

Here W denotes the time derivative of Z, and the initial conditions for system (7) are 
Z(O) = 0 and W(O) = O. 

The use of the implicit-Euler scheme to discretize system (7), for example in Refs. 43 
and 44, entails solution of a system of nonlinear equations, namely Vell(Z) = 0, at each 
timestep. Following Ref. 50, this solution can be found by minimization of the 
'dynamics' function ell. Reformulating ell in terms of X(t) rather than Z(t), we obtain 

ell(X) = 1(1 + y~t)(X - X:WM(X - xg) + (~t)2E(X) 
where 

xn = Xn+ 1 + (~tf M- 1[VE(X) + H (Xn+ 1 - X)] 
o h 1 + y~t r h h r 

(8) 

(9) 

Assuming that the solution Xh of the linearized system at step n + 1 is a good 
approximation to X, this minimization proceeds rapidly since Xi: + 1 provides a good 
starting point. Furthermore, a truncated-Newton method that exploits Hessian 
sparsity can accelerate convergence significantly and incorporate second-derivative 
information [51-53]. Once xn+l is found, yn+l can be obtained by setting 

xn+l_xn+l 
yn+l = yn+l + h 

h ~t 
(10) 

The solution vectors {xn + 1, yn + I} provide the initial conditions for the harmonic 
phase of LIN at the next ~t interval. 

Applications of LIN to model systems, namely butane [43] and the nucleic-acid 
component deoxycytidine [44], demonstrated stability at large time steps, with activa
tion of the high-frequency modes. The latter work also developed an appropriate 
treatment for the Langevin random force at large timesteps: the positional and 
velocity distributions were derived analytically for the decoupled oscillators on the 
basis of the corresponding Fokker-Planck equation [44]. However, two limitations of 
LIN emerged in the above studies. First, energetic fluctuations increased in LIN with 
the timestep, and thus LIN at large time steps resembles more of a sampling tool than 
continuous dynamics. Second, computational costs are large due to the analytic 
normal-mode component. The precise computational cost depends on the approxi
mation used for the Hessian in the linearized equations of motion, but certainly the 
0(n3) cost for a dense n x n system is prohibitive for macromolecules. 

The work described in this contribution addresses both these issues and shows that 
competitiveness of LIN can be achieved at moderate time steps and also good 
agreement with small-timestep dynamics. The focus on accuracy and competitiveness 
also leads to our new variant LN, which is far cheaper and stable at moderate timesteps. 
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Recent LIN progress 

To accelerate LIN computations, we first developed a numerical approach for 
solving the linearized equations of motion in lieu of the analytic normal-mode 
procedure. This makes the first part of LIN quite cheap and the method with no' 
correction step, LN, very competitive (see below), especially with the incorporation of 
efficient sparse-Hessian/vector products. To stabilize energetic fluctuations, we also 
replaced the implicit-Euler integrator in the second part of LIN by the symplectic 
implicit-midpoint (1M) scheme [54]. This substitution was also found to reduce the 
work in the second part of LIN (minimization). To further optimize performance, we 
devised an adaptive-timestep procedure to allow large timesteps when possible and 
force small timesteps when necessary. These components are now discussed in turn. 

Numerical integration of the linearized equations 

System (3) could be solved numerically, with timesteps L\'t«L\t, rather than analyti
cally as previously proposed [44]. The 'inner' timestep, L\'t, required for this numerical 
integration is the same as for traditional MD (e.g., 0.5 or 1 fs), but each step is cheaper 
than in standard MD because updates of the energy gradient are not required at every 
step. Mter one Hh is evaluated (or approximated) for each outer LIN step, the cost of an 
inner integration step is dominated by matrix/vector products (see below). In addition, 
this numerical solution of the linearized equations eliminates the problem associated 
with the large-timestep discretization of the random forces [44] since the random force 
is updated every L\'t substep. With this new treatment of the linearized equations, LIN 
becomes the first multiple-timestep method to utilize implicit integration methods. 

The stability of the linearized equations is assured if all vibrational modes have 
positive eigenvalues Aj (corresponding to solutions exp( - iAI/2t) where i = .j"=1). 
For A. < 0, solutions diverge over large time intervals. Negative eigenvalues are 
generally present, but for reasonable choices of time steps L\t and L\'t, these instabilities 
appear to be mild and require no special treatment. Still, it is possible to determine, or 
approximate, the negative eigenvalues and the corresponding eigenvectors (e.g., by 
Lanczos-based techniques), project out these imaginary frequencies, and then solve 
Eq. 3 by numerical integration. In the Appendix we outline this projection method, 
though we did not have to resort to it. 

For the explicit integration process above, we use the second-order partitioned 
Runge-Kutta method ('Lobatto IlIa,b') [55], which reduces to the velocity Yerlet 
method when y = O. This yields the following iteration process for {Xi: + 1 , Yi: + 1} from 
initial conditions Xh(O) = xn, Yh(O) = yn: 

Yh+ 1/2 = Yh + ~'tM-l[ - VE(Xr ) - Hh(Xh - Xr ) - yMYh+ 1/2 + R] 

Xh+ 1 = Xh + L\'tYh+ 1/2 (11) 

Yh+ 1 = Yh+ 1/2 + ~'t M-1[ _ VE(Xr ) - Hh(Xh+1 - Xr ) - yMYh+1/2 + R] 
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The first equation above is implicit for vL+ 1/2, but the linear dependency allows 
solution for vL+ 1/2 in closed form. Note also the Hessian/vector products in the first 
and third equations. For future reference, we divide the first part of LIN (linearization) 
into Part la: Hh evaluation; and Part Ib: integration. 

Implicit-midpoint integration 

We now apply the second-order symplectic midpoint scheme [54] to the 
second part of LIN. Following algebraic manipulations similar to those used in 
Ref. 43, this implicit discretization reduces to solution of X by minimizing <I> in 
terms of the new variable Y = (X + xn)/2. Now, instead of Eq. 8, the function <I> 
takes the form: 

<I>(Y) = 2(1 + y~t}y - Y:WM(Y - yg) + (At)2E(Y) (12) 

where 

Xn+1 + xn (At)2 [ (xn+1 + xn )] 
yg = h 2 + 4(1 + yAt/2)M- 1 VE(Xr) + Hh h 2 - Xr (13) 

The initial approximate minimizer, Yo, of <I> can be set to Xn, Xi: + 1, or (Xi: + 1 + xn)/2 
(we use the last). The new coordinate and velocity vectors for time step n + 1 are then 
obtained from the relations 

xn+1 = 2Y - xn, Vn+1 = Vi:+ 1 + 2(xn+l - Xi:+ 1)/At (14) 

It is important to note that even with the symplectic integrator 1M, LIN is not time
reversible due to the presence of the linearized forces which are held constant on 
intervals along the trajectory. Therefore, the forces in the Langevin formulation 
(y > 0) are a stabilizing influence, especially at large timesteps; without these stochas
tic terms, the total energy will drift. The use of the diffusive regime (large y) is one way 
to permit very large timesteps [56], but this is only appropriate to systems where 
inertial forces are relatively small. 

An adaptive-timestep scheme 

To further monitor energetic fluctuations, we have developed an adaptive time step
selection subroutine heuristically. Gibson and Scheraga [33,34] used a more rigorous 
procedure in their torsion-angle dynamics method. Our basic idea is to resolve more 
accurately (with smaller timesteps than the input value) regions where significant 
fluctuations in energy and geometry are realized, and resolve more crudely 'smoother' 
regions of conformation space, where the harmonic approximation is better. Our 
experience suggests that large changes in the bond energy signal deterioration of the 
harmonic approximation [57]. Therefore, we set a certain threshold for the bond 
energy value for the simulated system (e.g., the mean plus five standard deviations of 
the bond fluctuation as obtained from a short explicit trajectory) and reduce the 
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timestep (by one-half) if this threshold is exceeded. For subsequent steps, the original 
timestep is used if possible. 

Economical formulation of the explicit sub integration 

The cost of the explicit subintegration phase of LIN is dominated by Hessian/vector 
products. If Hb in system (3) is sparse, as in the case of cutoffs [53], efficient O(n) 
multiplications can be devised to treat the nonzeros only. In fact, it is reasonable in 
our context to employ small cutoffs for the Hessian - to approximate the harmonic 
motion - but to include all interactions in the correction step (via second-derivative 
information in the TNPACK minimization of ct> [53]). 

We first formulated a sparse Hb by employing a 12 A cutoff and then explored 
smaller cutoff values up to 4.5 A. This small value is typically sufficient to resohe all 
1-4 bonded interactions (torsions). We emphasize that full interactions are induded in 
the correction step of LIN and, certainly, the gradient reflects all interactions. As 
hoped, the results. for BPTI (Table 2) show no deterioration in average energies as the 
cutoff radius is decreased. For the dipeptide, the trends are even better for LIN at 
at = 30 fs. For illustration, we show in Fig. 1 the magnitudes of elements in the 
dense Hessian, Hdense (no cutoffs employed), and the diffe.rence between this matrix 
and the sparse Hb (4.5 A cutoff). This representative pair of Hessians was evaluated 
in the middle of a LIN trajectory for the dipeptide, at 1.5 ns. Significantly, the entries 
of the difference matrix (Hdense - HJ are 4 orders of magnitude smaller than the 
dominant entries of the dense Hessian. 

The resulting savings from using a sparse matrix in the matrix/vector products are 
impressive. Namely, a Hessian cutoff of 4.5 A hastens the matrix/vector product by 

Table 2 Comparison of the LIN sparse-Hessian treatment (with the range in A indicated in the 
'LIN'subscript) in the linearization part with the dense-Hessian treatment ('LINde •• e ') for BPTI 

LIN12 LINa LIN4 .5 LINdense 

E 1653.52 1654.77 1655.22 1654.23 
Ek 812.34 811.34 811.51 812.49 
Ep 841.18 843.44 843.71 841.73 
T 301.47 301.09 301.16 301.52 
Ebond 339.26 339.82 339.95 339.39 
Eangle 454.01 455.16 455.55 454.11 
EU_B 60.79 60.91 60.95 60.82 
Eto, 353.62 353.61 353.52 353.76 
Eimp, 30.39 30.49 30.56 30.41 
EvdW -107.59 - 107.13 -107.17 -107.56 
Eelee -1954.27 - 1954.39 - 1954.61 - 1954.15 

The energy symbols in the first column are as follows. Total energy: E; kinetic: Ek; potential 
energy with respect to a local minimum ( - 1664.96 kcal/mol) near the initial configuration: Ep; 
bond: ~ond; angle bending: Eangle; Urey-Bradley: EU_B; torsional: Eto,; improper torsion: Eimp,; van 
der Waals: EvdW; and electrostatic: Eelee; all in kcal/mol. The temperature T is given in kelvin. 
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Fig. 1. Mesh plots of dense Hessian (top) and difference between the dense and the sparse Hessian 
(formed with 4.5 i cutoff) (bottom) for the dipeptide model. These matrices were evaluated in the 
middle of the LIN trajectory, at 1.5 ns. Note the difference in scales between the two views. The 
maximum entry of the difference matrix is approximately 0.62, 4 orders of magnitude smaller than 
the dominant entries of the dense Hessian. 

a factor of 19 compared to the dense Hessian for the BPTI system (2712 variables). It 
is of course necessary in this case to update the Hessian sparsity pattern periodically 
- say, every outer LIN timestep - but this updating might be done more efficiently by 
first computing inter-residue distances and then making atom-by-atom searches only 
within near residues. The actual cost of evaluating the Hessian is not very time
consuming since an efficient implementation can reuse many temporary variables 
calculated for the gradient (e.g., roots and powers). In fact, we found computation of 
the dense Hessian to be only a factor of 2.5 more expensive than a gradient evaluation 
for BPTI when the CHARMM 'slow' routines for gradient evaluations are used. In 
this estimate, the 'Hessian computation' actually refers to 'gradient plus Hessian 
computation'. With the 'fast' routines for gradient evaluation, the dense-Hessian (plus 
gradient) evaluation is 4.0 times more expensive than the gradient calculation alone. 
This factor is reduced to 2.3 and 2.0 for 12 and 8 A cutoffs, respectively. With a 4.5 A 
Hessian cutoff, the Hessian evaluation is about 1.9 times more expensive than the 'fast' 
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gradient. In the future, it might be possible to implement in CHARMM 'fast' routines 
for the Hessian as well, in order to reduce these factors further. 

For the value ofthe inner LIN time step, ~'t, we use 0.5 fs. The errors are reasonable 
in this range [41] (~'t is roughly 1/20th of the fastest period) and comparisons of LIN 
with explicit trajectories employ 0.5 fs timesteps also. Note that the value 1 fs can also 
be used in both cases. Then the cost of LIN's explicit subintegration (Part Ib), as well 
as that of the explicit trajectory, will be reduced by one-half, but the cost of the 
Hessian evaluation (Part Ia) and minimization (Part II) in LIN will stay about the 
same, making LIN less competitive. 

Comparisons and computational speedup of MTS methods are also typically 
reported at 0.5 fs [41,46]. The cost ofVerlet will decrease by one-half with double the 
timestep (1 fs) when compared to MTS methods, but the performance of the RESPA 
scheme will depend on the time step combination used for different classes of inter
actions. See Refs. 41 and 46 for recent examples. 

Economical minimization 

Part II of LIN, the correction step, entails numerical optimization of the nonlinear 
dynamics function (Eq. 12) with the truncated-Newton package TN PACK [52,58]. 
For the LIN simulation of BPTI, we found that the minimization subproblem is most 
efficiently solved using TNPACK with the preconditioned conjugate gradient option 
and the finite-differencing option for calculation of the Hessian/vector products. This 
implementation by a simple backward-difference scheme entails one additional gradi
ent evaluation per conjugate gradient step [53,58], included in the counts given below. 
Our preconditioner is formulated from the second derivatives of the bond-length, 
bond-angle, dihedral-angle, improper torsion-angle and 1-4 nonbonded terms. The 
cost of forming and factoring this preconditioner matrix was insignificant compared 
to force computations due to the optimized sparse components of TN PACK, and this 
work certainly accelerates convergence. For BPTI, for example, approximately 11.5 
gradient calculations were required per 12 fs time step (8.5 of which were required on 
average for the finite-difference product). For the 15 fs time step, an average of 14.1 
gradient calculations were required per step. The counts given above were the result of 
more lenient minimization stopping criteria than the TNPACK default values for the 
final gradient norm and residual vectors [58], namely Ilgll < 10- 4 and Ilrll < to- 1. 

Simulation results and analysis 

With the improvements described above, the LIN algorithm was tested on two 
model systems: alanine dipeptide (N-acetyl alanyl N'-methyl amide, a blocked residue 
of alanine with 22 atoms) and BPTI (58 residues, 904 atoms). Calculations were 
performed with CHARMM version 24bl, modified to include our integration and 
minimization algorithms [53], with the all-atom representation and parameter set 22. 
We used the unit dielectric constant and included all nonbonded interactions in 
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the governing model. The bath temperature was set to T = 300 K, and the Langevin 
collision parameter was fixed at y = 50 ps - 1 [43]. For a fair comparison, the same 
starting position, velocity vector, and sequence of random numbers were used in the 
trajectories. The initial position vector for cI> minimization was chosen as 
Yo = (xn + Xh + 1 )/2. This choice generally leads to 4-8 minimization steps per 
substep for the dipeptide with time steps of dt = 30 fs, and 3-5 for BPTI with 
timesteps of dt = 15 fs. All simulations were performed in serial mode on a 150 MHz 
R4400 SGI Indig02 workstation. 

Alanine dipeptide 

We start by comparing LIN results at ~t = 30 fs with those obtained by the explicit 
Verlet-like Langevin integrator in CHARMM, BBK [59], at ~t = 0.5 fs. Data were 
collected over 3 ns, following 160 ps of equilibration, and trajectory snapshots were 
recorded every 120 fs. With the LIN timestep of 30 fs, only 6% of the steps are rejected 
(i.e., exceed the bond energy threshold of 15 kcaljmol). 

In Table 3, the averages and variances of the energy components (total, kinetic, 
and potential) and the time-averaged properties of some internal variables are given. 
The results obtained with both methods are very similar. This is especially good 
for Langevin simulations, where no exact trajectory exists and representatives are 

Table 3 Averages (mean) and fluctuations (variance) for alanine dipeptide from LIN (LIt = 30 js) 
and LN (LIt = 5 fs) versus explicit (LI t = 0.5 fs) LangeVin trajectories over 3 ns (see the footnote to 
Table 2); the Ep value is given with respect to the minimum of - 15.85 kcal/mol 

Explicit LIN LN 

Mean Variance Mean Variance Mean Variance 

Ea 37.9 4.8 39.6 5.4 37.8 4.8 
Ek 19.7 3.4 20.1 3.6 19.6 3.4 
Ep 18.3 3.3 19.5 3.8 18.2 3.3 

<pb -109.1 31.2 -108.7 30.6 -111.5 31.4 
\jt 119.0 47.1 118.7 47.0 123.2 47.1 

rC_Ne 1.340 0.Q28 1.340 0.Q28 1.339 0.028 
rN-C, 1.449 0.030 1.448 0.030 1.448 0.030 
rco-c 1.527 0.034 1.526 0.034 1.526 0.034 

8C-N-C, 123.3 3.3 123.1 3.3 123.2 3.3 

8N-co-C 110.6 4.2 110.6 4.2 110.5 4.2 
8Co-C-N 117.0 2.8 117.1 2.8 117.1 2.8 

a Energy in kcaljrnol. 
b Angles in degrees. 
e Bond lengths in A. 
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Fig. 2. Distributions from alanine dipeptide trajectories over 3 ns for one selected bond length and 
one bond angle, and the two dihedral angles, as obtained by LIN, At = 30 fs (solid line) and LN, 
At = 5 fs (dashed) versus explicit Langevin, At = 0.5 fs (dotted). 

sought [6]. The energetic fluctuations are slightly greater for LIN, due to increased 
energy fluctuations in the X-H bonds lwhere X is any non-hydrogen atom), but the 
global behavior is very similar. 

This good agreement can be seen from Fig. 2, which compares the ensemble
generated distributions for a representative bond length (rc .N), a representative bond 

a 
angle (9N-C -d, and the two dihedral angles (cp, \jI). We note a remarkable similarity 
between th~ LIN distributions and those of the explicit trajectory. The matching of 
cp and \jI distributions, in particular, indicates that the overall motion is essentially the 
same. For the main motion of interest here, dihedral angles, the VhLlances from 
both simulations are about 31 0 and 470 for cp and \jI, respectively (Table 3), quite 
satisfactory considering that the LIN timestep is 60 times larger and only about one
sixth the period of the dihedral-angle motion. These results suggest that at moderate 
timesteps we can obtain with LIN very similar trajectories to traditional MD with 
much smaller timesteps. The results of LN, also shown in Table 3 and Fig. 2, are 
discussed separately. 
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EPT! 

As initial coordinates for BPTI, we use those described in Ref. 31, with four internal 
water molecules. Due to a high rejection rate for dt = 30 fs (over 50% due to large 
bond-energy fluctuations), the time step was decreased to M = 15 fs, where only 3% of 
the steps were rejected over 12 ps. With this choice of timestep, minimization proceeds 
rapidly (4-5 steps). While for the dipeptide we successfully used dt = 30 fs, the more 
rugged potential-energy landscape for this larger, dense system appears to make the 
behavior more sensitive. That is, the harmonic approximation is poorer and its 
validity is more short-lived than for the dipeptide. Many more minima and saddle 
points exist for the larger system. Consequently, with too large a timestep, the 
correction step (minimization) can produce a distant minimum, leading to discontinu
ity of the smooth dynamics trajectory. The step control mechanism in our implemen
tation of LIN is thus critical for avoiding such undesired behavior in the context of 
continuous dynamics (though for sampling it may be desired). It is also interesting to 
note that smaller time steps for larger systems were found necessary in torsion-angle 
dynamics [33] and MTS methods [41]. 

Table 4 shows the various energy-component averages and variances obtained with 
BBK at 0.5 fs (the first two data columns) versus LIN at 15 fs (the central two 
columns). The overall energetic behavior of LIN is quite similar to the explicit 
trajectory, as reflected by the variance values and the small relative differences in 
energy. The difference in total energy is only 1 %, with the largest fluctuations 
exhibited by the bond energy (5%). 

To examine the geometric behavior, the root-mean-square (rms) fluctuations for 
various quantities are shown in Fig. 3: (a) total rms from the starting structure; 

Table 4 Comparison of averages and variances of various energy components and the temperature 
(see the footnote to Table 2) for BPT! simulations over 12 ps, LIN at Lit = 15 fs and LN (Lit = 5 fs) 
versus BBK with Lit = 0.5 fs 

Explicit LIN LN 

Mean Variance Mean Variance Mean Variance 

E 1632.2 30.4 1653.5 33.6 1623.7 30.8 
Ek 808.3 21.8 812.3 22.1 805.7 21.9 
Ep 824.0 21.9 841.2 24.7 818.0 22.1 
T 300.0 8.1 301.5 8.2 299.0 8.1 
Ebond 322.0 14.5 339.3 15.8 327.1 14.7 
E.ngle 454.3 15.4 454.0 15.7 449.3 15.3 
EU_B 60.5 3.7 60.8 U 59_8 3.6 
Etor 354_3 8.3 353.6 8.4 350.8 8_3 
Eimpr 30.4 U 30.4 3.9 29.8 3.8 
EvdW -118.0 13.3 -107.6 13.7 -115.0 13.4 
Eelec -1944.5 15.2 -1954.3 15.7 -1948.9 15.0 
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Fig. 3. Root-mean-square (rms) fluctuations for the BPT! simulations over 12 ps, with the solid line 
corresponding to LIN, At = 15ft, the dashed line to LN, At = 5 ft, and the dotted line to the explicit 
trajectory, At = 0.5 ft: (a) total rms from the starting point, in l; (b) rms fluctuations of each 
Ca atom; (c) rms fluctuations (deg) of each ¢ angle along the backbone; (d) rms fluctuations (deg) 
of each '" angle along the backbone. 
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(b) rms of the 58 Co; atoms of BPTI; and (c, d) rms fluctuations of the <p and", angles 
along the protein backbone. The agreement again is very good, suggesting the same 
mobility and a similar global pathway. 

Validity of the harmonic approximation 

The limit on the timestep value in LIN, when accurate reproduction of small
timestep dynamics is the goal, stems from the limited validity of the harmonic 
approximation. That is, anharmonicity limits the interval over which the linearized 
equations of motion provide a reasonable approximation to the nonlinear model. 
This deviation from linearity is expected to be both system and configuration 
dependent. In practice, we observe larger bond-length energy fluctuations and 
a greater computational effort in the minimization component of LIN as the timestep 
is increased. That is, when Xh is a poor approximation to X, the residual, Z, is 'large' in 
our context. 

To assess the harmonic model, we plot in Fig. 4 the quantity cos Cl in time, where Cl is 
the angle defined between the two force vectors g(X) and g(Xr) + Hh(X - Xr)' To 
obtain these views, we chose five different 15 fs intervals along the BPTI trajectory 
(30fs intervals for the dipeptide), one of which (the dashed curve) was associated with 
a rejected step (due to high bond energies). We then computed the quantity cos Cl every 
0.5 fs, where X is the harmonic approximation in LIN, Xr is the reference point Xn, and 
Hh is the sparse-Hessian approximation used in LIN's first part (Eq. 11). Note the 
different scale in the time axes for the two systems. 

We see from these curves that in all the cases the harmonic approximation is very 
good up to 5 fs (Cl is very small), deteriorating in some cases after 15 fs. Thus, while at 
some configurational regions the harmonic approximation is quite good over the 
entire interval, at others very large deviations can be observed after 15 fs. This 
behavior justifies the use of an adaptive timestep and suggests the usefulness of this 
angular quantity for the analysis of trajectory behavior. 

The principal difference between the dipeptide and BPTI figures is the comparative 
smoothness of the latter. Data show that, for the dipeptide, the quantity Cl can be 
dominated by a single oscillation. This is not the case with the larger BPTI system. 
Therefore, a criterion based on cos Cl to assess the validity of the harmonic approxima
tion may be less useful for larger systems. 

The new variant LN 

To further analyze the validity range of the harmonic approximation, the degree of 
correction in the second part of LIN can be measured by evaluating the performance 
of a related method termed 'LN' (Langevin/Normal modes), which propagates the 
linearized Langevin Eqs. 2 and 3 with the discretization Eq. 11, as in the first part of 
LIN, but omits the correction phase (i.e., Z = 0). (An LN-type method was proposed 
in 1995 for molecular, not Langevin, dynamics [60].) In our implementation of LN, 
the adaptive-time step selection used in LIN is not employed. 
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Fig. 4. The cosine of the angle in conformation space between the linearized force vector and the 
systematic force vector evaluated at the same point. This quantity is used to assess the validity of 
linearizedforces along a trajectory in Part Ib of LIN. Five 30 fs trajectories of alanine dipeptide and 
five 15 fs trajectories of BPTI with various starting conditions are shown (see the text). The dashed 
lines correspond to rejected LIN steps. In all the cases, the directions of the linearized forces 
adequately approximate those of the systematic forces for at least 5 fs. 

We first ran several exploratory simulations for BPTI with LN and LIN for the 
harmonic-model assessment with our sparse Hh• We found that stable LN trajectories 
could be obtained only up to 10 fs timesteps. This certainly validates the need for 
the correction phase in LIN. At large timesteps, the correction step is crucial for 
producing a close trajectory to the explicit method, as illustrated in the following 
subsections. 

By examining the trends in the various energy components before (i.e., by LN) and 
after (LIN) the residual correction phase for At = 2, 5, and 10 fs (to be detailed in 
Ref. 57), we found that corrections are small for 2 and 5 fs, but much larger for 10 fs. In 
particular, the bond-length and bond-angle energy terms reveal the largest deviations, 
followed by the van der Waals terms. Thus, anharmonic effects are stronger for the 
high-frequency terms, and our timestep criterion based on the bond-energy fluctu
ations can be justified by this view. 
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This good agreement between the LIN and LN energies up to timesteps of 5 fs 
immediately suggested to us that LN may be a competitive method at moderate 
timesteps! Indeed, with the sparse matrix/vector products, LIN's first part becomes 
very inexpensive compared with the second part, minimization. 

To explore this intriguing possibility of using LN as a dynamics propagation 
scheme, we ran LN for the dipeptide and BPTI at At = 5 fs. The results are displayed 
and compared with those for LIN and BBK in Figs. 2 and 3 and Tables 3 and 4. The 
pattern used for LN is the dashed line. 

We see from these views that the LN results are in very good agreement with those 
from the explicit trajectory at 0.5 fs timesteps, as well as the LIN trajectories at 15 fs 
(BPTI) and 30 fs (dipeptide). In fact, LN energies at the time steps examined are, 
overall, in better agreement with those of BBK than LIN. Only in Fig. 3 some slight 
differences in behavior of the two residues can be seen in the rms plots (parts b and c). 
The residues near 39 and 46 are located on the protein exterior, and hence are 
probably more flexible. However, a difference of practical importance between LN 
and LIN is the much faster performance of LN. These timings are discussed next. 

Computational performance 

Table 5 shows the computational performance of LIN, LN, and BBK for the 
dipeptide and BPTI applications. Shorter simulations were used here than for the 
production runs. Computational speedup from our large-timestep simulations al
ready emerges for the dipeptide. LIN shows a factor of 1.3 speedup for the dipeptide 
when At = 30 fs, and 1.4 for BPTI when At = 15 fs in comparison to BBK. The table 
shows that LIN's Part Ib (integration) is inexpensive compared to Part II (5% of the 
total CPU time for BPTI). This explains why LN, which has no minimization 
component, is very competitive. Note, however, that in LN the Hessian must be 
updated every 5 fs in our implementation so that the total cost of LN depends on the 
performance of Parts Ib and Ia (H updating). Indeed, already for the relatively small 

Table 5 Computational performance/or Langevin dynamics. LIN and LN versus explicit integration 

Method Time Part Ia: Part Ib: Part II: Relative 
(min) Hb evaluation integration minimization time 

Dipeptide LIN, ~t = 15 fs 23.5 1.8 4.6 16.7 2.30 
(300 ps) LIN, M = 30 fs 16.4 1.1 4.9 10.2 1.61 

LN, ~t = 5 fs 10.2 4.9 4.9 0.0 1.00 
Exp., M = 0.5 fs 21.3 2.09 

BPTI LIN, ~t = 12 fs 54.3 6.2 2.6 45.2 3.19 
(1.5 ps) LIN, M = 15 fs 53.0 4.8 2.72 45.3 3.12 

LN, ~t = 5 fs 17.0 14.1 2.70 0.0 1.00 
Exp., ~t = 0.5 fs 74.4 4.38 

For LIN and LN, the total time is slightly more than the sum for parts la, Ib and II. 
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system BPTI, LN yields a speedup factor of 4.38 in comparison to BBK with 0.5 fs 
timesteps for covering the same total simulation length. This speedup factor will 
increase with system size because the cost for gradient evaluation - dominating 
performance of the explicit scheme - will increase in relation to the cost of sparse
Hessian/vector products, the dominating cost of LN. For LIN, the cost of Part II must 
also be taken into account and is expected to be very substantial as system size 
increases. 

Summary and Perspective 

Increasing the timestep in numerical discretizations of complex, multiscale systems 
is a very challenging mathematical problem with applications in many areas of science 
and engineering. There are currently several interesting approaches for MD applica
tions, both in the constrained-formulation and separating-framework categories. In 
each case, if the reproduction of detailed dynamics is required (i.e., agreement with 
experiment or with explicit simulations at small timesteps such as 0.5 and 1 fs), the 
maximum timestep is limited by the high-frequency motion and its coupling to the 
slower modes of the system. Unfortunately, this coupling is too strong in biomolecules 
to allow damping or poor resolution of the fast components [43,9,41], and some 
corrections are necessary for properly incorporating these contributions if larger 
timesteps are used [9]. 

In our LIN separating framework, a correction phase involving solution of a nonlin
ear function, closely related to the potential energy, follows a linearization phase, in 
which the linearized equations of motion are solved explicitly by a second-order 
symplectic method. The computational performance of LIN was enhanced by (i) using 
sparse-Hessian/vector products in the first part and (ii) using the efficient truncated
Newton minimization package TNPACK in the second part, with more lenient conver
gence criteria than the default values (used for structure refinement [53]). The use of 
a short-range Hh appears to be justified for resolving the harmonic motion component. 
Further exploration of this notion will be presented in Ref. 57. An adaptive-timestep 
routine was also incorporated to ensure that energetic fluctuations are controlled. 

We have used 0.5 fs timesteps for solution of the linearized equations of motion 
because of good numerical behavior [41], and have compared the LIN results with 
explicit simulations at that timestep. Speedup in MTS methods is also typically 
reported in comparison to 0.5 fs timesteps [41,46]. It is also reasonable to use 1 fs 
timesteps in all cases. Although fluctuations should be larger, physical behavior 
should be similar, but LIN's competitiveness in terms of CPU time would decrease 
since only the computational time of Part Ib would decrease by a factor of one-half. 

With the improvements outlined here, LIN becomes a competitive method. 
Speedup is modest on a single processor - a factor of 1.4 for BPTI - but this value is 
expected to increase with system size and, possibly, also with further improvements in 
our minimization scheme and adaptive-timestep control, and in the incorporation of 
a criterion for harmonic-model assessment. 
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Analysis of the results has also validated the LIN approach. For the dipeptide, LIN 
trajectories at 30 fs timesteps showed excellent agreement with explicit trajectories 
generated at At = 0.5 fs, in terms of both energy and geometry. For BPTI, LIN results 
with 15 fs timesteps gave very good agreement with respect to energetic and structural 
properties with the corresponding explicit simulations. We believe that 15 fs timesteps 
(limited by the range of validity of the harmonic approximation) with LIN are feasible 
for biomolecules in general. Up to this timestep regime, the global behavior of the LIN 
and explicit trajectories is essentially the same, with a good agreement of energy 
means, variances, and geometric fluctuations. 

Computational competitiveness is another important issue addressed in this work. 
Attention to this aspect led to a delightful surprise. Our related method termed LN, 
which has LIN's linearization but no correction phase, demonstrates, at At = 5 fs, 
very good agreement with explicit-scheme trajectories and offers a far more significant 
computational advantage. Namely, for BPTI, LN already offers a speedup factor of 
4.38 in comparison with At = 0.5 fs in BBK (Tables 1 and 5). Moreover, LN's 
competitiveness will also increase with size. 

With an LN timestep of 5 fs and an inner timestep of 0.5 fs, 10 sparse-Hessian/ 
vector products and one Hessian evaluation are required to cover each 5 fs interval. 
This work must be compared to 10 gradient evaluations for the explicit scheme. 
If the inner timestep is 1 fs in both cases, the corresponding ratio is 5 matrix/ 
vector products and one Hessian (plus gradient) evaluation in LN versus 5 gradient 
evaluations in the explicit integrator. Thus, the speedup factor will depend on 
two ratios: the cost of a gradient evaluation versus the cost of the product of a 
sparse Hessian (resulting from a 4.5 A cutoff) and a vector, and the cost of a 
gradient evaluation versus the cost of evaluating the gradient plus the sparse 
Hessian. 

This unexpected windfall from LN illustrates the value of developing novel ap
proaches that might initially appear as not practical for macromolecules (e.g., based 
on the computational expense of normal-mode decomposition [43,44]). Further 
developments regarding the scaling issues of LN, its computational performance, and 
applications to larger systems will form the subjects of future work. In particular, 
speedup issues in comparison to 1 or 2 fs timesteps will be addressed, as well as 
performance in the context of fast electrostatics. Possibly, the timestep in LN might be 
slightly increased from 5 fs if a SHAKE-like method is incorporated to monitor the 
bond-energy fluctuations. Other interesting mathematical issues, such as further 
analysis of stability and resonance issues in molecular dynamics simulations, will also 
be reported in future communications [57,61]. 
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Appendix. Projection method 

We discuss a projection method for isolating the negative portion of the spectrum 
that emerged in our LIN studies. In general, this method can be used to treat any 
portion of the spectrum (i.e., the few slowest modes) to obtain a Hessian of desired 
eigenstructure. For the projection method, we rewrite the unitary transformations 
H' = TTDT by splitting T and D into two parts corresponding to the negative (first 
k entries) and nonnegative eigenvalues of H': 

D _ and D + are the k x k and (n - k) x (n - k) submatrices of D, and 

T _ and T + are the k x nand (n - k) x n submatrices of T. 

The mass-weighted Hessian, H' = M- 1/2HM- 1/ 2 , can then be expressed as 

I T T[D- 0 ] T T ) H = T DT = [T _ T +] [T _ T +] = T _D_ T _ + T +D+ T + (AI o D+ 

For simplicity, we now omit the prime superscripts of mass weighting. Our matrix 

(A2) 

has only nonnegative eigenvalues, and we can solve Eq. 3 with H+ replacing Hh by 
explicit integration at time steps d't = 0.5 or 1 fs, with the random force R updated at 
every iteration according to Eq. 2. 

It now remains to determine T _. One strategy for approximating the negative 
eigenvalues of a large symmetric matrix is based on a block-diagonal approximation 
for Hh. This form can be obtained by exploiting the molecular topology or using 
a partitioning scheme [62]. Alternatively, sparse molecular preconditioners, as used in 
our minimization [53], have a nearly band str.ucture and can be subjected to 
reordering to yield block-diagonal or banded forms [63,64]. Our experience in 
truncated-Newton minimization for molecular systems in CHARMM [53], reorder
ing schemes, and sparse modified factorizations [65] will be valuable here. Such 
sparse structures can be exploited to perform parallel decompositions for the blocks 
or to apply block-Lanczos or Givens decomposition techniques [66,67]. More gener
ally, preconditioned Lanczos techniques (e.g., Davidson-type) are attractive for large 
systems [68] since they are iterative and cheap per step, like related conjugate 
gradient methods [66]. Givens orthogonalization techniques are especially efficient 
for banded systems, as small rotation matrices are repeatedly applied to obtain 
a tridiagonal form. Roundoff problems in Lanczos techniques can be monitored: the 
appearance of spurious multiple copies of eigenvalues can be detected (e.g., program 
lanczos by Cullum and Willoughby, available from netlib) or avoided by partial 
reorthogonalization (program laso by Scott in netlib). Dan Sorensen's package, 
ARP ACK, a variant of the Arnoldi/Lanczos method based on an implicit restarting 
technique, has the special advantage of requiring only matrix/vector products and no 
dense similarity transformations. It finds k eigenvalues with user-specified properties 
in limited storage (of order 2kn). 
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Introduction 

Computer simulations of molecular systems provide invaluable insights for under
standing the structure-function relationships pertinent to the discovery of new 
molecules with desired properties, such as new pharmaceutical drugs. The use of 
molecular simulations and the increasing performance of modern computers makes it 
now possible to study the precise physicochemical nature of protein-ligand interac
tions, protein engineering, solvation phenomena, and to characterize the thermody
namical properties of complex systems with many thousands of atoms [1,2]. Even 
with the availability of high-performance computers, many problems of practical 
interest are so computationally challenging that new solution methods are required 
for formulating and solving the resulting mathematical models. This paper explores 
the capabilities of recursive dynamics methods for reducing the computational effort 
required for studying complex molecular systems. A numerical example is presented 
that demonstrates the application of the basic recursive algorithms. 

Molecular dynamics (MD) is one of the established simulation techniques in the 
prediction, analysis, and design of complex molecules [1,2]. These techniques typi
cally apply the Newtonian laws (F = mal to the motion of all of the atoms in the 
system, where the forces have been defined as a function of atom type, bond type, 
dihedral type, and interatomic distances. There are many software packages that 
implement these techniques very efficiently on computers ranging from workstations 
to large parallel supercomputers. However, these software tools typically analyze the 
atomic motions in terms of particle-based equations of motion. 

There are fundamental difficulties associated with handling large MD problems 
with particle-based methods, that cannot be overcome by attention to the details of 
hardware and software implementation. The first difficulty is due to the N 2 non
bonded interactions (assuming no cutoff criteria), where N is the number of atoms, 
that occur in the energy function because every atom can experience the forces of 
every other atom via long-range interaction effects. Even with the use of arbitrarily 
imposed cutoff distances, the evaluation of the nonbonded terms can take over 90% of 
the computer time involved in each energy function evaluation. 
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The second difficulty relates to the step size limitation in the integration step of 
the dynamics algorithm. In order to accurately integrate the equations of motion 
in atomistic models, it is necessary to sample adequately the period of the 
highest frequency motion in the system. The high-frequency bond stretching motion 
that occurs in all molecules requires the use of a small step size (i.e., 0.5-1.0 fs) 
in the simulation. This limitation prevents very large simulations from being run, 
even on supercomputers, for periods much greater than hundreds of picoseconds. 
Unfortunately, this is much too short a time scale to study most processes 
of biological interest or to study rapidly occurring but infrequent events, 
such as conformational barrier crossings. Even for the study of noncovalent 
protein-ligand interactions, the simulations may be too short to adequately 
sample conformational space and therefore to accurately calculate the free energy of 
interaction. 

The third difficulty relates to the presence of multiple minima in the (3N - 6)
dimensional conformational space that defines the potential energy surface. These 
minima can cause the simulations to become locally trapped or delayed. Even if one 
had enormous amounts of supercomputer time, it is difficult to ensure adequate 
sampling to estimate thermodynamic properties accurately, such as free energy, or 
even to ensure that the structures reached include all of the biologically relevant ones. 
Because of the time required for each simulation, it would be difficult to repeat the 
simulations for many other modified molecules. The additional simulations are 
important for an understanding of the specificity of the biological process being 
studied. 

If the equations of motion for a particular problem are too difficult to analyze with 
available computer resources, one is forced to consider approximate techniques for 
extracting the useful chemical design information. The researcher tries to establish the 
simplest mathematical models that can be used, while retaining predictive capabilities 
for providing insights into the biologically interesting behaviors. One approach for 
solving this problem consists of applying non-Newtonian dynamics. These methods 
are non-Newtonian in the sense that the Newtonian laws are highly modified or 
Newtonian motion is in some sense interrupted [3]. These methods include the use of 
increased dimensionality to avoid entrapment in three-dimensional x, y, z Euclidean 
space [4,5]. By transforming the normal energy/force functions and extending the 
simulations into four dimensions, barriers, which exist due to movements in true 
Euclidean space, could be tunneled through and a lower minimum found. The 
appropriate direction of tunneling is controlled by 'target functions' which express 
heuristic information concerning which direction the global minimum must lie in. The 
target function can also represent specific experimental data obtained from the 
protein of interest by experimental work [6]. 

Other methods, such as Rush dynamics, modify the basic simulation equations in 
the familiar three-dimensional space. It has been shown, for at least small problems, 
that these methods can more efficiently search conformational space than the tradi
tional MD methods [3,7]. There is, however, still a need to reduce a very large 
problem down to a simpler one even when applying these methods. 
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A better approach is to significantly reduce the number of degrees of freedom in the 
simulation (while retaining the quantitative aspects of the simulation). Then each 
simulation takes less time and one can run many different simulations. A class of 
dynamics algorithms, called reduced variable dynamics, makes this reduction in time 
possible. Since there are many fewer degrees of freedom, phase space can be more 
efficiently searched. The following sections will describe the current available 
methods. 

Traditional constrained dynamics approaches 

The traditional approach for eliminating uninteresting degrees of freedom (DOF) 
and high-frequency motions is through the use of defined constraints. The constraints 
are introduced into the equations of motion by adding a force-like term. Typically, 
this term consists of the gradient of a position-dependent constraint equation times an 
unknown Lagrange multiplier (LM). The resulting atomistic constrained equation of 
motion (EOM) follows as 

N, 

mjitj=Fj(Rt.oo.,RN)+ L VjCr(Rl,oo.,RN)Ar 
r= 1 

subject to 

VjCr(R1 , 00' ,RN)Rj = 0, j = 1,00' ,Np , r = 1,00' ,Ne 

where Vj denotes the gradient with respect to the jth atom position coordinates, Cr(*) 
denotes the functional form of the rth constraint function, and Ar denotes the rth LM. 
The solution for the LM is obtained by differentiating the gradient of the constraint 
equation and introducing the EOM. Straightforward manipulations lead to an LM 
solution defined by a linear matrix-vector algebraic equation of dimension (Ne x Ne), 
where Ne denotes the number of constraints. As Ne becomes large, the computational 
burden associated with the inversion of the constraint matrix rapidly becomes 
prohibitive (e.g., O(N3». This approach retains all of the atomic degrees of freedom 
and does not exploit the inner connection topology between molecules implied by the 
imposition of the constraints. 

There are two alternative methods available for solving this problem. The first 
method involves the construction of a set of generalized coordinates, leading to 

M(q) q = F(q, q) 

where q denotes the (N x 1) generalized coordinate vector, M(q) denotes the (N x N) 
mass matrix, and F(*) denotes the (N x 1) force vector. The method is completely 
general and has the added benefit of eliminating the constraint variables completely in 
the problem formulation. However, it requires the inversion of an (N x N) matrix 
M(q), which is an O(N3) algorithm. Typically, N« Ne; nevertheless, as problem sizes 
continue to increase even these approaches reach practical limits for the time required 
to solve for the system accelerations. 
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Generalized coordinates have been used in molecular dynamics for many years, 
although the applications have been previously limited to short polymers [8]. 
General-purpose formulations have not appeared previously for several reasons. 
First, the classical analytical methods, such as Lagrange's, involve the formulation 
of kinetic and potential energy expressions, which require computing potentially 
thousands of time-varying first- and second-order partial derivatives [9]. For systems 
consisting ofN degrees offreedom, the equations of motion are formulated and solved 
by computing N time-varying first- and N x N second-order partial derivatives with 
respect to the generalized coordinates at each time step in the integration process. 
This procedure is well defined but rapidly becomes unwieldy even for relatively 
low-order problems (i.e., ~ 30 independent variables). In addition, there is still the 
problem of inverting an (N x N) mass matrix. 

Mazur and Abagyan [10,11] have developed a modeling approach using a Lagran
gian-based internal coordinate model for generating the equations of motion. The 
accelerations are computed by inverting the mass matrix for all the degrees of freedom 
at each time step in the integration process. An advantage of this approach is that the 
constraint equations are analytically eliminated from the problem. The major disad
vantage of their approach is that the time-varying mass matrix must be computed and 
inverted at each time step. This approach is useful for small problems, but does not 
scale up well for large problems because the computational effort required for 
inverting a large mass matrix (O(N3)) dominates the effort required for the force-field 
calculations. 

In addition, the methodology has some limitations [12], including restrictions on 
intermolecular connectivity and torsion angle definitions. In a latter article [12], these 
limitations were eliminated, but only a Monte Carlo technique was presented and 
there were no updates for the formulation of the equations of motion to account for 
the additional degrees of freedom. This update would involve a major modification of 
the original formulation and would still not remove the fundamental problem of 
requiring a large matrix inversion. 

Rudnicki et al. [13] present an algorithm for computing the pseudo rotation 
dynamics of a furanose ring. By retaining internal vibrational behaviors, their ap
proach goes beyond the limitations of a rigid-body model. However, the authors did 
not present a methodology for coupling their pseudo rotation model to the underlying 
rigid-body motion of the ring, nor did they discuss how this model could be coupled to 
other bodies in a simulation. This must be carried out in such a way that the resulting 
equations of motion scale up efficiently for large systems. This method is most closely 
related to the generalized coordinate method, because the constraints are eliminated 
by a Lagrangian algorithmic approach. Their approach is useful for generating 
simplified dynamics models for subcomponents of more complex systems. 

Other methods involve calculating approximate solutions to the constrained equa
tions of motion. These methods use iterative approaches to approximately solve for 
the Lagrange multipliers. For simple bond constraints, these algorithms typically only 
need a few iterations to converge. The most popular method of this type, SHAKE 
[14,15], is easy to implement and scales as O(N) as the number of constraints 
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increases. This method has been very popular for macromolecules. An alternative 
method, RATTLE [16], is based on the velocity version ofthe Verlet algorithm. Like 
SHAKE, RATTLE is an iterative algorithm. However, adding any other types of 
constraints, even bond angle constraints, can greatly slow the convergence of SHAKE 
and limit the maximum step size [17]. 

Recent work [9,18] has resulted in extensions of the SHAKE algorithm that allow 
for internal coordinate constraints. The newer methods no longer have the conver
gence problems associated with the original SHAKE algorithm. These methods are 
also iterative and straightforward to implement. However, the maximum time step 
size used in the papers describing these methods is still limited to 3 fs. The systems 
used to test the methods were small « 50 atoms) and it is not known how the 
methods would perform for larger systems with many thousands of constraints. 

A new dynamics algorithm coupling implicit integration and normal mode tech
niques has recently been developed [9]. This algorithm gains a factor of 10 x over 
other explicit integration schemes. The integration technique introduces no damping 
and is stable for step sizes as large as 50 fs. This new integration scheme is very 
interesting and could be useful even with the method described in this paper. The 
method, however, requires a linearized model. As shown below, dynamics equations 
between coupled bodies must have nonlinear terms to allow the simulation to be valid 
for arbitrarily large displacements and rapid motions. In very dense systems, such as 
explicit solvation studies, the linearized model could be a reasonable approximation. 
In large protein simulations with no or implicit solvent, such as might be used in 
folding studies, one wants large and rapid motions to occur so that interesting 
low-energy structures can be quickly located. These simulations would require the 
presence of the nonlinear dynamics terms. 

The shortcomings of these iterative methods are (i) they are not exact, (ii) they are 
still limited to a relatively small step size, or (iii) they do not scale up as O(N). The 
proposed approach is based on a recursive generalized coordinate formulation for the 
equations of motion and can be generalized to handle both particles and rigid-body 
constraints in a unified framework. The proposed algorithm maintains all internal 
constraints with no approximations. This new approach leads to a reduced variable 
molecular dynamics simulation (RVMD) technique. The RVMD will prove to be 
quite powerful because there are far too many variables, even with all bonds con
strained, for macromolecular simulations to explore more than a small region of 
phase space. However, once the interesting events are located using RVMD, uncon
strained simulations can be carried out to calculate the thermodynamic properties of 
interest. 

It is a practical necessity to be able to greatly reduce the number of variables in 
a macromolecular system, so that qualitative aspects of its behavior, such as reaction 
pathways, can be studied and interesting events located. In several papers [17,20], it 
has been noted that the use of constraints beyond bond length constraints can 
affect calculated properties, such as conformational interconversion rates. As a result, 
the effects of the constraints must be closely examined. The impact of imposing 
various constraints can be assessed by comparing the results of the reduced variable 
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simulations with unconstrained simulations (when possible), as well as a comparison 
with any available experimental data. 

This paper describes an extension to previously developed constraint techniques 
applied by Turner et al. [21-24] and developed by Singh et al. [25-27]. These 
enhanced constraint methods will enable the study of large computational chemistry 
problems that cannot be easily handled with current constrained molecular dynamics 
methods. These methods are based on an O(N) solution to the constrained equations 
of motion. The benefits ofthis approach are that (1) the system constraints are solved 
exactly at each time step, (2) the solution algorithm is noniterative, (3) the algorithm 
is recursive and scales as O(N), (4) the algorithm is numerically stable, (5) the 
algorithm is highly amenable to parallel processing, and (6) potentially greater 
integration step sizes are possible. It is anticipated that application of this methodo
logy can potentially provide a 10-100-fold improvement in the speed of a large 
molecular trajectory as compared with the time required to run a conventional 
atomistic unconstrained simulation. It is anticipated that the RVMD methodology 
will provide an enabling capacity for pursuing the drug discovery process for large 
molecular problems. 

General constrained dynamics formulation 

Rigid-body constraints 

For rigid bodies the constraint equations are generalized as follows [28,29]: 

where R j denotes the (3 x 1) jth body reference point position vector locating the jth 
body relative to inertial space and 8j denotes the vector of the jth body kinematic 
variables used for describing the orientation of the jth body relative to the inertial 
frame. The constraint rates follow as 

leading to a constrained EOM of the form 

where 

b,,= c" 

" 
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Mj denotes the (6 x 6) jth rigid-body mass matrix, Fi denotes the (6 x 1) jth body 
force, torque, and rotating frame kinematic effects vector, and q,i = d2 (Rxj , Ryj , Rzj , 

9xj , 9yj , 9zj )/de denotes the acceleration vector for the jth body translation and 
orientation. Other sets of orientation parameters can be used for characterizing the 
rotational motion of rigid bodies (e.g., Euler parameters, etc.). The (Nc x 6) constraint 
matrix, b .. , is generalized for both translational and rotational components. Typically, 
the constraints are defined at the interconnection hinges between contiguous bodies. 
For example, if only one rotational DOF is allowed at a joint, then two rotational and 
three translational constraints must be defined and the constraint equation above is 
a (5 x 1) vector. The solution for A can be expressed in a functional form that is 
identical to the form obtained for the particle formulation [28]. 

Recursive generalized coordinate methodology 

The modeling problem is naturally divided into two parts: (i) the formulation and 
solution process for the equations of motion, and (ii) the development of mathematical 
models for the constraint functions to be supported by the RVMD algorithm. The 
generation of equations of motion for interconnected systems defined by generalized 
coordinates requires special consideration. Large matrices can occur either because of 
the need to solve the constraint equations, given above with a large Lagrange 
multiplier constraint matrix [30,31], or the need to solve the accelerations at the 
system level. The large matrices arise because conventional approaches attempt to 
obtain the solutions in a single operation, such as matrix inversion, for the desired 
unknowns. 

Recursive techniques reformulate the solution process to eliminate these large 
matrices by using body-level operations. The body-level operations lead to implicitly 
defined sets of equations that are noniteratively solved. Small matrices arise in the 
solution process because only local body-level models are considered at anyone time. 
The recursive process leads to a multistep algorithm. An added benefit of recursive 
formulations is that they allow the user greater freedom in setting up new constraint 
models. 

The recursive algorithm greatly reduces the computational complexity involved in 
solving large-order linear equations of the form 

Ax=b 

They work by using noniterative recursive equations, which involve many small 
matrices, to generate the solution 

x = A -1b 

without forming A or A -1 explicitly. An example of a recursive algorithm [23,24,32] 
has been run comparing two methods for solving the constraints between multiple 
rigid bodies. The O(N3) generalized coordinate algorithm inverted a large matrix in 
a single step. The O(N) recursive algorithm used a series of steps that only required the 
inversion of (5 x 5) matrices. Each body has six degrees of freedom. There are five 
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constraints between each interconnected body. For 14 bodies, the recursive algorithm 
is 1.9-fold faster than the generalized coordinate method. For 350 bodies, the recursive 
algorithm is 2523-fold faster. In this case, the generalized coordinate method had to 
invert a (1745 x 1745) matrix. 

Current modeling approach 

The equations of motion are modeled using N generalized coordinates [33-37] 
q = {q1, ... ,qN}' In this model all of the individual body equations of motion are 
collected together to create a system-level equation of motion. The solution for the 
system-level equation then treats all interaction effects simultaneously throughout the 
system. This approach leads to large matrix equations, which are required to balance 
the interaction effects everywhere in the system. This approach is presented first since 
it is conceptually easier to understand the algorithmic strategies required to dealing 
with systems described by free and constrained degrees of freedom. Then this ap
proach is generalized to restructure the algorithm strategies to be recursive in nature. 
The recursive approach eliminates the need for building large matrix equations, 
leading to significant computational savings. 

The system-level equation of motion is described by 

M(q)q = f(q, 'I, t) + C(q, t)T Iv 

subject to the (Ne x 1) vector constraint equation 

C(q, t) 'I = b(t) 

The constraint equation can be factored into free and constrained parts as follows: 

(1) 

where Ar is the (Ne x N) free degrees-of-freedom transformation matrix, qr is the (N x 1) 
vector of free degrees of freedom, Be is the (Ne x Ne) constrained degrees-of
freedom transformation matrix, and qe is the (Ne x 1) vector of constrained degrees of 
freedom. 

To eliminate the constrained degrees of freedom, we need a kinematic expression 
for the constrained rates as a function of the free degrees of freedom. The required 
equation is obtained by solving Eq. 1 for qe as follows: 

'Ie = D'Ir + Z (2) 

where 

and the inverse matrix is assumed to be well defined. 
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The equation of motion can be transformed to eliminate the constrained degrees of 
freedom and the Lagrange multiplier by using Eq. 2 to define the following coordinate 
transformation: 

'I = (~:) = W'If + Y 

where 

W=[~l Y=(~) 
Differentiating Eq. 3 with respect to time leads to 

q = Wqf + Wqf + Y 

(3) 

(4) 

Introducing Eq. 4 into the equation of motion and multiplying the resulting equation 
by WT leads to the free degree-of-freedom equation of motion 

qf = (WTMW)-l WT (fext + CTA - M[W'If + Y]) 

The solution process is completed by observing that the Lagrange multiplier term 
above vanishes because the following product is identically zero 

WTCT = [lpDT] [~n = AHI - (B~)-lB~] = AnO] = 0 

leading to the final form for the free degree-of-freedom equation of motion: 

qf = (WTMW)-l WT (fext - M[W'If + Y]) (5) 

where all constraint terms have been eliminated. 

Recursive solution approach 

The recursive approach begins by writing the individual body equations of motion 
as 

Mj(qj) qj = fj (qj, 'Ij, t) + Cj(ql, ... , qNb)T A 

where the constraint matrix Cj selects a subset of the system-level Lagrange 
multipliers. For bodies connected in a tree structure, the recursive algorithms 
begin with bodies at the end of branches of the tree structure. This leads to equations 
of the form 

Mj+dqj+l)qj+l = Fj+1(qj+l,'Ij+l,t) + C;+l,j(j}jAj 

Mj(qj)qj = Fj(qj,qj,t) + Clj+l (j}jAj + CL-l (j}j-l Aj- 1 

where the first equation has one Lagrange multiplier for the constraint to the j body 
and the second equation has two Lagrange multipliers for the constraints to the j and 
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j - 1 bodies. The constraint equation for the first body can be shown to be 

<l>ij + <pi:j = Cj+1.Aj+l + Cj,j+lqj 

<l>i <l>j = If, <Pi <Pj = Ie, <Pi <l>j = 0 

where ~ denotes the free degrees of freedom at the joint connecting the jth and 
(j + 1)th bodies, Cj denotes the constrained degrees of freedom at the joint connecting 
the jth and (j + 1)th bodies, and <l>j and <Pj denote selection operators for the free and 
constrained degrees of freedom. 

Solving the constraint equation for qj + 1 leads to 

qj+l = Cj-+\,j(<I>Jj + <PjCj - Cj,j+lqj) 

where the motion rate for the last body in the branch is now described in terms of the 
rates at the joint and the rate for the jth body. This equation is said to be implicit 
because of the dependence on the jth body rate. 

Differentiating the constraint equation with respect to time and solving for 
qj + 1 leads to 

qj+l = Cj-+\,j<l>),j + hj+1(qj) 

where hj + 1 contains the derivative terms not displayed. Introducing the equation 
above into the equation of motion for the body at the end of the branch and 
multiplying the resulting equation by 

<l>icj-l1,j 

leads to 

or 

fj = [<I>i Cj-l1,jMj+1 Cj-/1,j<l>jr 1 ( - hj+ 1 (qj) + <l>icj-ll,jFj+ d 

where the Lagrange multipliers have vanished because of the orthogonality of <l>i 
and <pj. The solution for the Lagrange multiplier is obtained by solving the constraint 
equation for the constraint rates as follows: 

Cj = ij)T(Cj+1,Aj+l + Cj,j+lqj) 

Differentiating this equation with respect to time leads to 

Cj = <pT(Cj+1,Aj+l + Pj(qj)) (6) 

where Pj is implicitly dependent on the qj body acceleration. Next, solving the 
constrained equation of motion for the qj + 1 acceleration one obtains 

qj+l = Mj-+\ (Fj+1 + Ci+l <p)"j) 
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and introducing the equation above into Eq. 6 the solution for the Lagrange multi
plier follows as 

(7) 

This completes the first stage of the recursive algorithm. The equation of motion for 
the joint degrees of freedom is implicitly dependent on the qj body acceleration. Next, 
the equation of motion for the jth body is processed. The first step is to introduce 
Eq. 7 into the jth body equation of motion, leading to 

MAj = Pj + CL-l<Pj-lA.j-l 

where the mass matrix and the force vector have been modified. This equation has the 
same form as the first equation solved. Following the same procedure, we obtain 
equations of the form 

~-l = [<I>I-ICj~l-lMjCj~l-l<l>j-lrl( - hj(qj-l) + <l>I-lCj~l-lFj - <PI-1Pj-d 

and 

(8) 

The process is repeated until a body is reached which is not constrained by only one 
other body. After introducing the previously calculated Lagrange multiplier, the 
transformed equation of motion can be shown to be 

The solution for this equation follows as 

which is possible because this equation is referenced to the inertial frame, which has an 
assumed acceleration of zero. By reversing the order of solution just described, the 
implicit dependence in each of the equations can now be defined. The key point of the 
recursive solution process is that small matrices are used at each step. 

Nonlinear effects 

Nonlinear motion models allow simulations to be valid for arbitrarily large dis
placements and rapid motions. Unlike linear models, nonlinear models can lead to 
fundamentally different types of solutions. For example, when one considers the 
equations governing the angular momentum of a rotating body, the solution for even 
unforced models is radically different. In the linear model below, when no torques act 
the angular momentum is constant, which implies a constant rotation rate as seen 
in a body-fixed frame. On the other hand, the nonlinear model has time-varying 
momentum components. Indeed, the time-varying terms lead to nonconstant rotation 
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rates. As a result, the orientation of the body in inertial space can be characterized as 
a general tumbling motion. The evolving motions quickly become uncorrelated. 

Linear model: 

Nonlinear model: 

dP/dt + (0 x P = 0 
The conservation laws are given by 

Kinetic energy: 

T = (PI/I! + P~/I2 + PVI3)/2 

Angular momentum: 

p. P = pi + P~ + P~ 
In both the linear and nonlinear cases, the kinetic energy and angular momentum 

are conserved. The resulting motions, however, are very different. The nonlinear 
model allows for coupling between axes that cannot exist in linear models. Without 
the nonlinear terms, one cannot be sure that the resulting motions are accurately 
predicted, unless the rates are extremely small. 

The nonlinear effects arise from two sources. First, dynamic reference frames that 
move with each body are used to simplify the equations of motion. A significant 
advantage of this approach is that the rigid-body mass properties are constant. 
Constraints are also easier to describe in terms of the dynamic reference frames. The 
use of dynamic reference frames leads to nonlinear (0 x (*) terms in the translational 
velocity and acceleration, and the rotational angular momentum vector equations. 
These terms must be retained to account for rapid motions of the rigid bodies. 

Second, when large changes in the orientation of rigid bodies with respect to inertial 
space are possible, the direction cosine matrices describing the large rotational 
displacements must retain all of the nonlinear products of sine and cosine terms. These 
effects are particularly important in tree structures, where many products of direction 
cosine matrices may be required to orient bodies with respect to a reference body's 
orientation. 

Methods 

The initial conformations of alanine dipeptide were obtained by model building, 
using AMBER + [38] using the AMBER 3 force field [39,40]. The <l> and \jf angles, 
shown in Fig. 1, were set at the desired initial value and a constrained energy 
minimization was performed. This was followed by gradually heating (3-5 ps with 
a 1 fs step size) to the specified temperature (300 or 600 K) using a dynamics simula
tion with SHAKE. 
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Fig. 1. Alanine dipeptide. 

The resulting coordinates, particle velocities, rigid group definitions, and a list of 
the allowed degrees of freedom were then passed to the RVMD program. This 
program, as shown in Fig. 2, is completely independent from the molecular mechanics 
software. This enables the reduced variable method to be easily attached to any 
molecular mechanics or quantum mechanics code. The programs communicate via 
common blocks and an interface routine. The RVMD program takes care of all of the 
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coordinate transformations and the molecular mechanics program only needs to have 
routines that compute the forces in terms of Cartesian coordinates and does not have 
to be modified if the body definitions are changed. 

The RVMD program calculates equivalent rigid-body masses, first mass moment 
vectors, and inertia tensors. From the particle position, velocity, and mass data, the 
linear and angular momentum are computed. After the rigid-body mass data are 
computed, a model can be developed for the inertial linear and angular momentum as 
follows: 

= I~ ~II r= 1 
Nb 

L: mrRrxVr 
r= 1 

where Jr denotes the rth bodies inertia tensor, Sr denotes the first mass moment, the 
tilde denotes that the first mass moment is expressed in terms of a (3 x 3) matrix 
equivalent of the vector cross product, Mr denotes the mass of the rth body, and the 
R vector locates the rigid-body reference point relative to the inertial frame. The only 
unknowns in this equation are (Ok and Vk' The solution for these variables is obtained 
by inverting the matrices. The initial rates were further processed to account for the 
constraints in the system. The constraints are defined by specifying the degrees of 
freedom at each joint between the bodies. For example, if a body was attached with 
a single rotational degrees of freedom, then three translational constraints and two 
rotational constraints were defined. This process consists of projecting the adjacent 
body rotational and translational rates along the specified joint axes. 

Constant-energy and constant-temperature simulations were then run. In addition, 
annealing runs where the temperature was heated and then cooled were made in an 
attempt to locate the global minimum. For the later runs, it was necessary to 
implement a rigid-body temperature scaling algorithm. The all-atom AMBER simula
tion used a one-point Verlet integrator and the RVMD simulation used a four-point 
Runge-Kutta integrator. The accuracy of this integrator is extremely high. Constant
energy simulations of 100000 points had less than a 10% fluctuation in the total 
energy with no restarts. Simulations are currently being undertaken with a two-point 
integrator and a restart procedure. It is anticipated that this will provide similar 
accuracy with only 50% of the function evaluations. 

Temperature scaling 

The temperature was scaled by developing a model for the system kinetic energy as 
follows: 

K = ~ t (Or ~r Sr (Or N [ JT I - I [ ] 
2 r=1 Vf - Sr Mr Vr 
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where Jr denotes the rth bodies inertia tensor, Sr denotes the first mass moment, the 
tilde denotes that the first mass moment is expressed in terms of a (3 x 3) matrix 
equivalent of the vector cross product, and Mr denotes the mass of the rth body. The 
angular velocities and linear velocities are linear functions of the degrees of freedom 
that are integrated by the equations of motion. Accordingly, the kinetic energy and the 
temperature can be adjusted by computing a scale factor 

p = (K/Kdesired)1/2 

where K denotes the currently computed kinetic energy and Kdesired denotes the 
desired kinetic energy. This scale factor is used to modify the velocity terms in the 
equation of motion. Because the kinetic energy is linearly related to the temperature, 
scaling the kinetic energy is equivalent to temperature scaling. 
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Fig. 3. 200 ps AMBER simulation with SHAKE bond constraints. Starting value of ¢ = - 60 and 
IjJ = 60. 
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Results 

Figures 3 and 4 show the results from all-atom AMBER simulations of alanine 
dipeptide with SHAKE bond constraints (22 atoms with 39 degrees offreedom). These 
runs were carried out at constant energy and only varied according to their starting 
conformation and length of simulation. In both of these runs, the system was heated to 
600 Kover 5 ps and the runs were made with a 1 fs step size. All of the following plots 
are made on <I>/\jf contours generated with all other degrees of freedom minimized at 
each point. 

Figures 5-9 give the results for the rigid-body simulations with a total of five 
degrees of freedom (three methyl torsional angles and <I> and \jf dihedral angles with 
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Fig. 4. 1600 ps AMBER simulation with SHAKE bond constraints. Starting value of ¢ = - 60 and 
ljJ = 60. 
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Fig. 5. 400 ps multibody simulation with a 2 Is step size. Starting value of ~ = - 60 and 

'" =60. 

a total of six rigid bodies). The runs are plotted on <I>/\jt contours generated with 
rigid-body rotations about the <I>/\jt torsional angles. These simulations are run at 
either constant energy (Figs. 5-7) or constant temperature (Figs. 8 and 9). The run in 
Fig. 5 uses 300 K AMBER velocities as a starting point to compute the rigid-body 
velocities. The runs in Figs. 6-9 use the same initial velocities as used in the run 
in Fig. 5, but with each component multiplied by the square root of 2 (doubling 
the amount of KE). Both the ability of the multibody simulation to search conforma
tional space and to locate the global minimum using annealing algorithms were 
investigated. The figure captions give the relevant details of each simulation, including 
starting point, time step, length of simulation, and type of simulation (all atom or rigid 
body). 
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Runs made at 300 K with the AMBER SHAKE algorithm did not move out of the 
starting point minimum at <I> = - 60 and W = 60. At 600 K, Fig. 3 shows that the 
simulation can explore a few local minima, but the structure still stays relatively near 
the starting conformation after 200 ps. Figure 4 explores the effect of a long simula
tion, 1.6 ns. This simulation explores all four low-energy minima and samples other 
reasonably low-energy portions of the surface. It should be noted that the molecule 
does remain trapped for long periods near the low-energy regions. This is a common 
phenomenon of molecular dynamics simulations. 

Figure 5 shows that the 'normal temperature' (rigid-body velocities are derived 
from the 300 K all-atom velocities) rigid-body simulation appears to sample phase 
space as well as the 600 K all-atom simulation (Fig. 3). It should be noted that the 
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Fig. 6. 800 ps multibody simulation with a 4 fs step size. Starting. value of <P = - 60 and 
l/I =60. 
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Fig. 7. 800 ps multibody simulation with a 4 fs step size. Starting value of </> = 60 and", = 120. 

contours for this rigid map are steeper than those of the flexible map in Fig. 3 and that 
it is more difficult for the simulation to move around the rigid map. 

By doubling the kinetic energy or the temperature of this simulation, Figs. 6 
and 7 show that the accessible regions of phase space are very well sampled indepen
dent of the starting point or the step size (2 or 4 fs). The distribution of points is very 
uniform and the simulation does not appear to get trapped in a local minimum for 
long periods of time. The molecule in Fig. 7 had to surmount barriers of 5-10 kcal to 
go from the minimum at <l> = 60 and W = - 120 to the portion of the surface including 
the global minimum near <l> = - 60 and W = 60. Every 100th point was saved during 
these runs. An analysis of the <l>/w values showed frequent changes of 60° or more 
between points saved. This showed that energy is easily able to flow between the 
bodies. 
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Fig. 8. 67400-point annealing multibody run with a 4 fs step size. Starting value of ¢ = - 120 and 

'" = 120. 

Figures 8 and 9 show the results of heating and then cooling alanine dipeptide. All 
protocols were carried out over approximately a 300 ps time period. The simulations 
were stopped once they had been cooled sufficiently low that further movement on the 
energy surface was unlikely. Only the simulation carried out in Fig. 9 seemed to 
depend on the cooling protocol. If cooling began while the molecule was over the 
center strip, the simulation converged to the minimum near <I> = 60 and", = - 60. If 
cooling began over the other regions, the simulation tended to converge to the global 
minimum near <I> = - 60 and '" = 60. 

One question that might be asked is whether or not a multibody run is equivalent to 
an all-atom molecular mechanics run at a greatly raised temperature. This question is 
raised since the formula for temperature has a factor in the denominator that is equal 
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Fig. 9. 67400-point annealing multibody ron with a 4 fs step size. Starting value of fjJ = 60 and 
'" = -120. 

to the number of degrees of freedom. Thus, one would expect that a simulation with 
only a few degrees of freedom would have a much higher temperature than with all 
degrees of freedom. 

To address this question, the following computer experiment was performed. 
A 300 K, 800 ps, all-atom AMBER run with only SHAKE constraints was made for 
n-butane. This is a system with only one significant degree of freedom (rotation about 
the middle two carbon atoms). A step size of 1 fs was used. This run only had 0 or 
1 dihedral transitions, depending on the starting point. Figure 10 shows a typical plot 
of the torsion angle versus the dynamics step. 

The velocities of all of the atoms were taken from the starting point of this 
run (which had been equilibrated at 300 K) and used in the multibody program. 
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Plot of Torsion I for AMBER 300 K run 
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Fig. 10. Torsion 1 versus time for 300 K AMBER simulation. 

These atom velocities were then mapped onto the body velocities. The body velocities 
were used to start the multi body simulation, which was run for 800 ps with a step size 
of 6 fs. The same total kinetic energy was used in both simulations. This simulation, as 
shown in Fig. 11, had many transitions. 

Another run was made with the all-atom AMBER + SHAKE algorithm. 
This time the atoms were heated to 2400 K (the necessary temperature required 
to match the theoretical temperature of the multibody run). This run, as shown 
in Fig. 12, had many more dihedral transitions than the multibody run. How
ever, many points were in higher energy regions than those in the multibody 
run. 

This is graphically shown in Figs. 13 and 14. Figure 13 shows that the multi body 
simulation samples the dihedral values in a manner similar to that of an all-atom 
300 K AMBER simulation. Figure 14 shows that the 2400 K all-atom AMBER 
simulation samples the high-energy states much more frequently and thus has a flatter 
distribution of dihedral values. 

Therefore, the heated all-atom AMBER run and the multibody run are not 
equivalent. The multibody run avoids the problem of energy transfer between the 
high- and low-frequency modes by freezing the group geometries and only adding the 
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Plot of Torsion 1 for multibody run 
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Fig. 11. Torsion 1 versus time/or multibody simulation. 

energy to the low-frequency modes that the room temperature all-atom AMBER run 
would have. 

Two important issues that arise when comparing this method to more traditional 
all-atom methods are the speedup in the total simulation time and the amount of time 
required for convergence of the method. The first issue of speedup is only partially 
addressed in this study. The speedup in the use of multibody technology results from 
(i) the use of a much simpler energy surface that can be searched more quickly 
because there are many fewer local minima [12] (many fewer degrees of freedom), 
(ii) the increase in step size possible because of the reduction in high-frequency 
motion (it should be noted that each step, even if taken with the same step size as the 
all-atom simulation, is taken using dihedral internal coordinates; this allows a much 
larger motion of the atoms than a step using Cartesian coordinates with all atoms 
moving independently), and (iii) the decrease in time for computing the energy 
function that arises because a multipole expansion can be used to compute the 
interactions between the rigid bodies. 

The reduction in the number of degrees offreedom in this problem is approximately 
eight (39 degrees of freedom in the SHAKE all-atom simulation and five degrees of 
freedom in the reduced variable simulation). The speedup from step size because of the 
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Plot of Torsion I for AMBER 2400 K run 
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Fig. 12. Torsion 1 versus lime/or 2400K AMBER simulation. 

reduction in high-frequency motion is a factor of 2-4 (1 fs versus 4 fs). While step sizes 
as large as 2 fs may be carried out using the SHAKE algorithm, simulations at high 
temperatures and those for large molecules with starting points far from stable 
low-energy configurations may require a step size nearer 1 fs for stability of the 
simulation. This gives a speedup of 16-32. Large molecules will have possibilities for 
greater reductions in the degrees of freedom because of the possible groupings of 
larger numbers of atoms (i.e., the atoms in a helix). 

There is also the possibility of reduction in the time for the energy function 
evaluation through the use of multipole expansions. Previous work [23,24] has shown 
a 44 x reduction in the time required to evaluate the electrostatic interaction energy 
between two helices using fourth-order multipole expansions. In an actual problem 
requiring the use of a mixture of methods for calculating short- and long-range 
interactions, this factor will decrease but should be at least a factor of 2. Combining all 
of these factors gives a conservative estimate of 10-100 times possible speedup in 
simulation time using this methodology. 

Of course, in a speedup comparison, one must also take into account the overhead 
of the multibody portion of the code. There is no measurable cost for communication 
between the molecular mechanics and multi body code since a single program is used 

145 



J. Turner et al. 

100 
r 

95 
r-

90 

85 

80 

75 

70 
c- r-

65 
~ 60 C 

·0 55 "- I-

'0 50 
.8 45 E 

-,. 
Z 40 

- -
-

35 

30 F- ~ 

25 r-
c-

20 r I-

15 

10 

r-

~ rTkr hl-fl-
() 

-180 -150 -120 -90 -60 -30 o 30 60 90 120 150 180 

Torsion (degrees) 

Fig. 13. Histogram of torsion values in multibody simulation. 
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and information is passed through common blocks. The portion of time required 
for the multibody software overhead rapidly decreases as the time for the energy 
function evaluation increases (i.e., for larger problems). For small problems, such as 
the one here, the total multibody overhead time compared to the total time for the 
simulation is 75-90% of the total time. This proportion decreases to 10-30% for 
simulations of moderate-sized molecules (approximately 500 atoms and 100 rigid 
bodies). 

Conclusions 

The RVMD software appears to be stable for step sizes larger than those permitted 
in a conventional all-atom simulation and can be used to reduce easily the number of 
degrees of freedom in a problem. Since energy easily flows from one body to another 
without getting trapped in small-amplitude high-frequency motion, the molecule can 
more easily sample many low-energy regions of phase space. Larger problems are 
being run to test the scaling properties of the method and integrators that require 
fewer energy evaluations are being investigated. The method appears to be a promis
ing computational tool for drug design. 
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Introduction 

The aim of this article is to give an overview of recent developments in Gaussian 
'shape methods', with an emphasis on their advantages in biological and macro
molecular applications. 

The term 'shape methods' refers to a whole range of techniques in which 
molecules are represented as atom-centered overlapping hard spheres. The ap
plications of such techniques include the simple computation of a molecular 
volume and surface area, or the construction of elaborate protein surfaces. The 
origins of these ideas lie in the chemist's early appreciation of steric factors, 
i.e. many molecular properties rely on the fact that atoms in molecules have 
relatively impenetrable cores. These effects have been explained by the later 
discovery of the quantum mechanical nature of electronic structure. Excluded
volume effects arise because of the high energy required when wave functions from 
neighboring molecules begin to overlap. 

Many physical properties depend, to some extent, on excluded volume or shape 
effects (including changes in shape). For example, the volume and surface area are 
needed to construct the equation of state for a liquid comprising rigid polyatomic 
molecules, and in understanding the molecular packing of liquids and crystals. The 
phase behavior of complex fluids is thought to arise partly from shape effects; for 
example, rod-like molecules exhibit nematic, smectic and other complex phases. 
Simple models of hydration describe the free energy of solvation in terms of atomic 
contributions that are proportional to surface area or volume. A central idea in drug 
design is the concept of 'lock and key', in which the binding of a ligand to a macro
molecular receptor is closely related to the 'goodness of fit' into the active site. The 
binding of a ligand is a matter of finding an appropriate local minimum on a potential 
energy binding surface. The potential energy surface in question is normally a classical 
potential energy surface which is of parametrized form. The actual physical process of 
ligand binding is much more complicated; the real potential energy surface should be 
a quantum mechanical one, and indeed computed properties should be a statistical 
mechanical average. 

This article is particularly concerned with two aspects of shape methods, 
namely lock-and-key matching and key comparison. Key comparison involves the 
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comparison between shapes of putative ligands. Because molecules that give rise to 
similar pharmacological responses often show a degree of molecular shape similarity, 
the characterization of shape, and the evaluation of shape similarity among mole
cules (keys), is an important tool for rational drug design. Lock-and-key matching 
refers to our own implementation of the rigid-body geometric docking problem. 
This procedure attempts to determine the optimal surface complementarity of a 
molecular complex using very efficient Gaussian technology. This methodology is 
a precursor to a more complete solution ofthe ligand binding problem, in which some 
aspects of the free energy of association are modelled. 

A goal of both of these techniques is to act as a low-resolution but rapid computa
tional screen of large three-dimensional databases of molecules, to identify small 
numbers of potential ligands for receptors, both in the case when the receptor 
structure is completely unknown (key comparison) or when some information about 
receptor structure is available (lock-and-key matching). 

This article presents a Gaussian description of shape which allows an analytical 
description. That is to say, that volume, area, shape assessment and matching 
algorithms are given by continuous and smooth functions. The properties of the 
Gaussian function lead to very efficient algorithms. The low computational overhead 
in obtaining nuclear-coordinate derivatives enables us to use the apparatus of optim
ization theory to compare the shapes of ligands, and dock molecules geometrically 
into their receptor sites. 

The recent comprehensive treatise on molecular shape by Mezey [1] gives the 
following criteria required of an ideal description of molecular shape, i.e. that it 

1. is based on the physical properties of the molecule, 
2. describes the full, three-dimensional shape of the molecule, 
3. leads to numerical shape characterization, such as a numerical shape code, 
4. is easily computable, leading to computer-based molecular shape analysis, 
5. is reproducible and objective, 
6. provides tools for the evaluation of shape similarity, and 
7. provides tools for the evaluation of shape complementarity. 

This chapter attempts to highlight how a simple Gaussian description of molecular 
shape [2,3] fulfills these requirements. We do not attempt to describe the numerous 
applications of the Gaussian function in chemistry, because we have reviewed the 
relevant applications elsewhere [2,4]. However, we note that the work described 
here begins from the ideas introduced into quantum chemistry by Boys [5], in which 
Gaussian functions represent atomic orbitals. The more general description of 
atoms as spherical Gaussians has been used by other authors to construct different 
models of molecular shape [6-10] from those described in this chapter. Central to 
these has been the very innovative work of Good and Richards [11,12]. 

Gaussians and their properties 

The primary purpose of this section of the article is to introduce Gaussians and 
their properties. In order to retain a practical orientation, however, we shall do this 
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from the view of molecular shape. It is necessary, therefore, to introduce 'hard-sphere' 
shape techniques as a preamble. 

We consider an 'atom' A with coordinates RA = (XA' Y A, ZA) which is a center for 
the hard-sphere density 

hs {I, O~rA~aA 
p = 

0, aA < rA 

where the local radial coordinate is defined by the equation 

d = (x - XA)2 + (y - Y A)2 + (z - ZA)2 

(1) 

(2) 

and (x, y, z) are coordinates of a point specified in some global coordinate system. It is 
obvious that the three-dimensional integral 

VA = f dr p~s 

00 

= 41t f dr A d p~s 
o 

= 11ta1 (3) 

gives the volume of atom A which has radius a A. In this article we shall use 
a convention for integration in which an integral over three-dimensional space implies 
integration over all space, even when no integration limits are specified. This conven
tion is widely used in quantum chemistry. We also define a spherical Gaussian density 
on atom A: 

pi = PA exp ( -(XAd) 

where PA is a 'height' factor, and the exponent 

(XA = KAla;' 

(4) 

(5) 

where KA is dimensionless. The Gaussian and hard-sphere densities are depicted 
in Fig. 1. The factors PA, KA are regarded as parameters which can be adjusted 
appropriately to give an atomic volume which agrees with the hard-sphere equivalent. 
Hence, 

VA = f dr pi 
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Fig. 1. A cross-section through hard-sphere (p "1) and Gaussian densities (p '!J defined for center A. 

It follows that the adjustable parameters must satisfy the constraint 

PA (~)3/2 4n 
lCA 3 

(7) 

Evidently, we are free to vary the Gaussian height, in which case lCA is fixed by Eq. 7, or 
vice versa. The philosophy surrounding the introduction of a 'soft' sphere is chiefly 
concerned with its technical advantages. We emphasize that p~ is not a probability 
density unless PA = 1, but we prefer to retain the possibility of nonunit heights. p~ is 
best regarded as a device for the computation of molecular volumes, areas and other 
associated shape-dependent factors. The purpose of the rest of this section is to outline 
the technical advantages of Gaussians. These technical advantages rely on the follow
ing important features: (i) ease of integration and (ii) the Gaussian product theorem. 
The ease of Gaussian integration depends on the standard integral 

00 

In = J dx x2n exp( -exx2) 
-00 

= (2n - I)!! (~)1/2 
(2ext ex 

(8) 
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Fig. 2. The coalescence center, P12,fora pair of Gaussians at centers RJ and R2lies along the line 
between the two centers at a position determined by the relative exponents. 

where the double factorial symbol represents just the product of odd integers down to 
unity, and « - 1)l! = 1). From Eq. 8 one can obtain the volume integral 6 and 
moment integrals, such as 

(9) 

If we consider two Gaussians with exponents O!j (i = 1, 2) centered at Rio the product 
satisfies 

(10) 

where 

(11) 

and r12 = r - P12, with the product center 

(12) 

along the line between Rl and R2 in the ratio of the exponents (see Fig. 2). The 
constant 

(13) 
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Equation 10 implies that a product of two Gaussians is also a Gaussian, but centered 
at the coalescence point P 12 defined in Eq. 12. It can be shown by induction that 
a product of n spherical Gaussians, each centered at R;, can be written as 

n n exp( -Ili rf) = K 12 ... n exp ( -1l12 ... n d2 ... n) 
i= 1 

where 

n 

·1l12 .. ·n = L Ili 
i= 1 

and 

r12 .. ·n = r-P12 ... n 

with the coalescence center 

1 n 

P 12 ... n = --- L lliRi 
1112 ... n i=l 

and the coalescence constant 

K 12 ... n = exp {- _1_ L llilljR5} 
1l12 ... ni>j 

(14) 

(15) 

(16) 

The importance of Eqs. 10-16 lies in the fact that a multiple Gaussian product is 
a single Gaussian centered at a coalescence point. It follows that multiple Gaussian 
products can be integrated to give analytical expressions for moment integrals, such 
as Eq. 9. 

We now turn to the representation of a molecule,.A, as a set of overlapping hard 
spheres (see Fig. 3). It is obvious that we must write the volume as a series 

V..II = L VA - L V AnB + L V AnBnC - ••. (17) 
A A>B A>B>C 

involving the volumes of individual atoms, together with corrections to allow for pair 
and higher overlaps. We want to write the molecular volumes as an integral (equiva
lent to Eq. 3) over a molecular density written as 

P~ = L P~ - L P~nB + L p~snBnC - ... (18) 
A A>B A>B>C 

in which the individual terms are densities achieving unit values only inside the 
designated region, for example 

hs _ {1 inside Ai nA2 ... nAn 
PA,nA1 ... nA - 0 I h • e sew ere 

(19) 
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AnBnC 

Fig. 3. A molecule envisaged as a set of overlapping hard-spheres. 

The unit density functions in Eq. 1 satisfy an obvious multiplicative property 
n 

h. n hs 
PA,nA, ... nAD = PAl (20) 

i=1 

i.e. the product is only nonzero in the intersection region. It follows that Eq. 18 can be 
rewritten through all orders in product form as 

n 

p~ = 1 - n (1 - p1~) (21) 
i= 1 

This expression includes corrections for intersections through all orders. The inter
section volume is just the integral of the intersection density Eq. 20: 

Vh. J d h. A,nA, ... nAD = r PA,nA, ... nAD 
(22) 

The integration of expressions such as Eq. 22 is extremely difficult. Analytical 
formulae exist for low-order intersections, but these are computationally expensive, as 
are their nuclear-coordinate derivatives. 

The generalization of Eqs. 18-22 in the Gaussian context is simple. We repeat all 
of the hard-sphere formulae, but replacing hard-sphere densities by their Gaussian 
equivalents. Hence, we write 

P.! = L p~ - L PinB + L P!nBnC - ••• (23) 
A A>B A>B>C 

with a corresponding expression like Eq. 17 for the molecular volume. The intersec
tion densities in Eq. 23 are defined by analogy with Eq. 20 as 

n 

ptnA, ... nAD = n P~i (24) 
i= 1 
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It may be argued that Eq. 24 does not have the property exhibited in Eq. 19 because 
the Gaussians do not represent uniform shape-density distributions. We can see, 
however, that, by virtue ofthe Gaussian coalescence theorem, Eq. 14, the intersection 
density in Eq. 24 is itself a spherical Gaussian centered in the region where the 
intersection is to be found. We write the full Gaussian density as 

n 

p~ = 1 - n (l - p!) (25) 
;=1 

and the Gaussian intersection volume as 

(26) 

Equation 26 can be integrated analytically using the Gaussian coalescence 
theorem 14. It is not possible to integrate Eq. 25 analytically without expanding the 
product in terms of intersection densities. The total volume then has to be con
structed using the series in Eq. 17. 

Areas can be derived by the simple expedient of differentiation with respect to 
sphere radii. Hence, referring to Eq. 3, the surface area of a sphere is 

(27) 

We extend this formula to the Gaussian case by writing 

n 0 
= ~;-$ drpj, 

;=1 vcrA. 
(28) 

The analytical formulae for the area, A..u, have been presented by us previously [2]. 
Such formulae can be understood by the observation that 

(29) 

is the volume of an infinitesimal shell created by increasing the radius of a single 
Gaussian 'atom' from cr Ai to cr Ai + dcr Ai. Equation 29 gives the area contribution from 
atom A; including the appropriate allowance for intersections. The partial derivatives 
can be viewed therefore as 'area' contributions arising from individual atoms. The sum 
of such contributions is the total molecular area. It should be stressed that, in the 
hard-sphere domain, the measure of surface area can be interpreted as the amount of 
'paint' required to color an object, i.e. an actual surface exists. Gaussian areas tell you 
how much 'paint' is required for an analogous object, but unfortunately not where to 
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put it. That is, Gaussians have no surface, although one can readily and efficiently 
display contour iso-surfaces [13]. Equation 28 is a mathematical device which enables 
accurate and efficient computations. For any practical optimization method in which 
molecular shape is part of the function being minimized or maximized, the positional 
gradient, and preferably the Hessian of the molecular shape, is required. The simpli
city of function 26 for the terms that comprise the total Gaussian volume ensures that 
the coordinate derivatives are almost as simple. We have presented in Ref. 2 formulae 
for the first and second coordinate derivatives for the general n-fold volume intersec
tion. These expressions give rise to an extremely efficient algorithm for computing 
derivatives, because the derivatives differ from the volume term only by simple linear 
factors involving a vector difference between the atom centers and the coalescence 
center. 

Results 

Calculations on model systems [2] established that a suitable Gaussian height 
parameter (see Eq. 7) to reproduce hard-sphere volumes is p = 2.70, while a slightly 
smaller Gaussian height value of p = 2.60 is better suited for the computation of area. 
However, the differences with respect to hard-sphere quantities are small when either 
one of these Gaussian height parameters is chosen to compute both volumes and 
areas. The computation of Gaussian surface area and volume for real molecules with 
arbitrary numbers of atoms requires a simple algorithm to reduce the combinatorial 
number of terms that appears in summations defining the volume 17. We have 
therefore described a trivial algorithm [2], based on a neighbor list approach, and 
retaining only summations up to sixth order in Eq. 17. Adopting such an algorithm 
we have computed the Gaussian volumes and areas for many hundreds of small 
molecules (of potential pharmaceutical interest) in Zeneca databases, and have found 
only small differences ( ~ 1-2%) with respect to conventional hard-sphere methods. 
Figure 4 illustrates the agreement between Gaussian and hard-sphere volumes for the 
subset of small molecules found in the Cambridge Structural Database (CSD) [14,15], 
in which the term 'drug' or 'activity' appears in the text qualifier field. This subset 
contains ~ 4000 molecules, and we find an average percentage error difference of 
0.6% between the Gaussian volume and the hard-sphere volume. The analogous error 
for the area measurement is 2.0%. These calculations each use a Gaussian height 
parameter of p = 2.70, which is not optimal for area. Tables 1 and 2 illustrate the 
computational and numerical performance of the Gaussian method applied to a num
ber of proteins. The coordinates of these proteins were taken from the Brookhaven 
Protein Data Bank [16]. The CPU times were obtained using an Indigo R3000 (spec 
92(fp) 24.2), and include the analytical computation of the first nuclear-coordinate 
derivative, but do not include the time required to compute the interatomic pairwise 
distances necessary for the algorithm. The point of separating these parts of the 
algorithm is that neighbor distances are usually available in precomputed form, in for 
example molecular mechanics/dynamics packages, in which the Gaussian shape 
model could be introduced as part of a simple shape-based solvation model. It can be 
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Fig. 4. Comparison of Gaussian and hard-sphere volumes. 

seen that the Gaussian area and volume computation is approximately linear with 
respect to the number of protein atoms (N). We find that the computation of the first 
(or second) position gradients adds a negligible overhead relative to the computation 
of Gaussian volumes or areas, whereas we would expect the computation of hard
sphere derivatives for molecules with thousands of atoms to be extraordinarily 

Table 1 Comparison between Gaussian and hard-sphere volumes for a few proteins 
Protein Number of Gaussian Hard-sphere Percentage 
(Brookhaven residues volume volume difference 
entry) (A 3) (A 3) 

1crn 46 3735 3737 0.0 
2ins 100 8779 8801 0.3 
5cyt 103 9070 9060 0.1 
2rhe 114 9346 9358 0.1 
1Iz1 130 11638 11628 0.1 
3fxn 138 12149 12180 0.3 
3app 323 26467 26449 0.1 

CPU time 
(s) 

0.32 
0.79 
0.67 
0.73 
0.94 
0.99 
2.63 

The CPU timings refer to the Gaussian method and include the computation of the first 
nuclear-coordinate derivative and the shape multi poles. 
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Table 2 Comparison between Gaussian and hard-sphere areas for a few proteins 
Protein Number of Gaussian Hard-sphere Percentage CPU time 
(Brookhaven residues area (A2) area (A 2) difference (s) 
entry) 
lcrn 46 4222 4288 1.5 0.33 
2ins 100 9821 9907 0.9 0.79 
5cyt 103 10371 10528 1.5 0.67 
2rhe 114 10738 10858 1.1 0.74 
liz 1 130 13194 13281 0.7 0.93 
3fxn 138 13805 13957 1.1 0.98 
3app 323 30112 30456 1.1 2.67 

The CPU timings refer to the Gaussian method and include the computation of the first 
nuclear-coordinate derivative and the shape multipoles. 

expensive. The neighbor distance computation is roughly quadratic in N, although it 
should be noted that the algorithm does not require the computation of any square 
roots, because the method actually utilizes the square of the distance between atoms. 

In comparison with hard-sphere results, Gaussian areas are less 'accurate' than 
volumes. It should be noted, however, that hard-sphere results are only one criterion 
of success for the Gaussian methodology, and probably not a very good one. The 
hard-sphere representation of molecular shape is not well founded in physics (or 
chemistry), or at least no better founded than its Gaussian equivalent. If one is looking 
for a methodology for the prediction of the solvation free energies of proteins, for 
example, based on molecular areas, then the Gaussian area is just as good as the 
hard-sphere area. Errors due to other factors are much more important than the 
precise definition of 'area' to be used. The use of continuous functions for shape 
representation enables the use of many mathematical techniques and provides new 
opportunities for the extension of shape technology simply because of the ease with 
which formulae can be generated by integration or differentiation. One possibility 
along these lines is the computation of a pointwise curvature tensor; another is the 
Fourier transformation method presented in the next section. 

Shape characterization 

The Gaussian methodology we have described leads to a very useful method for the 
characterization of shape in terms of a set of moment averages which can be computed 
analytically with trivial cost. In elementary physics one discusses the distribution of 
charge in a system using the concept of electrostatic moments, charges (monopoles), 
dipoles, quadrupoles, etc., and these quantities are well understood in elementary 
chemistry. The electric dipole moment, for example, is defined as 

p = J dr rpelec (r) (30) 
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where petec is the electrostatic charge density. The connection between the dipole 
moment and the charge distribution of a molecule is well known. We will introduce 
'shape' multipoles based on our Gaussian density. In doing this we are doing no more 
than introducing moment averages like 30 which can be used as simple indices for 
shape comparison. The Gaussian shape analogue of Eq. 30 is the first moment, S(1), 
which in component form is 

1 
S(l) = - f dr r pg (r) " V "Jf, 

(31) 

where we have normalized the integral with the Gaussian volume, 

V = f dr p~ (r) (32) 

and where the subscript O! represents the Cartesian direction (x, y, z). The first observa
tion one can make is that the 'zeroth' moment, V, in Eq. 32 is invariant to a change in 
origin for the coordinate system. The first moment translates in a simple manner, viz. 
changing to a coordinate origin (X, Y, Z) = R, 

x' = x - Xl 
y' = y-Y r'=r-R 
z'=z-Z 

so that 

S(l), = .!.. f dr' r' p~ (r) 
V 

1 1 
= V f drrp}(r) - V R f dr p~(r) 

= S(1) - R 

It follows that one can choose an origin like 

R = S(1), => S(l), = 0 

(33) 

(34) 

(35) 

(36) 

that is a 'centroid' for the molecule, which makes the first moment vanish. It is now 
possible to define a shape quadrupole, S(2), which in component form is 

(37) 

This is a second-rank symmetric tensor. We can choose an axis system, called the 
principal axis system, such that Eq. 37 is diagonal, i.e. 

(38) 

161 



J.A. Grant and B.T. Pickup 

Strictly speaking, Eq. 37 is not necessarily positive definite because of the definition of 
p~(r) (which can go locally negative), but in any practical case we have not seen this 
happen. The existence of a centroid and a principal axis system for the shape 
multipoles provides a natural coordinate system for the alignment of molecules. The 
three eigenvalues in Eq. 38 give a simple set of shape indices which assess the ellipticity 
of the molecule. The higher order multi poles, s(n), 

(39) 

are rank-n symmetric tensors. We can calculate octopolar (n = 3) and higher order 
shape tensors as a way of providing a more and more detailed assessment of the shape 
as n increases. 

The shape multipoles defined above provide a set of simple indices that can be used 
as shape comparators. We can also use the shape multipoles as a way of producing 
a coarse-grained representation of molecular shape. This can be achieved by consider
ing the Fourier transform of the molecular density: 

p~(k) = J drexp(ik . r) p~(r) 

and its moment expansion in terms of the plane wave in powers of k: 

p~(k) = V I (ikt. s(n) 

n=O n! 

where 

V = J drp~(r) 
is the molecular volume, and the moments 

1 
s(n) = - J drrn p~ (r) 

V 

(40) 

(41) 

(42) 

(43) 

are Cartesian tensors which are symmetric in their indices. The dot product in 
Eq. 41 implies a full scalar contraction with the kn vectors. Hence, using the Einstein 
summation convention (in which repeated indices are summed over), 

(44) 

where the Greek indices Ct, ~, y, etc. stand for the Cartesian directions x, y, z. 
Equation 44 becomes 

(45) 
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which we can rewrite by assuming that the terms in the series above S(2) are geometric. 
Hence 

(46) 

where we can define 

(47) 

The purpose of Eq. 47 is to 'correct' the expansion of Eq. 46 in powers of k so that it 
agrees term by term with Eq. 45. It can be shown by examining powers of k that 

The fourth-order term in the square brackets in Eq. 48 contains lower order terms 
which correct for the overcounting for S(2) terms implied by the exponential in Eq. 46. 
We now consider what happens when we truncate the expansion 46 and reconstitute 
the direct space representation by an inverse Fourier transform, i.e. 

p~(r) = 8!3 S dk exp( - ik· r) p~(k) (49) 

Thus, taking 

p~2](k) = Vexp ( - k;k~ S~f ) (50) 

where the superscript [2] implies that Eq. 50 is only correct through second order, and 
substituting into Eq. 49 we obtain 

g[2] _ V (21t)3 /2 (2) -1 

P.K (r) - 81t3 (det s(2»)1 /2 exp( - r",(S )"'11 rll) 

V 
= -- (det S(2»)-1 /2 exp ( - r (S(2»)-1 r ) 

(21t)3 /2 '" "'II ~ 
(51) 

It is easy to confirm that (using Eq. 51) 

S dr p12] (r) = V, S dr r2 p~2] (r) = S(2) (52) 

so that Eq. 51 gives a simple Gaussian representation of the molecular shape density 
which ensures that we regain the correct zeroth and second moments, as it should. 
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Adopting the rotated coordinate system, Eq. 51 becomes 

(53) 

which shows that the 'through second order' representation of the molecule is a single 
elliptical Gaussian with principal diameters Ex, Ey, Ez• This is the real justification for 
the ansatz in Eq. 46 in which S(2) terms are summed geometrically through all orders. 
It is possible to produce a more detailed description of the molecular shape by adding 
to Eq. 51 the next term (third-order) coming from the expansion of f(k), viz. 

Pg[31(r) = {I - 2. S(3) V V V } pg[21 (r) 
.II 3! "'fly '" JI y .II 

(54) 

The 'through third order' term in Eq. 54 and higher order variants generate ellipsoids 
with 'ears', i.e. embellished by a higher order angular dependence. Equations such as 
50 and 54 give an objective tool for coarse-grained representations of molecular shape, 
in which the whole molecule can be represented by a single ellipsoid or 'eared' 
ellipsoid. Alternatively, one can introduce distributed ellipsoids to represent groups of 
atoms, such as methyl or amino acid side-chains, and backbones in a protein. 

Results 

The shape-multipole method that we have outlined provides a simple way of 
encapsulating the shapes of molecules in terms of a small number of numerical values. 
One can calculate centroids and shape multipoles at negligible cost; for example, the 
computation of the protein volumes in Table 1 also includes the CPU time required to 
compute the shape multipoles. The centroids and quadrupolar axes can be used as 
a simple way of aligning sets of complex molecules. It is also possible to screen 
databases of molecules using a similarity function based on the components of the 
shape multipoles. Such an approach resembles the suggestion of Sudarsanam et al. 
[17], in which molecules are represented as ellipsoids computed from the coordinates 
of atom centers. The shape multipoles, however, describe complex geometric molecu
lar shapes more precisely, taking into account the true extent of atoms in molecules. 
As an illustration, Table 3 gives the shape multipoles for the arbitrarily chosen 
molecule with the CSD code CEYYAG, and the 15 molecules extracted from the 
previously described subset of the CSD, ranked according to possessing the most 
similar shape-multipoles to CEYY AG. For brevity, the table only gives the largest 
components of the octopole, and not all 10 unique values. The structure ofCEYYAG, 
and some of the molecules determined to be similar are given in Fig. 5. CEYY AG is 
a simple sulfonamide with antibacterial activity, with an approximate 'V' shape 
largely conferred by the stereochemistry of the central sulfur atom. A number of the 
molecules determined to be similar are also sulfonamides, but some are not, although 
from the diagram it can be seen that all possess a similar 'V'-shaped motif. In this 
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approach we use a simple rms-type function to make a quantitative comparison of 
the molecular shapes. We have yet to establish the optimal way for carrying out such 
comparisons. A drawback of this approach as a low-resolution search for potential 
inhibitor lead compounds is that it relies on a global molecular shape description. 
Obviously, such a technique cannot distinguish between those regions of a molecule 
directly involved in interactions with the receptor and those that are not. It is 
possible to distribute the shape multipoles (and the related area multipoles) to 
provide localized descriptions of molecular shape, although this in turn complicates 
the comparison procedure between different molecules. However, such searches are 
not limited to attempting to identify lead compounds. One strategy for exploiting de 
novo ligand design [18J is to look for 'spacers' or molecular frameworks that seek to 
position functional groups according to some pharmacophoric model. We are 
currently attempting to design a method incorporating multipole searches of the 
CSD to find a set of similar spacers to aid the ligand design process. One advantage 
of utilizing the CSD is that, in the case of flexible spacers (or 'hinges'), it is likely that 
the crystal structure conformation of the spacer will also be accessible if this 
molecular framework is transferred into a potential ligand. Another application of 
the shape multipoles is to investigate their relationship to the analogous electro
static moments. The idea of using the connection between shape and charge 
distribution tensors has been proposed by Silverman and Platt [19,20J as part of 
a 3D-QSAR procedure, although such a technique could also be modified for 
database searching. 

Visualization [13J of the iso-contours of the Gaussian density function in Eq. 54 
gives rise to surfaces that closely resemble the smooth molecular surface. The 
analytical Fourier transform approach that we have outlined gives a way of coarse
graining the Gaussian density representation, in a similar way to the numerical 
decomposition of the molecular surface into spherical harmonics [21]. Such low
resolution versions of protein surfaces and density volumes may prove useful in 
searching the Protein Data Bank to recognize tertiary-structure motifs, or in 
conjunction with some of the surface comparison and docking methods presented in 
the next section. There are a number of other potential applications for low
resolution models of complex biomolecular systems, and these have been very well 
reviewed by Carson [22J in his presentation of surface decomposition using wavelet 
multiresolution analysis. 

In our approach one can replace the atom-based densities for functional groups, 
residues or whole molecules by elliptical Gaussian or 'decorated' ellipsoids. This 
method of approximating shape ensures that the individual components, be they 
parts or whole molecules, have correct shape multipoles up to prescribed orders. For 
visual representation this coarse-graining may have important advantages, since the 
number of Gaussians needed to represent a protein, for example, would be drasti
cally reduced. One might only require two Gaussians per residue, depending on the 
degree of exactitude required. The conservation of mUltipoles referred to above is 
reminiscent of Stone's [23,24J 'distributed multi pole' approach to molecular inter
actions. 

165 



J.A. Grant and B. T. Pickup 

Table 3 Shape multi poles computed for the molecule CEITAG (CSD code) and the next 15 most 
similar molecules found in a subset of the CSD 
CSD code VI Qxx Qyy Qzz nux flxxy nXYZ 

(A3) (A2) (A2) (A2) (A3) (A3) (A3) 

CEYYAG 252.61 8.52 3.72 2.16 3.21 -7.06 -1.47 
CPROMZ 236.58 8.92 4.54 1.39 6.18 -6.99 -1.39 
DPHPZL 260.35 8.88 3.70 2.07 4.84 -4.98 1.03 
YIBFEU 221.57 7.94 3.38 2.06 4.87 -7.07 0.40 
SOBXUC 243.81 9.11 3.82 1.89 0.83 -7.55 -0.45 
DUKXAI 239.79 9.61 3.92 1.68 6.00 -7.04 - 1.44 
MXPEAC 245.73 7.96 4.55 1.67 7.14 - 5.71 -0.40 
SUTHAZ 220.29 8.17 2.97 2.48 2.51 - 8.37 0.03 
JADDIB 238.34 9.21 3.33 1.62 3.72 -6.59 0.31 
YADBOU 225.07 8.29 3.39 1.40 5.22 - 3.97 -0.94 
KIXFOM 249.72 7.89 4.29 2.06 6.82 - 3.88 -1.53 
SLFNMF02 252.48 9.57 4.45 2.08 -4.77 -9.23 -1.72 
BILSEU 209.03 7.99 3.13 2.20 0.73 - 8.01 -0.84 
BGIFUL 260.76 9.20 3.96 1.97 1.65 - 3.12 -2.85 
GAHGOL 223.38 8.23 3.62 1.82 7.98 -2.54 -1.31 
BARGEG 297.57 7.44 3.94 2.55 1.89 - 5.21 -0.78 

(a) CEYYAG 
Fig. 5. Three-dimensional structure of CEITAG and some similar molecules as determined by 
shape multi poles. 
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(b) CPROMZ 

(c). DPHPZL 
Fig. 5. (continued). 
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(d) YIBFEU 

SOBXUC 
(e) 

Fig. 5. (continued). 
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(f) DUKXAI 

(g) MXPEAC 
Fig. 5. (continued). 
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Docking 

We are interested in two related docking procedures. External docking is the 
classical docking procedure, which is widely understood and involves the alignment of 
two molecular shapes without overlap. Hence, we seek to rotate and translate rigidly 
a guest molecule or substrate (B), with respect to a host molecule (A), such that the 
surfaces are in maximal contact. Internal docking, on the other hand, involves the 
same rigid motions of B, but with maximal overlap. The simplest aspect of internal 
docking involves the shape comparison of a series of molecules of similar size. In this 
instance one is essentially producing maximal overlaps. A more complicated case 
involves molecules of dissimilar sizes in which one is interested merely in comparing 
two surface sections [25]. The problem of external docking is well studied, and recent 
detailed reviews can be found [26-30]. Perhaps the most successful of the molecular 
docking methods is the set-theoretic method of Kuntz and co-workers [31-33]. This 
method is a clique-based method which matches nodes between graphs representing 
the protein and the ligand. However, an alternative viewpoint is to treat the docking 
problem as a search in a rigid-body Cartesian coordinate system [34,35]. This is 
a more direct simulation of the molecular recognition process, and is readily extended 
to introduce ligand flexibility. In hard-sphere terms the molecular docking problem is 
intuitively obvious, but how does one implement it in the context of the Gaussian 
representation? The answer lies in the ease with which the molecular intersection 
volume, V AB, and the molecular intersection area, AAB, are computed with Gaussians. 
We propose a model in which external docking seeks to maximize AAB and to 
minimize V AB. Internal docking seeks a maximum in both quantities. 

Let us consider two Gaussians centered at RA and RB• The Gaussians have 
exponents 

1C 
~=

eri 
(55) 

so that the two Gaussians represent atoms of radius erA, erB, respectively. The 
intersection volume, V AB, can be calculated using Eqs. 26 and 8 as 

(56) 

where RAB is the interatomic distance, and the parameter 

(57) 

The other constant in Eq. 56 is given by 

( 
1t )3/2 

V AB(O) = PAPB IX + ~ (58) 
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We now define a quantity which is related to the intersection area, namely 

BAB = ( O"A a~A + O"B a~J VAB (59) 

This quantity has the same (volume) dimensions as VAB. The Gaussian docking 
function is constructed using a function 

(60) 

where the constant A will be fixed so as to confer desirable properties on the docking 
function F AB. Hence, we ensure that F AB is a maximum when the intersphere distance 
RAB achieves the correct value for hard-sphere docking (see Fig. 6). Hence 

dFAB 2 2 2 
dRiB = 0 at RAB = DAB = (O"A ± O"B) (61) 

The positive sign in Eq. 61 is appropriate for external docking, whilst the negative sign 
is for internal docking. In this manner we can produce the Gaussian version of 
hard-sphere docking. Some algebra leads to 

F AB = 2V AB (0) [1 + ~ (RiB - DiB)] exp( - ~RiB) 

It is more useful in practice to use a normalized docking function, 

FAB 
NAB = F max 

AB 

which has a maximum 

and a minimum 

at 

RAB = 0 

(62) 

(63) 

(64) 

(65) 

(66) 

The quantity NAB can be thought of as a function which evaluates the sphere-sphere 
contacts for docking. The sharpness of the maximum can be controlled by adjusting 
the parameter 1(, since 

I( 

~ = O"i + cr~ (67) 

A large I( gives a sharp maximum and, as we shall see, more hard-sphere-like behavior. 
For DAB = 0 a large I( gives a very deep minimum at RAB = O. 
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Fig. 6. External (A) and internal (B) docking/or two spheres o/radii eTA and eTB' 

How can we define a Gaussian docking function for a pair of molecules such as 
a protein-ligand complex? This is simply answered, since one can define a pair
docking function 

N= L L NAB (68) 
AellA Bell. 

which sums over contact atoms from molecules /lA and /lB' The function 68 can be 
maximized by rigid rotations and translations of /lB' The size of the maximum gives 
a pair contact number for the docked molecules. In this way we achieve a formula 
embracing both external and internal docking. The optimization of Eq. 68 with 
respect to the rigid motions of B can be achieved using an analytical determination of 
the Cartesian first and second derivatives. The rotational motions are computed using 
a quaternionic representation, so that the Cartesian derivatives must be transformed 
into this representation. The parameter K acts as a natural annealing parameter 
controlling the shape of the surface. Another simple approach to shape comparison 
and internal docking has been utilized [4] by simply maximizing the intermolecular 
intersection volume V AB' 

Results 

We have coded a local optimization procedure based on the method described in 
the previous section. In what follows we review some preliminary results obtained 
investigating some protein-ligand interactions. Table 4 shows the results for the 
external docking of a number of protein-ligand systems. All the results are obtained 
with a value of K = 3.0 and from starting geometries derived from experimental X-ray 
crystallographic data. The protein is represented by all atoms belonging to each 
residue that contains at least one atom within 10 A of the ligand, in the experimentally 
determined binding orientation. The number of protein atoms and ligand atoms is 
given in Table 4. The primary intention here is to check that our procedure is in broad 
agreement with experiment. This is confirmed by looking at the rms deviations 
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Table 4 Accuracy of the Gaussian docking method with respect to crystallographic ligand 
orientations 
PDB code 

2GBP [38] 
3DFR [39] 
3DFR [39] 
6RSA [40] 
1GST [41] 
2CCP [42] 
lSTP [43] 
lHVR [44] 

Description 

Periplasmic binding protein/~-D-glucose 
Dihydrofolate reductasejNADPH 
Dihydrofolate reductase/methotrexate 
Ribonuclease A/uridine-vanadate 
Mu class glutathione S-transferase/glutathione 
Cytochrome c peroxidase/iron-heme 
Strepta vidinjbiotin 
HIV-protease/cyclic urea (dupont xk263) 

a Number of proteinjligand atoms. 

Natomsa 

539/13 
562/33 
629/48 
867/31 
595/20 
827/43 
428/16 
762/46 

0.51 
0.44 
0.28 
1.29 
0.36 
0.45 
0.73 
0.13 

between optimized and experimental structures reported in Table 4. We have also 
conducted theoretical experiments in which ligands are started in random positions. 
We find that there is no problem associated with finding local maxima, that ligands 
can easily move distances of 8-10 ,.\, and that it is easy to achieve convergence in the 
rms of the gradient down to 10-6 ,.\2. The relatively large motions ofthe ligand during 
rigid-body optimization from some random search point are in part because the 
Gaussian docking function 'softens' the 'surface' of the interacting molecule, allowing 
for a certain degree of penetration of the two interacting surfaces. This fuzziness 
allows for both a degree of conformational change of the interacting molecules, and 
does not require that the surfaces make a perfect fit, as is required for hard-sphere 
surfaces. Clearly, this behavior is governed by the value of the K parameter, i.e. 
a smaller K gives a softer surface. In this respect our analytical algorithm performs in 
a similar way to the purely numerical soft-docking algorithm of Jiang and Kim [35]. 
In general, the values NoP! provide a good discrimination between local maxima, and 
it is rare for maxima to be found which are larger than the true experimental ones. 
Nonetheless, we expect that it will be important to analyze the structures correspond
ing to the best maxima in the Gaussian docking function, with a more physical 
method such as the Poisson-Boltzmann estimation of binding energies. It is also easy 
to visualize the docked structures using the calculated NAB values for NoP! to color 
atom pairs in contact. No attempt has been made, as yet, to find an optimum 
algorithm, either for global searching of the rigid-body coordinate space or for 
improving the efficiency of the local optimization. For example, global optimization 
techniques such as simulated annealing [36] or the diffusion equation approach 
[9,37] in which the potential surface can be deformed, in our case by varying the 
K parameter, may be very suitable. We expect that the performance of the local 
optimization can be improved by using a neighbor list approach to minimize the 
amount of work. The current algorithm uses all intermolecular atom pairs for the 
relatively large systems studied, which, given the exponential nature of the docking 
function, is probably unnecessary. Even given these restrictions, the local optimiza
tions described in Table 4 require only a few seconds of CPU resource on an average 
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workstation. We have also used our technique for systems based on protein-protein 
interactions, cyclodextrin complexes and also for DNA binding, and we obtain similar 
results to those described for the protein-ligand systems. 

An important feature of the docking method described in the previous section is 
that, by simply changing the sign appearing in the constant DAB defined in Eq. 6, the 
method can be switched from evaluating surface complementarity to surface sim
ilarity. Thus, it is trivial to reuse the code to compute the results of Table 4, to align 
molecules based on the similarity of their shapes. In this respect, the new unified 
docking procedure presented in this section is an extension of our old approach 
presented in Ref. 4 (which is equivalent to setting '"A = 0 in Eq. 60). The advantage of 
this new approach is that it is now possible to identify surface similarities arising from 
molecules of differing sizes such as proteins with their small molecule mimics. We have 
used the new method for internal docking to predict the relative orientation of ligand 
series binding to the proteins thrombin, thermolysin and HIV-protease. The accuracy 
of these predictions, with respect to the experimentally observed relative orientations, 
is at least as accurate as those reported using our original shape matching method [4] 
('"A = 0), and in certain cases there is some improvement. We have also carried out 
some preliminary calculations attempting to generate the relative orientation ofturkey 
ovomucoid inhibitor (TOMI, a 56-residue peptide) and a difluoroketone inhibitor 
(DFKi) bound to the enzyme elastase. These calculations were originally carried out 
using the very elegant hard-sphere method of Masek et al. [25]. The results that we 
have obtained so far are similar to those obtained by Masek et al. We find that it is not 
possible to generate the experimental alignment using only volume intersection 
('"A = 0), but successfully find a maximum that corresponds to the experimental 
alignment using the new internal docking method. The computational performance of 
the Gaussian algorithm is much improved, as expected, relative to the original 
hard-sphere method. We need to establish if the global value of the Gaussian docking 
function corresponds to the experimental alignment by placing the DFKi inhibitor at 
random start points on (or close to) the surface of the TOMI protein. 

Conclusions 

We have described a Gaussian variant of hard-sphere shape techniques which has 
the advantage that all expressions for quantities are analytically determined. We have 
shown how to compute volumes and areas, and have indicated how one can charac
terize molecular shapes using multipolar averages. The multipole shape tensors give 
a coarse-grained representation of the shape density based on the whole molecule or 
on fragments within it. We have also extended the Gaussian method to include 
a description of surface similarity and complementarity. 
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Introduction 

Enzymes playa crucial role in the biochemical machinery, serving as extraordinari
ly specific, highly efficient and regulatable catalysts of the fundamental chemical 
reactions that occur in living organisms. Understanding the mechanisms by which 
enzymes achieve their remarkable catalytic abilities has been a long-standing goal of 
biochemists, and significant progress has been made since 1878 when Fredrich 
Wilhelm Kuhne first coined the word 'enzyme' (from the Greek en in + zyme leaven) 
to emphasize that there was some agent in yeast cells and not the yeast itself that was 
responsible for fermentation. Biochemists have since deduced that enzymes are 
proteins, composed of sequences of amino acids, and have developed powerful 
experimental techniques for determining the precise amino acid sequences that define 
proteins. Moreover, it is possible to modify individual residues through site-directed 
mutagenesis techniques to help identify the key functional groups of the enzyme. 
Additionally, X-ray crystallography has advanced to the point where it is now feasible 
to determine the three-dimensional structure of enzymes, providing us with the ability 
to visualize the active site and confirm Emil Fischer's 1894 hypothesis that the 
specificity of an enzyme for a particular substrate is due to their geometrically 
complementary structures. 

This lock-and-key hypothesis is borne out in the binding of the substrate malate in 
the active site of the enzyme malate dehydrogenase (MDH), which interconverts 
malate and oxaloacetate as part of the citric acid cycle. The active site of MDH has 
two arginine residues, Arg81 and Arg153, that form salt bridges with the carboxylate 
oxygen atoms of the malate substrate (Fig. 1) and orient it optimally for the sub
sequent transfer of a proton to the nearby histidine residue (His177) and transfer of 
a hydride ion to the cofactor nicotinamide adenine dinucleotide (NAD+). A third 
arginine residue, Arg87, forms hydrogen bonds with both the 02 oxygen atom (which 
donates the proton) and one of the carboxylate oxygens of the malate substrate, 
further locking the substrate into place. 

Despite tremendous progress toward the goal of understanding the detailed 
mechanisms of catalysis, a number of issues remain difficult to address with 
current experimental methodology, because the critical catalytic steps of molecular 
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recognition and capture of the substrate and the ensuing making and breaking of 
bonds take place on exceedingly short time scales. Crystal structures are insightful, 
but yield an essentially static picture of the enzyme-substrate system. The measure
ment of Michaelis-Menten types of rate constants cannot always differentiate be
tween competing mechanisms. Site-directed mutagenesis techniques do afford the 
ability to modify individual residues and to study the effects of mutations on structure 
and catalytic activity, but the results are not always definitive. This situation has 
motivated our efforts to develop numerical tools which can be used to address some of 
these critical issues of molecular recognition and catalytic processes in enzymes that 
are difficult to analyze with current biophysical and biochemical experimental 
methods. 

Given that the SchrOdinger equation provides an appropriate framework for 
describing the quantum mechanical behavior of atoms and molecules, one might 
hope that the study of enzyme-catalyzed reactions might prove to be a reasonably 
straightforward exercise. Sometime in the next century, that will undoubtedly be the 
case. For now, however, there are significant restraints imposed by both the sophisti
cation of the algorithms which produce approximate solutions of the Schrodinger 
equation and the computing power available, even in supercomputing environments. 
High-level ab initio quantum mechanical calculations based on Hartree-Fock or 
density functional methods are capable of generating enthalpies of formation, for 
example, which agree with experimental measurements to within 4-8 kJlmol [1]. 
Unfortunately, such calculations are quite limited in practice. A single energy calcu
lation in a system containing a dozen atoms may require tens of hours to complete on 
even a large supercomputer. Computations of entire enzyme-substrate complexes 
composed of thousands of atoms are clearly outside the realm of feasibility for these 
methods. 

As an alternative, one might consider using one of the so-called semiempirical 
quantum mechanical methods [2]. These techniques rely upon a parametrization of 
various functionals to approximate solutions to the Schrodinger equation and are 
orders of magnitude faster than the ab initio quantum methods. Unfortunately, even 
these methods are too computationally intensive to be applicable to the study of 
complete enzyme-substrate systems. If we are willing to dispense with the constraint 
of simulating the entire enzyme, it is possible to build approximate models of the 
active site by replacing the active-site residues with small-molecule analogues and 
orienting them according to the crystal structure [3-5]. 

A method that is capable of providing a dynamical simulation of large systems 
like the enzyme-substrate complex is the so-called molecular mechanics model 
[6]. In this method, the atoms are treated classically. Chemical bonds are rep
resented by force constants that define the bond lengths and angles between 
adjacent bonds. Atoms that are not bound interact electrostatically and via a Len
nard-Jones potential. The charge distributions and parameters that define the model 
are determined by calibrating to the known structures and infrared spectra of small 
molecules in the gas phase and measured thermodynamic properties in the condensed 
phase. The molecular mechanics model provides a rough approximation to solutions 
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of the Schrodinger equation but, in practice, provides realistic simulations of enzyme 
systems. 

One issue that can be addressed with molecular mechanics methods is the 
formation of the Michaelis complex, which can be considered to be the point in 
the reaction sequence when the substrate has been captured and oriented by the 
enzyme. Hydrogen bonds stabilizing the complex have formed but no covalent 
bonds have been reorganized. Figure 1 is a depiction of the Michaelis complex 
of malate and MDH and was obtained from a dynamical simulation using 
molecular mechanics methods: a so-called molecular dynamics calculation [7]. 
The structure of the Michaelis complex for malate and MDH cannot be deter
mined experimentally: the reaction proceeds too quickly. By fortuitous circumstance, 
it happens that MDH binds citrate [8] into a stable complex, permitting X-ray 
crystallographers to define its structure. The structure displayed in Fig. 1 was 
obtained by placing a malate substrate into a conformation analogous to the one 
occupied by citrate in the experimentally defined crystal structure and then allowing 
the protein and malate substrate to equilibrate into a minimum-energy configur
ation. As a measure of the ability of the molecular mechanics method to realistically 
reproduce the actual protein environment, we can compute the differences in 
position between atoms in the X-ray crystal structure and those determined by the 
numerical model. The root-mean-squared difference summed over (X-carbon atoms 
is 0.35 A; for all atoms, the figure rises to 0.89 A. These values are quite reasonable 
and we can conclude that the numerically derived structure of the Michaelis 
complex illustrated in Fig. 1 is a realistic representation of the actual Michaelis 
complex of the MDH:malate:NAD+ system. 

Fig. 1. Stereo view of the active site of MDH, with the substrate malate and cofactor NAD + . 
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QMlMM method 

Unfortunately, the molecular mechanics model cannot adequately describe the 
subsequent processes of breaking and forming chemical bonds. A more accurate 
description of the inherently quantum phenomena associated with bond formation is 
necessary. Rather than resort to a cluster-type approach to address the issue of 
electronic structure during the catalysis process, we note first that the molecular 
mechanics method does provide a realistic description of the dynamics of the protein 
as a whole. If we further postulate that the quantum chemical activity is confined to 
a small region near the active site, then it is possible to construct a hybrid model in 
which only a relatively few atoms are described quantum mechanically and the 
remainder are treated with molecular mechanics [9-11]. This approach has the 
advantage that the entire enzyme is present and the effects of the enzyme environment 
on the reaction are included implicitly, unlike the cluster models in which enzyme 
environmental effects are more crudely approximated. Unfortunately, even with the 
reduction in the size of the problem to be treated quantum mechanically from 
thousands of atoms to tens of atoms, it is not possible to incorporate any of the 
high-level ab initio quantum methods and retain any hope of running dynamical 
simulations. Consequently, we are constrained to use one of the semiempirical 
quantum models. 

While this is, on the face of it, not as satisfying a situation as one might hope, it is 
still possible to generate reasonable simulations with the semiempirical models. In 
Table 1, we list a small sampling of values from the so-called G2 test set, which 
compares computed enthalpies of formation with experimental measurements [1]. 
The G2 method is a composite theory based on the Hartree-Fock 6-311 G(d, p) basis 

Table 1 Errors in estimation of enthalpies of formation 

Molecule .1H~ (kJ/mol) IG2 - expt.1 I B3L YP - expt.1 IAMI - expt.1 

Methane -74.8 ± 0.4 2.9 6.7 37.6 
Ethane - 84.0 ± 0.4 2.1 2.5 10.9 
Benzene 82.3 ± 0.8 16.3 18.8 9.2 

Formic acid - 378.3 ± 0.4 8.4 3.8 28.8 
Acetic acid - 432.2 ± 1.7 6.3 10.9 1.7 
Methylamine - 23.0 ± 0.4 0.0 13.4 7.9 

Trimethylamine - 23.8 ± 0.8 5.9 0.8 16.7 
Acetaldehyde -165.9 ± 0.4 5.4 1.3 7.9 
Pyridine 140.4 ± 0.8 9.2 0.8 10.9 

G2 is a composite theory based on the Hartree-Fock 6-311 G(d,p) basis set and several basis 
extensions. Electron correlation is incorporated by Ml!JIler-Plesset perturbation theory and 
quadratic configuration interaction. B3L YP is a density functional method based on Becke's 
three-parameter functional and the gradient-corrected correlation functional of Lee, Yang and 
Parr. AMI is the semiempirical model of Dewar et al. 
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set and several basis extensions. Electron correlation is incorporated by means of 
M011er~Plesset perturbation theory and quadratic configuration interaction. At the 
present time, it represents the state-of-the-art in high-level ab initio quantum methods. 
While the root-mean-square variance for the G2 method over the entire 148-member 
test suite was 5.1 kJ/mol, there were instances where the deviation was as large as 
34 kJ/mol. The variance of the density functional method B3LYP was 10.2 kJ/mol, 
with a maximum deviation of 84 kJ/mol. We have not computed AMI enthalpies for 
all the members of the G2 test set, but a quick inspection of Table 1 indicates that the 
variance for the AM 1 method will be significantly larger than that of either of the two 
ab initio methods. On the other hand, we are not interested in reproducing the entire 
slate of chemical reactions for all known elements. Rather, we are interested in 
a specific few interactions which may occur in a particular enzyme~substrate system. 
Because the AMI model is defined by a set of empirically determined parameters, we 
might anticipate that suitable adjustments to these parameters will produce a model 
Hamiltonian which can be quite accurate for a limited set of interactions. Using the 
MDH:malate:NAD+ system as an example, we shall lay out a systematic procedure 
for developing accurate model Hamiltonians suitable for studying enzyme~substrate 
systems. 

Calibration of the QM model Hamiltonian 

The first problem we must confront is a specification of the important aspects of the 
enzyme system in question. Figure 2 is a schematic depiction of the active site of the 
MDH:malate:NAD+ complex, with the important atoms labeled. We note that the 

~"'- MM Region ,~ 
,,'H-N~ -...;;: ~' 

Asp~l~O(-) ~NE2....... Arg-87(t) 

/ 'H~, 
Prolon (Ht) Transfer 112 0- ' 

f ! 
-0::::....... \\\\\ ~o 
~ __ -C2 __ CH"'" 

/- \, 2 Malale 
-0- "/H21 

/ 
, Arg-81(t) 

/Arg-153(t) , 

C4N t N~Sugar NAD 

~ MM Region 
QM Region 

Fig. 2. Schematic drawing of the active site of the MDH:malate:NAD+ complex. 
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crystal structure and other bio~hemical data [12,13] indicate that a proton is transfer
red from the 02 oxygen atom of the malate substrate to the NE2 nitrogen atom in the 
imidazole ring of the His177 residue in MDH and a hydride ion is transferred from the 
C2 carbon atom in malate to the C4N carbon atom in the nicotinamide ring of the 
NAD+ cofactor. Consequently, in addition to requiring that the quantum Hamil
tonian provide a reasonable description of the structures of the key elements, we want 
to ensure that both the proton and hydride transfer reactions are accurately represent
ed. To do so, we will need to examine analogous reactions in small-molecule systems, 
for which experimental data are available and for which high-level ab initio quantum 
calculations can be performed. 

Focusing for the moment on the proton transfer reaction, we note that the proton is 
derived from a hydroxyl group on the malate substrate. We chose methanol as an 
analogue for the proton donor; it has been well studied experimentally and can be 
numerically modeled to high order. Because the nitrogen atom which serves as the 
proton acceptor is a member of the imidazole ring, it is wiser to use the imidazole ring 
as an acceptor analogue rather than trying to abstract the system to a smaller entity 
such as NH2• This entails a larger computational problem, but is still one which can 
be reasonably addressed. 

The next step is to fit the parameters of the AMI model Hamiltonian to re
produce the target data, which we will choose as the experimental enthalpies 
of formation of the reactants, methanol and imidazole, and the products, methoxide 
and imidazolium. We also include experimental dipole moments for methanol 
and imidazole, theoretical dipole moments for methoxide and imidazolium (from 
HF/6-31G(d) calculations) and structural information obtained from high-level 
(MP2/6-31G(d)) ab initio quantum calculations: bond lengths, angles and dihedral 
angles. The nonlinear optimization problem associ-ated with this step has been 
outlined by Dewar and Thiel [14]. Basically, we seek the set of parameters 
x = (Xl> ... ,XN) defining the AMI model Hamiltonian (listed in Table 2) that minim
ize the following scalar function: 

(1) 

where the Wi are the relative weights of the i = 1, ... , M terms. The Yi(X) are the results 
of AMI calculations with the parameter set x and the y? are the target values: 
experimental observables and results of ab initio quantum calculations. We have 
implemented an approach like that of Rossi and Truhlar [15] and utilize a genetic 
algorithm to ptimize the Hamiltonian parameters. The genetic algorithm we em
ployed is similar to one described by Goldberg [16], but represents the variables as 
real numbers instead of bit patterns and provides a uniform distribution of crossover 
points instead of one or two [17]. Additionally, this implementation relies upon 
a steady-state algorithm for population replacement [18]. 

To address the proton transfer reaction, we used the following set of target 
values [19]: 

1. Experimental enthalpies of formation, with a relative weight of 1. 
2. Dipole moments, with a relative weight of 30. 
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3. Internal coordinates taken from an ab initio quantum calculation to define the 
structures. We used a Hartree-Fock method with the 6-31G(d) basis set and MP2 
correlation correction. Bond lengths and dihedral angles were given relative weights 
of 1 and angles were given relative weights of 5. 

The genetic algorithm was initialized with the standard AM1 parameter set (there 
were 42 independent parameters optimized by the fitting procedure). A population of 
300 chromosomes was used, and initial values were selected from a random Gaussian 
distribution with a standard deviation of 0.1, centered on the standard AM1 param
eter values. Crossover and mutation probabilities were chosen to be 0.7 and 0.01, 
respectively. The algorithm was run for 15000 generations, with 1 % of the population 
selected for crossover in each generation. Optimized parameters for the system
specific parametrization (AM1-SSP) are listed in Table 2. 

Some results of the genetic algorithm fit are listed in Table 3. The rather extensive 
geometry comparisons are omitted from Table 3 for the sake of brevity, but the overall 
comparisons are quite good. The optimized geometries differ from their target values 
for bonds by 0.Q11 ± 0.008 A, the computed angles differ by 1.06 ± 0.97° and di
hedrals differ by 0.19 ± 0.14°. All of the AM1-SSP enthalpies offormation agree with 
the experimental values to within 3 kJ/mol; dipole moments agree to within 0.3 D. 
Additionally, if we look at the overall enthalpy of reaction for the transfer of a proton 
from methanol to imidazole, ~~H? = ~H?(products) - ~H?(reactants), we find that 
the experimental value is 656.7 kJ/mol and the AM1-SSP value is 661.3 kJ/mo!. The 
value from the standard AM1 formulation is 681.5 kJ/mo!. The optimized AM1-SSP 
value agrees to within 5 kJ Imol, which is the same level of accuracy obtained with very 
computationally intensive G2 calculations in the G2 test set. While this optimized 
AM 1-SSP model Hamiltonian would not fare well if tested in a broad range of 
problems, at least for the case of the proton transfer reaction between malate and 
His177, we have a fair amount of confidence that the AM1-SSP model will produce 
accurate results. 

The development of a complete model Hamiltonian for an enzyme-substrate 
system will require including in the above procedure any other probable or possible 
reactions which are part of the catalytic process. In the case of MDH, we need to add 
information about the hydride transfer reaction in a way similar to what we did for the 

Table 3 Design targets for the proton transfer reaction 

Molecule ~H~ (kljmol) IIlI (D) 

Target AMI AMI-SSP Target AMI AMI-SSP 

Methanol - 201.9 - 234.2 - 201.2 1.70 1.62 1.97 
Methoxide - 138.8 - 161.0 - 136.2 2.16 1.38 2.09 
Imidazole 146.3 212.2 145.5 3.80 3.60 3.69 
Imidazolium 739.9 820.6 741.7 1.74 1.63 1.76 

Experimental enthalpies offormation are taken from Ref. 23. Experimental dipole moments are 
obtained from Ref. 24. 
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proton transfer reaction. It is instructive to sketch out a possible approach to handling 
the hydride transfer reaction. The hydride ion transferred from the malate substrate to 
NAD + is originally attached to the C2 carbon atom of malate and opposite the 02 
oxygen, which serves as the proton donor. A reasonable choice for an analogue of the 
proton donor would be either methoxide or methanol, with the methyl group serving 
to donate the hydride ion. The hydride acceptor in the MDH system is the cofactor 
NAD+, specifically the C4N carbon of the nicotinamide ring. The principal problem 
here is to determine a reasonable analogue to the complete NAD+ molecule. One 
could choose to work solely with the pyridine ring (it is probably not prudent to use 
an analogue which does not include the ring structure). It is likely, however, that the 
carboxyamide group which is attached to the neighboring C3N carbon will affect the 
reaction to some degree. Unfortunately, experimental data for 1,4-dihydronicotinam
ide are sparse, which means that some crucial constraints are not available for the 
fitting procedure. It is, of course, possible to use high-level ab initio quantum methods 
such as G2 or B3L YP to supply the missing information but, as we can see in Table 1, 
even these methods are not as reliable as one might hope. It is important to find some 
place to touch base with experiment. The most cautious approach might then be to 
use experimental data from pyridine and ab initio quantum calculations in 1,4-dihy
dronicotinamide to guide the parameter fitting process. 

QMlMM interactions 

The next issue we must address concerns the interactions between the atoms 
described with a quantum mechanical potential, in what is termed the QM partition 
of the model, and those described classically through molecular mechanics, or in the 
MM partition. The hybrid model includes both electrostatic and van der Waals 
interactions between atoms in the two partitions. Explicitly, the model incorporates 
the following terms: 

1. QM electron-MM partial charge electrostatic potential. Atoms in the MM 
partition have no electrons; their effective charges are positioned at the atom center. 

2. QM nucleus-MM partial charge electrostatic potential. 
3. QM/MM van der Waals potential, which models the electronic repulsion and 

dispersion properties that are missing because the MM atoms have no electrons. 
In the case where an atom in the QM partition is bonded to an atom in the MM 

partition, as would be the case if we chose to draw the QM boundary between the 
Cl-carbon of a protein residue and the ~-carbon of its side chain, the model incorpo
rates fictitious 'link' atoms that serve to terminate the QM electron density along the 
bond. The link atoms have no interactions with atoms in the MM partition but do 
contribute to the energy and forces felt by atoms in the QM partition. There are no 
adjustable parameters for the link atoms. Neither of the QM/MM electrostatic 
potential terms contain any free parameters but the van der Waals interactions must 
be calibrated to realistically represent the forces on atoms in the QM partition due to 
atoms in the MM partition. 
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There are no experimental data to guide this parametrization effort. Instead, we rely 
on high-level ab initio quantum calculations of a water molecule interacting with the 
small-molecule analogues. Hartree-Fock calculations using the 6-31 G(d) basis set 
were performed, optimizing the individual structures of water and the analogue 
molecules. A series of HF /6-31 G( d) optimizations was then performed with a single 
degree of freedom: the distance between the water molecule and a specific target atom 
in the analogue molecule. We display the relevant orientations in Fig. 3 for the 
analogue molecules used in the proton transfer reaction. The 6-31 G(d) basis set has 
been shown to generate reasonable structures, but the interaction energies for neutral 
molecules are systematically underestimated [20]. We have used a scale factor of 1.16 
to compensate for this bias on all of the interactions between neutral reactants [21]. 

The set of calculations performed to establish the ab initio target values was then 
repeated with the hybrid model. Geometries of the small analogue molecules were 
optimized with the AMI-SSP quantum model Hamiltonian. The water molecules 
were treated with molecular mechanics and we used the TIP3P model of Jorgensen et 
al. [22]. The van der Waals parameters for atoms in the small-molecule analogues 
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Fig. 3. Schematic o/the microsolvation procedure: (a) imidazole; (b) imidazolium; (c) methanol; 
(d) methoxide. 
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were then adjusted to reproduce both the interaction energies and the optimal 
intermolecular distances obtained from the Hartree-F ock calculations. A summary of 
these results is presented in Table 4. We have also plotted the interaction energies 
obtained from the AM1-SSP quantum calculations against those obtained from the 
Hartree-Fock method in Fig. 4, which reflects the 0.7 kJ/mol root-mean-square 
deviation for interaction energies. For optimum distances, we find a root-mean
square deviation of 0.06 A. 

Proton transfer in solution 

The pieces are now in place to perform simulations with the calibrated Hamiltonian 
parameters. Before investigating the reaction mechanism in the context of the enzyme, 
however, we can touch base with experiment one last time by examining the proton 
transfer reaction between methanol and imidazole in solution. The free energy change 
,1G in solution can be obtained from the experimental pKa values of the reactants by 
means of the following relation: 

,1G = - 2.3RT[pKa{imidazole) - pKa{methanol)] (2) 

The pKa value of methanol [25] is 15.5 and that of imidazole [26] is 6.05, yielding an 
experimental value of 53.6 kJ/mol for ,1G. We compute the free energy change in 
solution utilizing a free energy perturbation method [27]. 

Table 4 Microsolvation results 

Molecule Orientation Atom HF 16-31 g(d) Hybrid method 

d(O-X)A E (kJ/mol) d(O-X)A E (kJ/mol) 

Imidazole 1 NE 3.09 - 30.4 2.83 - 30.6 
2 CD 3.75 - 4.1 3.70 - 3.6 
3 CG 3.60 -10.0 3.66 - 8.4 
4 ND 3.16 - 27.8 2.96 - 26.3 
5 CE 3.54 -10.2 3.57 -10.5 

Imidazolium 1 NEjND 2.94 - 66.7 2.85 - 65.6 
2 CD/CG 3.22 - 39.9 3.18 - 41.5 
3 CE 3.12 - 51.4 3.31 -46.9 

Methanol 1 02 2.99 - 22.5 2.60 - 28.4 
2 02 2.99 - 23.8 2.72 - 21.6 

Methoxide 1 02 2.67 - 87.7 2.47 - 89.1 
2 C2 2.44 - 28.8 2.25 - 29.1 

Orientations of the molecules correspond to those in Fig. 3. The columns labeled d(O-X) 
represent the distances between the oxygen in the water molecule and the heavy atom attacked 
in the small molecule. 
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Fig. 4. Calibration ofQM/MM interactions. Hybrid method interaction energies are shown plotted 
aga~nst HF/6-31 g(d) values. The solid line is drawn to guide the eye. 

In this formalism, the system is characterized by a Hamiltonian H(p, q, A) that is 
a function of the coordinates q and conjugate momenta p and a multidimensional 
coupling parameter A. The parameter A serves to define a pathway between two states 
A and B. We define a sequence of discrete states represented by values Ai> i = 1, ... ,N, 
which transforms state A into state B via a series of suitably small steps. The free 
energy difference between two adjacent states is given by the following relation: 

(3) 

where the term enclosed in angle brackets < > represents an ensemble average. The 
total free energy change from state A to state B is just the sum over all the intermediate 
steps, as given below: 

~G(A -+ B) = L~G(Ai -+ Ai+l) (4) 
i 

In computing the free energies, we use the ergodic hypothesis and assume that 
a time-averaged sampling over the structures as they evolve dynamically is equivalent 
to the actual ensemble average over all possible configurations. An estimate of the 
computational error that arises due to our discrete method (employed in Eqs. 3 and 4) 
can be obtained by computing the free energy change for the inverse reaction, 
proceeding from state B to state A. That is, at each state Ai> we compute the free energy 
change for both the forward Ai -+ Ai + 1 and backward Ai -+ Ai - 1 directions. 

To simulate the proton transfer reaction between methanol and imidazole, we 
immersed the solute molecules in an 18 A radius ball of TIP3P water. This produced 
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a model consisting of 2388 atoms: the 15 atoms of methanol and imidazole that are to 
be treated quantum mechanically and 791 water molecules in the MM partition. 
A deformable, stochastic boundary condition [28,29] was enforced on atoms in the 
region from 16 to 18 A. The initial configuration of methanol and imidazole was 
transformed into methoxide and imidazolium by moving the proton from the 02 
oxygen atom in methanol to the NE nitrogen atom in imidazole in a series of 0.05 A 
steps. The distances between the proton and the two heavy atoms were constrained at 
each step, along the path shown in Fig. 5. Because the free energy is a thermodynamic 
state variable, the difference in free energy between states A and B is path-indepen
dent. Each intermediate state was equilibrated for 20 ps and data were collected for 
10 ps using 1 fs molecular dynamics time steps. The computed free energy changes 
were 51.0 kJ/mol in the forward direction and 49.8 kJ/mol in the backward direction, 
which compare quite favorably with the experimental value of 53.6 kJ/mol. The free 
energy profile for the forward path is depicted in Fig. 6. The rather jagged patch in the 
center of the path is an artifact of the path we chose and is not physically significant; 
only the end point values are meaningful. 

We note that the solvating water molecules have a significant influence on the 
reaction. In the gas phase, the experimental free energy change was 656.7 kJ Imol. In 
solution, there is a dramatic energy stabilization of the charges on the product species. 
It will be interesting to compare this result with the equivalent reaction in the enzyme 
environment. 
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Fig. 5. Path taken during proton transfer reaction. The distances between the proton and the heavy 
atoms were constrained at each intermediate step. 
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Fig. 6. Free energy profile of the proton transfer between methanol and imidazole. The pathway 
parameter Iv represents a sequence of 70 intermediate states in which the distances between the 
proton and the two heavy atoms (02 oxygen of methanol and NE nitrogen of imidazole) were varied 
in increments of o. 05 i The forward calculation is represented by a solid line; the backward by 
a dashed line. 

Transferability of the QMlMM parameters 

One last concern that we should address before beginning our studies of the 
reaction mechanism in the enzyme is the transferability of the QM/MM parameters. 
These parameters were established by the microsolvation procedure described above, 
defining the van der Waals parameters according to interactions with water mole
cules. The proton transfer reaction between methanol and imidazole in solution was 
well described by the QM/MM method but, in the protein, the interactions with 
residues in the active site will not always be with oxygen atoms. In particular, nitrogen 
atoms in the guanidinium groups of active-site arginine residues will playa key role in 
stabilizing the malate substrate. As a final check on the model Hamiltonian, we should 
examine some of the key interactions between atoms in the QM partition and side 
chains in the protein. 

We have performed an extensive study of these interactions in small model systems 
[7] and found that, without further refinement, the parameters obtained through the 
microsolvation process can adequately describe the QM/MM interactions. In Fig. 7, 
we illustrate one example of these studies, in which a methyl-guanidinium (represent
ing an arginine residue) interacts with an acetate ion (representing one of the car
boxylate groups of malate). The methyl-guanidinium was placed in the MM partition 
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Fig. 7. Interaction energy of methyl-guanidinium and acetate. (.) QM/MM energies; (!J) results of 
DFT calculations. 

and the acetate in the QM partition. An analysis of the entire system was also 
performed with a density functional model where, again, the reactant structures were 
optimized independently and then were translated with one degree of freedom to 
obtain the interaction energy as a function of distance. Figure 7 is representative of the 
agreement we found; energies were reproduced within 20 kJ/mol and minimum
interaction distances to within 0.3 A. 

Reaction mechanism in the enzyme 

With the calibration of the semiempirical Hamiltonian and van der Waals interac
tion parameters, we are now prepared to run simulations in the enzyme environment. 
We constructed a model of the enzyme by considering all of the amino acid residues 
within an 18 A radius of the C2 carbon atom of malate, the NAD + cofactor and 39 
water molecules deduced from the crystal structure. Another 105 water molecules 
were added by superimposing a 20 A ball of TIP3P water and then removing all 
TIP3P molecules within 3.1 A of non-hydrogen protein atoms, substrate, cofactor or 
crystal water molecules. Finally, another 27 water molecules were added from a resol
vation procedure like that just described, but after 40 ps of molecular dynamics 
calculations with all atoms fixed except water molecules. Using solely a molecular 
mechanics description for all atoms, the system was heated from 0 K to 300 K over an 
interval of 20 ps with atom velocities assigned from a Gaussian distribution every 2 ps 
in 30 K increments. The system was then equilibrated for another 80 ps, followed by 
40 ps of data collection to define the Michaelis complex illustrated in Fig. 1. At this 
point, the QM/MM calculations were initiated and 20 ps of equilibration was 
performed, followed by 20 ps of data collection. 
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One concern about the QM/MM method is whether the dynamical behavior of 
atoms in the QM partition is accurately depicted. We can compute the root-mean
square deviation between structures and find that the difference between the 
Michaelis complex defined by the MM simulations and the equilibrated structure 
defined by the QM/MM calculations is 0.16 A for ex-carbon atoms and 0.39 A for all 
atoms. We conclude that, when properly calibrated, the QM/MM method provides 
a realistic dynamical model of the enzyme-substrate system. 

To explore the reaction mechanism of the MDH:malate:NAD+ system, we could 
employ the free energy perturbation method that we utilized in the proton transfer 
study between methanol and imidazole. A somewhat less computationally intensive 
alternative is to examine the minimum-energy surface of the reaction. We started with 
the QM/MM equilibrated structure defined above and annealed it from 300 K to 0 K 
over 20 ps while constraining the H2 proton and H21 hydride to be equidistant (1.3 A) 
from the donor and acceptor atoms. We then minimized the energy of the resulting 
configuration for 5000 steps, maintaining the constraints on the proton and hydride 
positions. The distances between the 02 oxygen atom of the malate substrate and the 
H2 proton, between the H2 proton and the NE2 nitrogen atom of His177 of MDH, 
between the C2 carbon atom of the malate substrate and the H21 hydride ion, and 
between the H21 hydride ion and the C4N carbon atom of NAD+ were varied on 
a four-dimensional grid with 0.2 A spacing. An energy minimization of 1000 steps was 
performed at each grid point, resulting in 675 separate minimum-energy values in the 
four-dimensional space. 

We produced a minimum-energy surface in the following manner. For each of two 
degrees of freedom, the distances between (i) the proton and (ii) the hydride ion and 

Fig. 8. Minimum-energy surface of the enzyme-catalyzed reaction. Reprinted by permission of 
Biochemistry. Copyright 1997 American Chemical Society. 
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the malate substrate. the minimum-energy value was sought from the possible values of 
the other two degrees of freedom. A plot of this reaction surface is depicted in Fig. 8. 
What is striking about the minimum-energy surface is the large barrier facing an 
initial hydride transfer. The minimum-energy pathway clearly indicates that the 
the malate substrate. the minimum-energy value was sought from the possible values 
of the other two degrees of freedom. A plot of this reaction surface is depicted in Fig. 8. 
proton transfer occurs first, followed by the hydride transfer. This is somewhat 
surprising due to the fact that the intermediate state after the proton transfer has 
taken place will have a net charge of - 3e on the substrate. In the gas phase. we might 
have expected the hydride reaction to proceed first, to minimize the charge separation 
in the intermediate state. As we saw in the study of the proton transfer in solution, 
however, solvation effects can be quite large. The environment of the enzyme clearly 
provides some stabilizing effects on the charged intermediate state [7]. We can see 
how important these solvation effects are by the following analysis. For each of the 
minimum-energy states defined by the surface in Fig. 8, we performed a single-point 
energy calculation in which all the charges on MM atoms were set to zero, thereby 
removing the principal solvation effects from the calculated energies. We plot these 
data in Fig. 9 and note that there is now a large barrier opposing the initial proton 

Fig. 9. 'Gas-phase' reaction surface. Single-point energy calculations were perfonned for the 
minimum energy states defined by the surface in Fig. 8 with the MM charges set to zero. Note that 
this figure is reoriented with respect to Fig. 8. Reprinted by pennission of Biochemistry. Copyright 
1997 American Chemical Society. 

193 



M.A. Cunningham and P.A. Bash 

transfer. Without the solvation effects due to the enzyme, the hydride transfer would 
occur first. Consequently, we can see directly in the MDH:malate:NAD+ system that 
the catalytic properties of the enzyme are not solely due to the proper orientation of the 
substrate and proximity of the reacting element. Solvation effects due to other residues 
present in the active site can have significant impact on the reaction mechanism. 

Conclusions 

We have demonstrated that realistic simulations of enzyme-substrate systems are 
possible with currently available computing resources. The key elements in our 
method are the use of a quantum mechanical description of atoms in the active site of 
the enzyme, calibration of the semiempirical quantum Hamiltonian, calibration of the 
interactions between atoms in the QM partition and those in the MM partition and, 
of course, good experimental data on the crystal structure of the enzyme. Without the 
quantum description of atoms in the active site, we would be unable to treat the 
important bond formation events that define the catalytic process. Unfortunately, the 
limitations of present algorithms and computing resources require that we use 
a semiempirical quantum method, but we have demonstrated that it is possible to 
calibrate the method against experimental data and produce results which rival those 
of the best ab initio quantum approaches, albeit in a limited set of circumstances. 
Furthermore, by calibrating the interactions of atoms in the QM partition with those 
in the MM partition, it is possible to produce realistic dynamics calculations. In 
essence, one can turn on the quantum description of the atoms without affecting the 
dynamics of the system as a whole. In this way, we can directly compute the effects of 
the protein matrix on the reaction mechanism, without resorting to any ad hoc 
schemes for estimating the influence of active-site residues. We note that recent 
experiments by John Burgner's group at Purdue are consistent with our proposed 
mechanism, lending some credence to our belief that the simulations produce a realis
tic description of the enzyme-substrate system. 

Finally, for the case of the MDH:malate:NAD+ system, it appears as though the 
enzyme produces an environment much like the solvating environment of aqueous 
solution, providing for the stabilization of charged intermediate states. Additionally, 
following the lock-and-key hypothesis, the active-site residues serve to orient the 
malate substrate into a configuration that is optimal for the subsequent chemical 
events. We are now in the process of extending this effort to consider other aspects of 
the MDH system, such as substrate specificity and the changes in activity brought 
about by modification of important subgroups. These are questions of prime import
ance to the complete understanding of enzyme systems and are questions that can be 
addressed by numerical simulation, working in concert with careful experimentation. 
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Modeling protonation equilibria in biomolecules 
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Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, 

9600 Gudelsky Drive, Rockville, MD 20850-3479, US.A. 

Introduction: The importance of protonation equilibria 

pH is one of the fundamental physiological variables. In fact, serious illness is 
usually associated with deviations of blood pH only a few tenths from the normal 
value, 7.4. It is very unlikely that the effects of abnormal pH result from the destructive 
chemical action of protons or hydroxide; if this were the case, a blood pH of 6.8, say, 
would not be dangerous. It is more likely that the sensitivity of organisms to pH 
results chiefly from the influence of pH upon the stability and reactivity of the many 
biomolecules that possess acidic and basic chemical groups. If this is correct, then the 
ill effects of abnormal pH values should become substantial for pH changes that 
correspond to free energy changes equal to the thermal energy, '" RT. Given that 
AAG = ApH(RTj1oge) = ApH(RT/O.43) [1], the critical pH change should be about 
0.4. In fact, this defines quite well the range of blood pH values that are tolerable to 
humans. 

Biomolecules would be far less sensitive to pH if they lacked chemical groups that 
titrated near pH 7. For example, the stability of a protein might well be fixed between 
pH's 5 and 9 if it lacked histidines, free cysteines, and an N-terminal amine group. 
Why, then, should natural selection have generated biomolecules that are exquisitely 
sensitive to pH? Part ofthe explanation may have to do with the importance of proton 
transfers in enzyme catalysis. In order for a chemical group in an enzyme to be an 
efficient general acid or base, it must be poised to surrender or abstract a proton. It 
must also revert readily to its initial protonation state in order to regenerate the active 
enzyme. In order for a group to meet these requirements, its pKa must be poised near 
the ambient pH. Therefore, catalysis will necessarily be sensitive to pH. 

The dependence of structure and function upon pH poses important challenges to 
those who wish to understand or engineer the properties of biomolecules. Optimally, 
one would like to be able to compute accurately the fractional charge of important 
ionizable groups as a function of molecular conformation and of pH. This capability 
would be of enormous value in elucidating the mechanisms of enzymes, and in 
predicting conformational properties such as the stability of folded proteins and of 
noncovalent complexes. Tautomer equilibria, correlations among the protonation 
states of multiple groups, and the kinetics of proton transfer will also be important in 
some cases. 
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This chapter presents an overview of the efforts to model protonation equilibria 
accurately. It presents brief discussions of the observed pKa's of ionizable groups in 
proteins, and of the theory of multiple-site ionization equilibria. It then sketches 
several computational approaches to the problem, focusing upon use of the Poisson
Boltzmann (PB) model for electrostatic interactions to compute protonation equilib
ria in proteins. Applications of the PB method of computing pKa's to the mechanism 
of acetylcholinesterase, and to the prediction of the pH-dependence of protein stabil
ity are then presented. Finally, promising areas for future research are suggested. 

Observed pKa shifts in proteins, and the 'Null' model 

Before presenting a discussion of the methods for predicting pKa's in proteins, it is 
worth examining the rapidly growing body of measured pKa's. The histogram of 
Fig. 1 shows that the pKa's of ionizable groups in proteins are often close to the pKa's 
of chemically similar compounds - 'model compounds' - in solution [2,3]. The 
distribution of pKa shifts, relative to model-compound values, is centered at 0, and 
most shifts are less than 1 pKa unit in magnitude. However, there is considerable 
scatter: some outliers are shifted by as much as 3 and even 4 pKa units. Not 
surprisingly, residues that are thoroughly solvated at the surface of the protein usually 
show only small pKa shifts [3], and the largest shifts are associated with groups that 
are at least partially sequestered from solvent. For example, the most remote outlier in 
the histogram is the pKa of a lysine side chain artificially placed in the hydrophobic 
interior of staphylococcal nuclease [4]. Its large pKa shift, measured indirectly 
through the thermodynamic linkage of its titration to the unfolding equilibrium of 
the protein, appears to result almost entirely from desolvation, rather than from 

! 
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Fig. 1. Histogram of pK. shifts for 60 ionizable groups in several globular proteins. 
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Fig. 2. Top: distribution of measured pKa's for 19 aspartic acid side chains; bottom: distribution of 
measured pK;s for 13 glutamic acid side chains. 

interactions with polar or ionized neighbors. Buried ionizable groups introduced into 
T4lysozyme [5] and myoglobin [6] also have large pKa shifts. On the other hand, not 
all desolvated ionizable groups have large pKa shifts; for example, the pKa of the 
partly desolvated catalytic His of chymotrypsin is about 7 [7,8]. 

Because the pKa's of most ionizable groups in proteins are not shifted much relative 
to model compounds, the simplest reasonable approach to estimating these pKa's is to 
assume that they equal the model-compound values. Accordingly, it has been argued 
that computational models should, at the least, be more accurate than this trivially 
simple approximation, which has been termed the 'Null' model [3]. This approxima
tion is frequently used in setting up molecular dynamics simulations of biomolecules, 
with the additional constraint that each ionizable group must be either fully proto
nated or fully deprotonated. 

Further analysis of the measured pKa's we have so far assembled yields an 
unexpected observation: aspartic side chains tend to be significantly more acidic than 
glutamic side chains. The mean pKa of all 19 aspartic side chains is 2.7, but the mean 
pKa of the 13 glutamic acids is 4.0. The distributions of the pKa's of these groups are 
compared in the histograms of Fig. 2. As is shown in Table 1, this result holds not only 
for the pooled data, but also for each separate protein. The pKa's of ethanoic (acetic) 
acid, propanoic acid, and butanoic acid differ by less than 0.1 pKa unit [9]. This 
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Table 1 Mean experimental pK;s of Asp and Glu 

Protein Asp Glu 

N Mean N Mean 

HEWL 7 2.6 2 4.6 
RNASE A 5 3.1 5 3.8 
BPTI 2 3.2 2 3.8 
OMTKY3 2 2.5 3 4.0 
CHYMO 2 2.0 0 na 
T4 1 2.0 0 na 
RNASE T1 0 na 1 4.3 
Cumul 19 2.7 13 4.0 

N: number of measured pK;s in each protein. (Most data are from NMR studies.) 
Mean: average pK. of group; Cumul: cumulative means; HEWL: hen egg-white lysozyme 
[3,87]; RNASE A: ribonuclease A [88] (see also the discussion in [89]); BPTI: bovine pancre
atic trypsin inhibitor [90-92]. OMTKY3: turkey ovomucoid third domain [93,94]. 
CHYMO: chymotrypsin [7,8]; T4: T4 lysozyme [95]; RNASE T1: ribonuclease T1 
[96,97]. 

suggests that it is the protein environment of aspartic side chains that causes them to 
be more acidic than glutamic side chains, rather than something intrinsic to the group. 
This issue is revisited later in this chapter. For now, it appears that the investigator 
confronted with an aspartic acid residue of uncertain pK. would do best to assume 
a pKa of about 2.7 rather than the customary 4.0. More generally, it is becoming 
possible to establish a more sophisticated Null model, in which the pKa of every group 
of a certain type, say aspartic acid, is set to the mean pKa observed for groups of that 
type in proteins. However, for the data we have examined to date, aspartic acid is the 
only group whose mean pKa in proteins deviates significantly from the model
compound pKa [10]. 

Theory of multiple-site protonation equilibria 

Modeling protonation equilibria is particularly challenging because of the large 
number of ionizable groups in most proteins, and the long range of the electrostatic 
interactions among these groups. This section discusses the theory of linked protona
tion equilibria, also known as multiple-site titration. 

Because each of the N ionizable groups in a protein may exist in two chemically 
different protonation states (more for groups with different tautomers), the number 
of possible ionization states for a protein is at least 2N. Computing the influence 
of protonation equilibria upon a protein involves, at least in principle, accounting 
for all of these states. For example, the fractional ionization of a tit ratable 
group, i, is given by a Boltzmann average of its charge over all ionization states, ex, of 
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the protein: 

(1) 
2~ 1 [ 1.1~ - 1.10 - qal.1i'J+] 
a~O exp - RT 

Here xa(i) is 0 when group i is not ionized in state ex, and 1 if it is ionized; 1.1~ is the 
standard chemical potential of the protein in ionization state ex; 1.10 is the standard 
chemical potential of an arbitrarily selected reference ionization state indexed by 0; qa 
is the number of protons gained by the protein on going from the reference state, 0, to 
state ex; and Rand T are the gas constant and the absolute temperature, respectively. 
The thermodynamic averages of quantities other than charge take similar forms. 

Processes whose equilibrium constants depend upon pH are coupled to protona
tion equilibria; conversely, a process is coupled to protonation if it perturbs the 
energetics of protonation of one or more ionizable groups. Protein denaturation and 
the binding of ligands by proteins are two important processes that are often coupled 
to protonation. Such couplings may be analyzed by considering the free energy 
change for the process - say protein folding - in the reference protonation state 
o (AGo), and then adjusting for the change in the populations of protonation states 
that occurs upon folding (see Fig. 3). This adjustment may be written in terms of 
a binding polynomial, ~(pH), for the multiple proton-binding sites [1,11-13]. The 
standard free energy change, AGO for the complete process is 

AGO = AGo + AAGion(pH) 

where 

AAGion(pH) = AGion,2(pH) - AGion,l(pH) = - RTln ~z(pH) 
~l(pH) 

2N-l 

~i(pH) == L Ka,i lO-pHq" 

( [Pa]) _ [ 1.1~,i - 1.10,i - qaI.1H+] 
Ka,i = [P ][H+]q - exp - RT 

o '" equilibrium 

(2) 

(3) 

Here K"',i is the equilibrium constant connecting the protein in its reference state, Po, 
and in its ionization state, P",; the subscript j = 1,2 indicates values before and after 
the folding reaction, respectively; and square brackets indicate concentration in 
standard units. 

The equations presented here demonstrate that the problem of computing the 
pH-dependence of the properties of proteins can be divided into two parts: (i) com
puting the equilibrium constants, K"" that connect the various ionization states; and 
(ii) using the many values of K", to compute thermodynamic quantities of interest. 
Neither problem would be difficult if the pKa's of individual ionizable groups in 
proteins equaled those of chemically similar groups in solution, and if the groups did 
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Fig. 3. Linkage of protein folding with protonation. Ll Go: change in standard chemical potential of 
the protein upon folding, in the reference protonation state; Ll Gion, 1: change in standard chemical 
potential of unfolded protein when the unfolded protein in the reference protonation state is allowed 
to equilibrate with buffer at some pH; LlGion,2: same as LlGion, 1. but for folded protein. Protons 
have been left out of the stoichiometry for brevity. 

not interact. Then the equilibrium constants K" could be computed trivially from the 
pKa's of the individual groups. What makes the problem interesting is that the protein 
environment does perturb the pKa of each group, and that the groups do interact with 
each other. 

Formulating the problem 

In general, the energy of changing the protonation state of an ionizable group in 
a protein is determined by its gas-phase proton affinity, and by interactions with 
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solvent, with other parts of protein, and with other solutes. Computing the work 
of protonation ab initio is a daunting challenge. The problem is made more tract
able when one starts with the work of protonating a chemically similar group in 
solution, and computes only the perturbations that result from the protein environ
ment. Most methods in use or under investigation today take this approach. The fact 
that pKa shifts in proteins are usually small implies that these perturbations are 
usually modest. 

Computational methods for computing the effect of the protein environment upon 
the energetics of protonation may be constructed in a number of different ways. Here, 
these methods are divided into detailed simulations that account, at least in principle, 
for nonlinear responses to changes in protonation states; and methods that assume 
additivity of the energy contributions to the overall chemical potentials of a molecule 
in a given ionization state. 

Detailed simulations 

Ideally, one would compute the effect of the protein environment by free energy 
simulations that explicitly include many solvent molecules and that allow for the 
conformational fluctuations of the biomolecules. In such approaches, the free energies 
cannot be said to be purely electrostatic, because changes in electrostatic interactions 
associated with ionization are coupled to other components of the molecular Hamil
tonian. (For a discussion of related issues, see Refs. 14-16.) It might be expected that 
such approaches would provide highly accurate results, because they represent the 
systems in great detail. In fact, it is difficult to assess the accuracy of this approach. 
One report of pKa calculations by free energy simulation suggests that the accuracy of 
the method is about ± 3 pKa units [17]. This is less than the accuracy of the Null 
model, but the report focuses upon a small number of relatively difficult cases, so it is 
not possible to draw broad conclusions about accuracy. 

Convergence of the calculations is also a concern: free energy simulations for 
a glutamic acid in ribonuclease Tl display large differences in the ionization energies 
computed by forward and backward integration [18]. The greatest difference, 
20kJ/mol (3.4 pKa units), is observed in the reference calculation for acetic acid in 
water. Test calculations on sodium in water suggest that these differences might be 
diminished if long-range interactions were included [19]. The results of pKa calcu
lations by free energy simulations that do include long-range electrostatic interactions 
are promising, but there still appear to be convergence problems: pKa's from free 
energies averaged over eight short (22 ps) molecular dynamics (MD) trajectories 
differ by 0.1-2.9 pKa units from the pKa's computed from a single long (110 ps) 
trajectory [19]. 

In summary, free energy simulations represent an elegant approach to computing 
pKa's. Improvements in computational procedures and computer speed continue to 
increase their utility. At present, however, they are still subject to convergence 
problems. Also, because they are time-consuming, it is difficult to accumulate enough 
comparisons with experiment to assess their validity. 
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Treating multiple-site titration by assuming additivity 

Because free energy simulations are very time-consuming, it is difficult to use them 
to compute more than a few of the equilibrium constants, K", that are required for 
computing pH-dependent properties. The problem of rapidly computing the differ
ences in chemical potential among many ionization states of a protein may be solved 
efficiently if it is assumed that the response of the system to ionization is linear. This 
assumption permits the construction of a symmetric matrix, II G ij II, of interaction free 
energies among the ionizable groups. It is necessary to define a reference ionization 
state, 0, for the whole system; here, this will be the state in which all groups are neutral, 
but any state is valid. Then each diagonal term (i = j) is the difference between the 
work of ionizing i in the protein with all other groups neutral, and the work of ionizing 
the same group in solution. Each off-diagonal term (i "# j) is the additional free energy 
contribution when groups i and j are ionized simultaneously in the protein. Then 
the equilibrium constant connecting an arbitrary ionization state r:t to the reference 
state is 

K" = exp[-~.~ x,,(i)(Gii + i.X"U)Gij)].TI Kaix,,(i)z(i) 
1=1 J>1 1=1 

(5) 

where ~ == (RT)- 1, z(i) is 1 for bases and -1 for acids, and Kai is the equilibrium 
constant for ionizing the model compound corresponding to group i. The other terms 
are defined above. Thus, the assumption of additivity makes it possible to compute 
each of the 2N - 1 equilibrium constants, K", from the far fewer (N(N + 1)/2) matrix 
elements in II Gij II. The remainder of this chapter is restricted to algorithms based 
upon this approach. 

1. Simulation-based method for computing the matrix of interactions 
First-order response theory can be used to extract the terms in the matrix II Gij II 

from detailed simulations [20]. The response theory would be exactly applicable if the 
fluctuations in electrostatic potential were normally distributed. This approach has 
been used to compute the diagonal terms of the interaction matrix for lysozyme [21]. 
The approach appears to be quite promising, but to date it does not seem to have 
overcome the same problems of convergence and accuracy associated with free energy 
simulations. 

2. Electrostatic models for computing the matrix of interactions 
Currently, the matrix elements are most frequently computed from solutions of the 

linearized Poisson-Boltzmann (LPB) equation [22]. This approach implicitly as
sumes that the perturbations of pKa's in proteins are dominated by electrostatic 
interactions. The reliability of this approximation has been debated [3,23-25]. Empir
ically, the success of electrostatic models at predicting pKa's (see below) suggests it is 
reasonably good. 

The electrostatic approach to computing pKa shifts in biomolecules dates at least to 
the smeared-charge model, which was published in 1924 [26], long before the 
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structure of any protein had been solved to atomic resolution. The smeared-charge 
model treats the protein as a giant spherical Born ion [27], with the net charge of all 
its ionizable groups smeared out over its surface. In 1957, still without the benefit of 
fast computers or detailed information on the structure of any protein, Tanford and 
Kirkwood added detail, modeling individual ionizable groups as discrete charges in 
arbitrarily chosen locations near the surface of a spherical protein of low dielectric 
constant [28,29]. The solvent was treated as a high dielectric continuum, and the 
influence of ionic strength was incorporated by allowing the dissolved electrolyte to 
redistribute in response to the electrostatic potential of the protein in accord with the 
LPB equation. When protein structures and detailed information on the pKa's of 
individual groups became available, the equations of the Tanford-Kirkwood model 
were used to estimate interactions among ionizable groups, now including the experi
mentally determined distance between each pair of groups [30,31]. Interestingly, it 
was discovered that the accuracy of the results could be increased by weakening the 
interactions of a group with others by a factor related to its accessibility to solvent. 
The resulting modified Tanford-Kirkwood (MTK) model was relatively successful at 
reproducing experimental data [32]. 

However, the MTK model remained restricted to a spherical representation of the 
protein. Also, like its predecessors, it did not yield the diagonal elements of the matrix 
II Gij II. That is, pKa's were assumed to be perturbed only by interactions among 
ionizable groups; the influence of neutral dipolar groups was neglected, as were 
desolvation effects. The work of moving an ionizable group from the high-dielectric 
solvent into the low-dielectric interior of the protein [33,34] can lead to large pKa 
shifts, such as the '" 4 unit shift of the lysine artificially introduced into the hydropho
bic interior of staphylococcal nuclease [3,4]. 

The problem of treating the shape of the protein accurately was addressed by 
W arwicker and Watson, who solved the Poisson equation for a protein by the method 
of finite differences [35]. This approach was then used to solve the LPB equation [36], 
and the finite-difference method was soon used to compute a pKa shift in the 
active site of subtilisin due to mutations of charged groups about 10 A away [37,38]. 
Charge-<:harge interactions, Gij, were computed as the interaction of the charges of 
one group with the potential generated by the other. The interactions of charged 
groups with neutral dipolar groups in the protein may be computed in the same way 
[39]. These interactions, dubbed 'background' terms [13], contribute to the diagonal 
terms, G jj , in the matrix of interactions. 

However, these advances did not yet offer a way of computing the electrostatic 
work of transferring a polar group from bulk solvent to the low-dielectric interior of 
a protein - the 'Born' term. This problem was solved in 1988 [40]. Briefly, the 
electrostatic potential, <Pk, at each charged or partially charged atom k is computed for 
the group in bulk solvent, and then in the interior of the fully discharged protein (see 
Fig. 4). The difference in the total electrostatic energy, ! Lkqk( <p~rotein - <Pkolvent), is the 
work of transfer. The calculation can be arranged so that the singularity - or 
near-singularity - in the potential at a charge cancels when the difference is taken. In 
certain cases, a single finite-difference solution of the LPB equation can be used to 
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Fig. 4. Diagram of the process for computing the work of transfer of a polar side chain from 
solvent to a hypothetically neutral protein, the 'Born' term. 

compute the work of transfer [41]. These methods for computing electrostatic 
energies in the context of the LPB equation were used in 1990 to establish a complete 
matrix of energy terms, and thus to compute the pKa's of most of the ionizable groups 
in hen egg white lysozyme [13]. Because this approach and its variants are now in 
common use, it is worth summarizing here. This discussion focuses upon use of the 
finite-difference method for solving the LPB equation, but similar approaches can be 
set up with other numerical methods. 

In its simplest form, the method treats ionization as the addition of a ± Ie charge 
to one atom of an ionizable group. This might be the N~ of a lysine, the CY of an 
aspartic acid, and so forth. This atom will be termed the ionization site. The LPB 
equation is solved twice for each group, for a total of 2N calculations. In each 
calculation, the only source is a unit charge at the ionization site. In the first 
calculation, the group is in the dielectric and ionic environment defined by the protein 
and solvent. The boundary between protein and solvent is typically the molecular 
surface (contact + reentrant) defined by Richards [42]. The atomic radii that define 
the boundary are equal or similar to standard van der Waals radii. This first 
calculation gives information about the reaction field produced by the solvent at 
the charge itself, and also about the interaction ofthe charge with charges at any other 
location in the protein. In the second calculation, the group has been artificially 
removed from the protein, and is surrounded by solvent. This calculation gives 
information about the reaction field produced by the solvent at the charge when the 
group is fully solvated. It is assumed that the pKa of the group in this state equals 
the model-compound value; the change in the pKa of the group when it is moved from 
bulk solvent to the protein is directly related to the change in the computed ionization 
energy for the group in the solvent versus that in the protein. The calculations 
just described are used as follows to compute the elements of the interaction 
matrix, II G jj II. 
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The off-diagonal terms that represent group-group interactions are 

(5) 

where q,ij is the electrostatic potential at the ionization site of group j due to a unit 
charge at the ionization site of group i. The potentials are those computed in the 
protein. The principle of reciprocity implies that q,ij = q,ji> so the matrix is symmetric. 

The diagonal terms that represent the work of ionizing each group i in the otherwise 
un-ionized protein, relative to the work of ionizing it in solution, are given by 

1 M.,ot M; 

Gii = -2(q,ii - ':Pii ) + Zi L q,ik qk - Zi L ':Pik qk 
k=l k=l 

(6) 

where ':Pik is the potential at the atom site of group i due to the charge at atom k, when 
the group is completely surrounded by solvent; qk is the partial charge on atom k; the 
first sum extends over all Mprot partially charged atoms of the protein, such 
as main-chain amides, dipolar side chains, and the neutral forms of ionizable groups; 
and the second sum extends only over the Mi partially charged atoms of ionizable 
group i. The first part of Eq. 6 is the Born term. Note that the singularities 
(or near-singularities for the finite-difference method) in q,ii and ':Pii cancel when 
their difference is taken. The last two terms in Eq. 6 yield the change in the 
'background' energy when the group is inserted into the protein. The atomic charges, 
qk, are typically drawn from an empirical force field, such as those used in molecular 
dynamics simulations. 

More detailed representations of the charge redistributions that result from ioniza
tion may be accommodated within this scheme, at the expense of increasing the 
number of LPB calculations [43-45]. The cost is still not prohibitive, however, 
especially when efficiency is increased by the use of 'focusing' methods, which use very 
fine finite-difference grids for calculating short-range interactions, but use coarser 
grids for long-range interactions for which accuracy is less critical [3,44]. For 
a protein of a few hundred residues, all the calculations can normally be completed in 
a matter of hours on a Silicon Graphics workstation with an R4400 CPU. 

3. Computing properties with the energy matrix 
These methods provide the entries in the matrix of electrostatic interactions, II Gij II. 

As discussed above, the matrix can then be used to compute the relative chemical 
potentials of the various ionization states of the system, and thus the dependence of 
properties upon pH (see Eq. 1). However, this step can be challenging if many states 
are possible, as is frequently the case. A simple approach to this multiple-site titration 
problem, first used by Tanford and Kirkwood [28], involves assuming that each 
ionizable group 'feels' the average potential of each other group. For example, near 
pH 4, a histidine may feel the influence of several partially ionized carboxylic acids. 
This mean-field approximation [46] allows for an efficient iterative method that yields 
the fractional charge of each group [28]. However, it becomes highly inaccurate in 
cases where the protonation states of two groups correlate with each other [1,13,44]. 
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For example, two aspartic acids that are close together will tend not to be ionized at 
the same moment. At some pH, they will both be 50% ionized, but their repulsion will 
be smaller than that predicted by the mean-field approximation, for when one is 
ionized, the other probably will not be. 

This problem has been addressed in several ways. First, for systems of moder~te 
size, it is possible to treat all ionization states explicitly. It may also be possible to 
show that certain groups are essentially fixed in an ionized or neutral form in the 
entire pH range of interest [13]. Computationally fixing the state of such groups 
reduces the number of different ionization states by a factor of 2 for each fixed group. 
Another approach uses the mean-field approximation to treat interactions among 
groups that interact weakly, but enumerates all the ionization states of each cluster of 
strongly interacting groups [1,44,47]. Such methods are convenient for globular 
proteins with up to several hundred ionizable groups [1], and typically run in 
fractions of a second to a few minutes. They are inadequate for systems in which the 
ionizations of many groups are tightly coupled, such as the photosynthetic reaction 
center of Rhodopseudomonas sphaeroides, for then the clusters become intractably 
large. Such systems may be dealt with by Monte Carlo methods [44,48,49]. For 
typical globular proteins, these are slower than the cluster methods mentioned above, 
but they are the method of choice for large systems of strongly coupled groups. 

Accuracy of the PB method for computing pKa's 

The number of protein pKa's that have been measured experimentally is substan
tial, and it is increasing rapidly. Therefore, fairly extensive assessments of the reliabil
ity of models for predicting pKa's can be carried out. The accuracy of the PB model 
depends on the details of its implementation and upon parameters. For example, the 
results are expected to depend upon the treatment of tightly bound solvent molecules 
and of hydrogen atoms, whose coordinates are not determined crystallographically. 
Important parameters include the dielectric constant of the protein, and the atomic 
charges and radii; the latter determine the position of the boundary between the 
low-dielectric interior and the high-dielectric solvent. It is therefore not surprising that 
the apparent accuracy of the model varies from one study to another. 

In 1994, it was observed that few, if any, previous calculations were more accurate 
than the Null model, the assumption that proteins do not perturb pKa's from their 
model-compound values (see above). However, calculations based upon a high pro
tein dielectric constant did consistently beat the Null model [3], as illustrated in 
Fig. 5, a histogram of errors in pKa's computed with a protein dielectric constant of 
20. These calculations also beat, by a smaller margin, the more sophisticated Null 
model, in which the pKa of every group of a certain type is set to the mean value 
observed for it in proteins [10]. These results are somewhat surprising, because 
theoretical considerations suggest that the dielectric constant of the protein interior is 
usually much lower, perhaps 2-4 [50-52]. Some computational studies have yielded 
higher values for the dielectric constant of a protein [53-55], but this is because they 
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Fig. 5. Histogram of errors in pK. 's computed with a protein dielectric constant of 20,for the same 
groups as in Fig. 1. 

consider the motions of either solvent molecules or ionized groups to contribute to the 
dipole moment fluctuations of the protein, and thus to its dielectric constant. Includ
ing solvent molecules would appear to be inappropriate for the present application, 
because the influence of solvent is already explicitly included in the LPB model. It is 
less clear whether one should include the fluctuations of the dipole moment of the 
protein due to motion of, for example, a lysine side chain. However, sample calcu
lations suggest that the large fluctuations in dipole moment associated with motions 
of the ionized group are not directly relevant to the screening of charge--charge 
interactions within the protein [3,56]. 

Why the use of a seemingly unrealistically high dielectric constant for the protein 
should yield accurate pKa's remains uncertain. Detailed case studies should be 
enlightening. For now, it is worth discussing some possible explanations: 

1. A high dielectric constant may compensate for inadequacies in the atomic 
charges and radii used in the calculations. It has, in fact, been shown that modeling 
ionization as the addition of a unit charge to a single atom of a neutral group leads to 
a model of the ionized group that is unrealistically difficult to desolvate [10]. When 
used with a protein dielectric constant of 4, this ionization model therefore creates 
a systematic bias in favor of the neutral forms of both acids and bases. Switching to 
a more realistic model of the ionized form [57] eliminates this systematic error, and 
improves the accuracy of pKa calculations carried out with a protein dielectric 
constant of 4; however, the accuracy is still not as good as that with a high dielectric 
constant, or even as the Null model [10]. 

2. The high dielectric constant might in some way compensate for the use of 
single crystal conformations of proteins in the calculations instead of multiple 
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solution conformations. In fact, pKa's computed with a low protein dielectric 
constant and averaged over sets of conformations generated by nuclear magnetic 
resonance (NMR) studies tend to be more accurate than those based upon single 
crystal conformations; however, the results are still less accurate than the Null 
model [10]. 

3. The conformation of a salt-bridge is coupled to the protonation states of the 
acid and base that form it. The conformation observed in a crystal structure solved 
near neutral pH does not reflect the tendency of the bridge to fall apart when the 
pH is near the pKa of either group. Therefore, pKa's computed with the crystal 
structure may overestimate the actual influence of each group upon the pKa of 
the other. In fact, it might be argued that the PB model is more accurate than it 
should be, given that it uses protein conformations appropriate to one pH to compute 
protonation transitions at quite different pH's. A recent study shows that accounting 
for the conformational flexibility of ionizable side chains in the PB model improves 
the accuracy of computed pKa's when a low dielectric constant is assumed for the 
protein [58]. Although this form of conformational flexibility is not a dielectric 
relaxation, an artificially high protein dielectric constant could compensate for its 
neglect. 

4. The treatment of tightly bound solvent in the PB model may be inadequate. 
Even solvent molecules detected by crystallography are often neglected in computa
tions of pKa's [3]. This avoids the need to propose and test rules for which solvent 
molecules should be included, and how they should be oriented. On the other hand, 
leaving out these molecules may lead to inaccuracy [44]. It is conceivable that these 
inaccuracies are to some degree compensated by the use of a high dielectric constant 
for the protein. 

5. The use of a high dielectric constant for the protein may suppress 'noise' in the 
calculated pKa's without fully suppressing the 'signal'. One source of noise is uncer
tainty in the atomic coordinates. Small changes in the positions of atoms may have 
significant effects upon computed pKa's when a low protein dielectric constant is 
assumed. These changes are diminished when the protein dielectric constant is set to 
a high value. Model calculations show that, even if the true dielectric constant is 4, use 
of a dielectric constant of 20 can suppress the errors associated with uncertainty in the 
distance between the groups, without introducing large new errors [59]. This is 
because the energy of ionization in the protein usually includes a positive desolvation 
(Born) term, and compensatory, stabilizing background and interaction terms [44J: 
raising the protein dielectric constant reduces the destabilizing Born term and the 
stabilizing interaction terms in parallel. 

Applications of the PB method of computing pKa's 

Although the basis for the success of the PB model with a protein dielectric constant 
of 20 is currently uncertain, the method is applicable to real systems because it is 
predictive. This section highlights two previously described applications. 
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Acetylcholinesterase and chymotrypsin 

The enzyme acetylcholinesterase (AChE) rapidly hydrolyzes the neurotransmitter 
acetylcholine in species from insects to humans. AChE possesses an active-site triad 
remarkably similar to that of chymotrypsin, and the chemical mechanism by which it 
hydrolyzes esters is thought to be similar to that by which chymotrypsin hydrolyzes 
amides [60-64]. The active-site triads in both enzymes consist of a catalytic serine, 
a histidine presumed to act as a general base, and a carboxylic acid hydrogen-bonded 
to the histidine. Figure 6 demonstrates the structural similarity ofthe active-site triads 
of chymotrypsin (4CHA) [65,66] and Torpedo californica AChE (TcAChE; lACE) 
[63]. Kinetic studies of AChE indicate that a group with a pKa of '" 6.3 must be 
neutral at the start of catalysis; similarly, in chymotrypsin a group with a pKa 
of about 7 must be neutral. These groups are believed to be the catalytic histidines 
[7,8,67-70]. 

However, straightforward application of the PB model to both systems yields quite 
different results; the computed pKa of the catalytic histidine of chymotrypsin is about 
7 [3], in excellent agreement with experiment, but the computed pKa for the catalytic 
histidine of AChE is 9.3, 3 pKa units too high [2]. It seems odd that the PB model 
should fail in the case of AChE, given that it works so well for the similar triad of 
chymotrypsin. Furthermore, the magnitude of the error, 3 pKa units, is much larger 
than the errors usually associated with the method (see Fig. 5). It is therefore worth 
seeking an explanation for the discrepancy. 

Further study shows that the computed pKa of the histidine in AChE is driven up 
by two nearby glutamic residues (see Fig. 6): when the closest glutamic acid is forced to 
remain neutral in the calculations, the pKa of the catalytic histidine drops to 7.3, and 
when both glutamic acids are forced to remain neutral, the computed pKa of the 
catalytic histidine becomes 6.1. No groups comparable to these glutamic acids are 

HISS7 p ...... ?,.!" 

r····· SER1~ 
\ASP 102 "" .. ~ 

ASP 194 

A 

HIS 440 

0-- GLU199 
GLU443 

B 

Fig. 6. Comparison of the active-site triads of chymotrypsin (A) and TcAChE (B) (distances 
are in A). 
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found in chymotrypsin. The calculations thus yield the intuitively reasonable result 
that two nearby negative charges make a histidine much more basic. However, it is 
still necessary to reconcile this view with the experimental result that the pKa of the 
histidine of AChE is essentially normal. In fact, a reasonable and even enlightening 
explanation can be found. 

The physiological substrate of AChE is cationic, as are most of its competitive 
inhibitors. Crystallographic studies show that the cationic moieties of inhibitors bind 
essentially at the surface of the glutamic acid closest to the catalytic histidine, Glu199 

[71]. When the pKa calculations are repeated with the cationic ligand tacrine at its 
experimentally determined location, the pKa of the catalytic histidine falls to about 6.5 
[2]. Similarly, the computed pKa is 7.4 when a sodium ion is modeled at the 
cation-binding site [2]. These results suggest that the original pKa calculations for 
AChE are in error because they neglect the large perturbing influence of a monovalent 
cation bound at the surface of Glu199, near the catalytic histidine. 

This conclusion proves to be consistent with kinetic studies of the enzyme. Because 
the histidine must be neutral for catalysis to occur, and because a bound cation 
seems necessary to neutralize the histidine at neutral pH, the efficiency of catalysis 
should, under certain circumstances, depend upon the concentration of cations in 
solution. This is seen experimentally. Under conditions where the rate-limiting step is 
deacylation - which occurs after cleavage of the cationic moiety of the substrate -
catalysis is in fact accelerated by the cations [69,72-74]. 

The calculations also offer an explanation for the puzzling observation that the 
pH-dependence of the catalysis is unchanged when Glu199 is replaced by a neutral 
residue [62]. The original pKa calculations suggest that eliminating this negative 
group would make the histidine much less basic. However, if eliminating this negative 
charge also essentially eliminates the binding of a cation, the net charge in the vicinity 
of the histidine will be unchanged by the mutation. Therefore, the pKa of the histidine 
should not change much, as observed experimentally. 

Thus, the initially discrepant pKa calculations lead to reasonable explanations for 
possibly puzzling experimental results. 

The pH-dependence of protein stability 

The linkage of protonation with other equilibria means that pH alters the apparent 
equilibrium constants of many reactions, such as those associated with the non
covalent association of biomolecules and the denaturation of proteins [1,11,12,75]. 
This section describes efforts to predict, from structural information, the pH-depend
ence of the stability of folded proteins. 

The pH-dependence of the free energy of denaturation can be isolated in a single 
term that depends logarithmically upon the ratio of the proton-binding polynomial 
for the native and denatured states of the protein. This is shown in Eqs. 2 and 3, 
and conceptually in Fig. 3. As outlined above, the PB model can be used to com
pute the equilibrium constants in the binding polynomial for proteins of known 
structure. 
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However, there is no computational procedure for predicting the protonation ener
getics of a denatured protein. In the absence of titration data for the denatured state, it 
is usual to assume that the pK:s of unfolded proteins equal model compound pKa's 
[3,75]. 

With this assumption, the PB model reproduces fairly well the overall shapes of 
curves of stability versus pH for ribonuclease A, hen egg-white lysozyme, barnase, and 
T4 lysozyme, as shown in Figs. 7-11, which have been presented previously [3]. 
However, the results are not always satisfying quantitatively. For example, the 
computed increase in the stability of barnase from pH 3 to 6 is markedly overes
timated by the calculations [3]. Such errors result in part from inaccuracies in the 
pKa's calculated for the native protein [3]. However, there are also other sources of 
error that have to do with the character of the denatured protein. As recently 
emphasized, different denaturants, such as heat, acid, and concentrated urea, create 
different denatured states [76]. Such effects can lead to discrepancies between the 
directly measured variation in protein stability with pH, and the variation in stability 
that is predicted from titration curves in native and denatured states [3]. Recent 
studies provide more information on the persistence of shifted pKa's in denatured 
proteins and in protein fragments [76-78]. 
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Fig. 7. Stability of ribonuclease A versus pH. Solid circles: experiment; small open circles: 
computed, assuming model-compound pKa's for the unfolded state; large open circles: computed, 
with an actual titration curve for the unfolded state. 
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Fig. 10. Stability of hen egg-white lysozyme versus pH. Solid circles: experiment; small open 
circles: computed with triclinic crystal structure [85J; large open circles: computed with tetragonal 
crystal structure [86J. 

One such study finds a discrepancy between the measured stability-pH curve of 
barnase, and the stability-pH curve predicted from pKa values measured in the native 
state and the assumption of unshifted pKa's in the heat-denatured state. The measured 
stability rises more gradually between pH 3 and 6 than predicted from the titration 
curves of the native protein. This discrepancy can be accounted for by assuming that 
the pKa's of all aspartic acid and glutamic acid residues are shifted downward by 0.4 
pKa units in the heat-denatured protein. Interestingly, including this correction for the 
denatured state in the theoretical stability-pH calculations brings the theoretical 
results closer to the measured stability-pH curves, as shown in Fig. 9. Similarly, using 
a measured titration curve for the unfolded state of ribonuclease A [79], in place of the 
assumption of unshifted pKa's, leads to improved agreement between computed and 
measured stability curves (Fig. 7). The structural basis for persistent pKa shifts in 
denatured states is not yet known, but the phenomenon is consistent with the notion 
that denatured proteins can retain a degree of structure. 

In conclusion, even highly accurate calculations for native proteins may not yield 
excellent quantitative agreement with the measured stability-pH curves, because of 
persistent pKa shifts in some denatured states. However, it should be possible to do 
well for other protonation-linked equilibria. For example, it should be possible to use 
the methods outlined here to make fairly accurate predictions of the pH-dependence 
o( binding constants for noncovalent associations between biomolecules. 
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Fig. 11. Top: measured melting temperature of T4 lysozyme versus pH. computed fot wild-type 
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Bottom: stability of T4 lysozyme versus pH. computed for wild-type (small open circles) and for 
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Directions for future investigation 

As outlined here, the PB model for predicting pKa's is fairly accurate. However, 
further improvements in accuracy would be valuable in understanding the structure 
and function ofbiomolecules and in molecular design. Efforts to improve the accuracy 
will be guided by the weaknesses of existing implementations of the PB model. 
Explorations of the sensitivity of the results to parameters will be helpful in this effort 
[80]. Areas amenable to improvement include the positioning of hydrogen atoms 
before electrostatic calculations are performed [81,82]; the treatment of tautomer 
equilibria [10,83]; the treatment of the conformational flexibility of ionizable groups 
[10,58,75]; allowance for possible dielectric inhomogeneity of the protein; and the 
treatment of tightly bound solvent molecules [44]. The exploration of such issues may 
lead to an explanation of the unexpected observation that pKa's computed with a high 
protein dielectric constant are more accurate than those computed with a seemingly 
more realistic low dielectric constant (see above). 

It is important that enhancements be uniformly applied and broadly tested. 
For example, a method for treating bound solvent should clearly specify which 
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crystallographically detected solvent molecules are to be treated explicitly. It should 
also be tested on a number of different proteins. 

Note that the apparent accuracy of models for computing pKa's will depend 
upon the data used as a test set. The characterization of models depends upon ac
curately measured pKa's for groups in interesting environments. Unfortunately, most 
proteins possess only a small number of such groups. Furthermore, the most interest
ing groups are often found in relatively large proteins that are difficult to study by 
NMR - the usual method for making such measurements. Perhaps interesting and 
challenging test cases could be engineered into small, stable, well-characterized 
proteins. The resulting data would be very useful to theoreticians seeking to test 
computational methods. 

Another important goal is to increase the speed of the electrostatic calculations that 
are used in computing the pH-dependent properties. That the PB model with a seem
ingly unrealistic protein dielectric constant yields rather accurate results suggests that 
simpler, faster, implementations might also yield accurate results. This notion seems 
to be borne out by recent results [84], though it is worth noting that caution is in 
order when one attempts to interpret data based upon highly simplified or paramet
rized models. Dramatic increases in speed would permit the calculation of ionization 
states 'on the fly' in molecular dynamics or other conformational sampling algo
rithms. For proteins of up to a few hundred residues, very rapid methods are already 
available for solving the multiple-site titration method for forces and energies. The use 
of such approaches might actually make it possible to improve the accuracy of pKa's 
through the efficient incorporation of conformational flexibility. A full pKa calcu
lation could, in principle, be carried out for a large number of conformational 
microstates. The results could then be combined to yield predictions of experimentally 
observable pKa's. 
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Note added in proof 

Gibas and Subramaniam [Biophys. J., 71(1996)138] present a detailed study of the 
influence of an explicit treatment of water on computed pKa's. 
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1. Introduction 

A long-standing problem in the molecular simulation of proteins is implementing 
an efficient but still accurate model for the water surrounding macromolecules. It is 
well known that simulations (or free energy calculations) that neglect explicit water 
are not adequate, while the full inclusion of a large volume of water implies large, if 
not prohibitive, increases in computational resources [1-5]. 

Here we review the problem from a fundamental perspective and suggest methods 
to replace the 'infinite' volume of water with a small surrounding cavity (or 'bag') of 
water with appropriate boundary conditions [6-10]. Our goal is to find methods that 
are well suited to full dynamical studies of proteins in which the bounding surface 
should be able to move and, if necessary, with water entering and leaving the fiducial 
volume. 

Due to limited space, we chose to outline the problem in a pedagogical style, giving 
citations to the vast literature at the end (see Sec. 6). We hope that this exercise in 
'brain storming' will lead to some new methods or variations beyond standard 
practice. In our research we are experimenting with some of the suggestions made in 
the conclusion. 

1.1. Short-range versus long-range forces 

For the sake of argument, let us consider macromolecular dynamics from the strict 
'molecular mechanics' viewpoint. We assume that the correct physics is reproduced by 
simulating the protein in an infinite (i.e., very large) box of water. The forces are found 
in principle from ab initio calculations applying the Hellman-Feynman theorem to 
the Born-Oppenheimer approximation of the multielectron Schrodinger equation. 
After the 'partial integration' of the electron coordinates for fixed location of the 
atoms, one is left with two classes of forces (or potential energies): short-range 
potentials, Vshort (Xi), expressing the quantum chemistry, and long-range electrostatics, 
V10ng (xJ, resulting from the nuclear charges and the electron charge distributions. 
Typical contributions to these two terms are: 

short range - anharmonic bonds (r2_ r~)2, repulsive core 1/r12, dispersion 1/r6 ; 

long range - Coulombic qiqj/r, electronic polarization p . r/r2 . 
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The long-range forces are the result of ab initio calculations parametrized by discrete 
distributions for the charge density p(x) and polarizability density tensor Yij (x). 
Assuming linear response, Pi(x) = Yij(x)Ej(x), where Ej is the jth component of the 
electric field. Following the standard practice, we place the 1/r6 dipole-dipole inter
action in the short-range term, although it might in fact be useful to lump it with the 
other electrostatic terms. In this case the short-range problem would reduce to 
bonded interactions and short-range repulsions almost equivalent to those of hard 
spheres. 

We now pose the question of how to approximate an essentially infinite volume of 
water by a finite fiducial volume or cavity containing explicit water very close to the 
macromolecule of interest (see Fig. 1). The problem is whether such an approach can 
in principle work and, if so, how to treat the boundary condition on the surface of the 
cavity. Again we should emphasize that we want to have nearby explicit water inside, 
so the 'cavity' is simply a useful definition of nearby (internal) and far (external) atoms 
at one instant of time. One may want to allow for atoms to leave and enter this volume 
as they do in a real system and to adjust the bounding surface to track the motion of 
the macromolecule. The approximation we seek involves replacing the external atoms 
by a mean force or reaction field. In field theory language, the problem is to find the 
aqueous 'vacuum' state into which the protein and its bound water form its cavity. 
Such a picture is used, for example, in describing quark-gluon constituents of the 

Fig. 1. Fiducial volume separating nearby and distant solvent. 
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Fig. 2. Periodic box. 

nucleus as a bag cut out from the surrounding confining vacuum of quantum 
chromo dynamics (QCD). In this application, it is referred to as the MIT bag 
model [11]. 

If there were only short-range potentials (for example with nonbonded terms given 
by a cutoff Lennard-lones potential), the traditional solution is to use a rectangular 
box and replace the surface with periodic boundary conditions. This allows for a 'per
meable' container preserving translational invariance and momentum flux (Fig. 2). As 
long as the linear size of the box is long compared to the correlation length in the fluid, 
exponentially small finite size errors are expected. 

The Coulomb potential presents a much more difficult problem. Due to the 
long-range l/r potential, much bigger boxes are needed and the use of periodic 
boundary conditions requires great care with consideration of image charges and 
truncation methods (e.g., see Ref. 12) to avoid large, power-like finite volume errors. 
We wish to avoid these problems altogether by imagining the cavity cut out of an 
infinite space replacing the external forces by an effective mean potential. As long as 
there is a layer of explicit water near the protein, this mean description should be 
sufficient for a quantitatively accurate description. 
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2. Surface charge approach 

Consider a 'snapshot' of the full thermodynamic system where all the charges are 
stationary. The force on an atom at x in the cavity due to all the external atoms at 
position y is 

(1) 

We use the compact notation (x) and (y) to refer to the entire set of coordinates 
internal Xl> X2, X3, ... and external Yl> Y2, Y3, ... to the cavity. The total potential 
energy (see Fig. 1) 

V(x; y) = Vint(x) + Vext (x; y) (2) 

is then split into an internal term, Vint (x), for all interactions among the atoms inside 
the cavity, and an external term 

(3) 

which includes all the remaining interactions with the external water molecules, 
V~xt (x; y), and among the water molecules themselves, V water(Y). Of course, since the 
external water-water interactions depend only on the y coordinates, it does not 
contribute to F ext (x). As before, we will also decompose each potential into a sum of 
short-range and long-range terms. 

2.1. Partial integration 

We now wish to convert from an instantaneous view of the external forces to 
a mean force. There is an exact and rigorous way to approach this within statistical 
mechanics. For definiteness, consider the canonical partition function (other en
sembles may be used with similar results) and define G(x), the 'free energy', 'effective 
potential', or 'potential of mean force' - to give three of the many terms used in various 
fields! 

(4) 

The integration measure for Cartesian posItIOn coordinates is dJ.1(Y) = (const) 
d3Yld3Y2 ... d3YN. Of course, for water one often will want bond constraints and 
angular coordinates so the correct Jacobian must be included in the measure. The 
multiplicative constant has no effect. We may trivially separate out the effective 
potential due to the external water by defining G(x) = Vint (x) + Gext (x), and the 
effective external force is now given by 

F'ext(x) = - Vx Gext (x) = - (VxVext(x; y» (5) 
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(6) 

Great, we have the answer. But this is not easy to compute. The problem of doing 
a partial integration over the external water is as hard as the full problem. Indeed, in 
simulations this may dominate the entire computation. 

Nonetheless, it is useful to know precisely what we are trying to model, and good 
models may be found for this homogeneous external vacuum state. Analytic ap
proaches often expand the integrand in the interaction term*, Vext(x; y), using the link 
cluster expansion 

and try to re-sum it using various closure relations such as the hypernetted chain 
approximation [13], etc. We do not pursue that approach, which is a highly refined 
and sophisticated specialty for liquids. Our goal is a phenomenological approxima
tion that can be tested and refined through large-scale computer simulations. For 
example, the first approximation might be a dielectric continuum with one adjustable 
parameter, the dielectric constant of water, which must be determined from experi
ment or computer simulations of the large system. Notice that the replacement 

(8) 

is not valid. The expression on the right-hand side is the thermodynamic internal 
energy (not to be confused with the internal/external decomposition of the potential). 
It neglects the counting of microstates or entropy in the external system, 
Gext(x) = <V(x; y» - T· Sext(x). Integration is, after all,just counting states. Remark
ably, there are two cases where this entropy is easily accounted for: (i) pure Gaussian 
potentials where the entropy has no x dependence and can be dropped as far as forces 
are concerned; and (ii) linear response approximation where the free energy is propor
tional to the internal energy, G = !<V). Note that with linear response, the entropic 
effect is very large, as it represents a 100% correction to the internal energy. The 
short-range force is almost harmonic near equilibrium and falls into case (i), and the 
dielectric response falls into case (ii). These are useful guidelines, but when you mix 
them (as we must with Vext = V~~~rt + V~~~I) you are really in neither regime. How
ever, the short-range forces only affect a small layer outside the fiducial volume, 
giving rise to a volume term (pressure) and surface free energy (tension), while 
the Coulomb force affects the entire external system. Consequently, the two terms 
contribute largely in different parts of the external volume and, if we do not mind 

* At this point, you may wish to really separate out the external interaction term from the pure water term, 
Voxt(x; y) = V'ext(x; y) + Vwator(Y), and redefine dJ.l'(y) = dJ.l(y)e -PV_",(y) as a new measure or density of 
states for the media. 
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'living dangerously' for now, we will model each contribution one at a time. Thus, we 
introduce an ad hoc wall to reflect the internal atoms and turn to study the Coulomb 
force by itself. 

2.2. Surface charges 

To model the Coulomb force for all the external charges, it is useful to consider the 
following exact theorem: 

Any arbitrary potential inside a fiducial volume, V, is given by Coulomb's law for the 
explicit charges plus a fictitious surface charge, (1, on the boundary, av: 

<I>(x) = L qi + J da(~) O"(~; y) 
i Ix-xii oV Ix-~I 

(9) 

Stated differently, the potential due to all the external charges, 

,J,. () '" Qi J d (J:) O"(~; y) 
,!,ext X = '-:- I _ .1 == a '0 I _ J: I 

, X y, oV X '0 
(10) 

can be replaced by a surface charge distribution O"(~; y) that depends on the charges 
and positions (Q;, Yi) of the external atoms. In these expressions, ~ is a point on the 
surface, and the integral is over the boundary of the volume V. 

This theorem is very similar to Green's theorem [14], except that the latter 
expresses the potential in terms of both a surface charge and a dipole layer. Both terms 
are not needed. Proving this is an elementary exercise. Imagine a single charge 
Qo outside the surface at Yo and find the potential for the surface as a conductor at 
zero potential, 

(11) 

Since this solution must have zero potential inside, switching the sign of the surface 
charge to - 0"0 gives the equivalent surface charge needed in our theorem for a single 
external charge Qo. By superposition we have our theorem. Surprisingly, this trivial 
observation is not easily found in the literature. 

Combined with the assumption of linear response for the external media, 

(12) 

which is a very reasonable approximation for the long-range electrostatic contribu
tion, we obtain a very useful result, 

(13) 
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Note that the thermodynamic average over the external (y) coordinates has been 
interchanged with the integral! (see Eq. 10). Hence, the potential of mean force for any 
linear electrostatic system is completely described by an average surface charge on the 
bounding surface, cr(~; x) == <cr(~; y»y. 

It is important to notice the fundamental difference between the 'instantaneous' 
charge density cr(~; y), which depends only on the external charge locations (y), and 
the average response cr(~; x) = < cr(~; Y»y, which depends not on y but on the fixed 
locations, x, of the interior charges. The constant continuum dielectric model is just 
one example of linear response where the explicit charge density is restricted to the 
surface and is equal to this mean surface charge, cr(~; x). In terms of forces, we have the 
following interesting result. The force on a charge, q;, due to the effective potential is 

In linear response theory, 

-~ 1 da(~) [ cr (~; x) V x (I x ~ ~ I) + I x ~ ~ I V x cr(~; X)] (15) 

In the last integral, since the first term is exactly equal to half the correct answer, the 
second term, which gives the linear response to the interior charges, must give exactly 
the same contribution. 

This leads to a natural way to model the mean long-range force by determining 
a mean surface charge. An example of such a model is provided by the well-known 
replacement of the external media by a continuous uniform dielectric which we will 
illustrate below with a spherical cavity. Following this, we will suggest ways to modify 
the dielectric boundary to allow for a better treatment of short-range forces and the 
real flow of water through the cavity wall. 

3. Boundary integral formulation of dielectric cavity 

Representing the external medium by a linear dielectric continuum is an approxi
mation to the exact mean surface charge approach. Further assuming an isotropic and 
homogeneous dielectric response, we are permitted to derive a self-consistent integral 
equation involving the surface charge. This follows from an expression of the total 
electrostatic potential of the system, 

<Ptot (x) = <Pint (X) + <Pext (X) 

= L qi + J da(~) cr(~;x) 
i IX-Xii oV Ix-~I 

(16) 
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and the standard conditions on the normal component of the electric field near 
a linear dielectric boundary, together with a careful consideration of the surface charge 
contribution to the potential when x ~ ~. The result is 

cr(~) = - El - 1 L qin(~)·(~ - Xi) _ El - 1 J da(~') cr(~)n(~)·(~ - ~') (17) 
El + 1 i 21t I ~ - xd 3 El + 1 av 21t I ~ - ~'1 3 

where El is the dielectric constant of the external medium; For notational simplicity, 
we use cr (~) in place of cr (~; x) introduced earlier. In a more compact notation, 

cr@ = - X n(~)·E(~) (18) 

where X = (El - 1)/(21t(El + 1)) and E = - V<I>. This equation gives the mean in
duced surface charge on the boundary due to an arbitrary charge distribution inside. 

Analytical solutions to the above may be obtained for a few regular boundaries 
such as a sphere. Of course, in such cases it is more customary to directly solve 
Poisson's equation and find an expression for <I>(x). In the case of arbitrary geometries, 
the equation is solved numerically by dividing up the surface into finite elements; this 
is the well-known boundary element method [32,33]. 

In our view, the utility of this equation is its possible role in calculating long-range 
electrostatic forces for an arbitrarily shaped and ultimately dynamically adjusting bag 
containing some solvent and the solute. Of course, here we must be careful not to add 
too much computation to the problem in solving for the surface charge. 

Below, we present calculations for the simplest example of a spherical cavity 
embedded in a dielectric continuum to illustrate some of the principles discussed so 
far. We stress that results are presented merely to illustrate the potential for the 
development of new methods based on this conceptual framework. 

4. Results for a spherical cavity 

As mentioned earlier, for a regular geometry such as a spherical cavity, we may 
solve Poisson's equation directly for the potential inside. The expression for the 
potential due to a single point charge q at x' inside a cavity with radius a is 

q 
<I>(x) = I 'I + <l>ext x-x 

where 

<l>ext = ~ f (n + 1)(1 - El) (x~')n Pn (cos 9) 
a n=O Edn + 1) + n a 

(19) 

(20) 

is the potential due to the reaction field of the dielectric continuum and El is 
the dielectric constant for water (outside). This standard example of a boundary 
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value problem was considered by Kirkwood, who modeled the protein as a sphere 
embedded in a dielectric continuum to estimate pKa shifts for ionizable groups 
[15,16]. In this article, we will not consider the potential due to redistribution of ions 
in the solvent. 

Different authors, including Kirkwood himself, have sought to simplify the summa
tion for <Pext to render it into a more convenient form while preserving accuracy for 
computation, such as by expanding in to/th which is a very small fraction (few %). We 
find the following exact result convenient for use in lookup tables [5]: 

tl - 1 q 1 
<Pext = - 81 + 1 a J 1 + p2 - 2pz 

tl - 1 q 1 t6- 1 dt 

(tl + 1)2 a ! J1 + (tp)2 - 2tpz 
(21) 

where p = xx'/a2, z = cos9, 3 = tl/(tl + 1), and t is an integration dummy variable. 
Note that the first term above is the contribution from the image charge scaled 
appropriately by a factor involving the dielectric constants. 

The force due to the dielectric response on a charge inside the cavity consists of 
one-body (self) and two-body (cross) contributions. Both can be computed from the 
gradient of the electrostatic potential energy, 

= .L<. qjqj(Gimag"" + Ginteg.,) + ~ ~ qr(Gimag"" + Ginteg.) 
I J I 

y 

2-body (cross) terms 
y 

I-body (selO terms 

(22) 

where the terms Gimag"" and Ginteg.j refer to the Green's functions for the image charge 
and integral contributions in Eq. 21. The force on qj due to the solvent external to the 
boundary is 

(23) 

where 

(24) 

(25) 
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Incorporation of the above into molecular dynamics or Monte Carlo simulations is 
straightforward. First, we precalculate the dimensionless integrals in Eqs. 21 and 25 
using Gaussian quadrature and store them in lookup tables. Then we simulate using 
the above potentials and forces (Eqs. 22-25) in addition to the standard molecular 
mechanics force field. 

As an interesting side note, the theorem stated earlier involving surface charges 
permits one to calculate an effective dielectric constant as a function of test radius, r, 
in our spherical system with a charge, Q, placed in the center. This is derived by 
computing the net surface charge on a conducting sphere, and comparing this with the 
case of a dielectric sphere. The result is 

1 - _1 = _ L qk _r_ + (1 _ ~) E 
e(r) a> x. > r Q I Xk I el a 

(26) 

where the sum extends over all the charges in the layer from an imaginary sphere at 
r to the actual dielectric at a. Note that as r -+ a, the expression gives the correct 
matching condition, e(r) -+ el . 

4.1. Estimating solvation energies of side chains 

Table 1 shows example calculations of the free energy of transfer of selected amino 
acid side chains from vacuum to water (i.e., their solvation energies). 

The electrostatic part of the solvation energy was estimated via a standard linear 
response assumption, i.e., by halving the average interaction energy between solvent 

Table 1 Example calculations of electrostatic solvation free energies of amino acid side-chain 
analogues 

Amino acid side chain AGele.cal: AGtot.eXPtlb 

Asn acetamide - 10.31 -9.72 
Asp acetic acid - 3.52 -6.70 
Cys methylthiol -1.36 -1.24 
Gin propionamide - 9.33 -9.42 
Met methylethylsulfide -0.09 -1.49 
Ser methanol - 5.41 -5.08 
Thr ethanol - 3.15 -4.90 
Tyr p-cresole - 8.59 -6.13 

Arg N-p-guanidinium - 58.54 - 66.07c 
Lys N-butylammonium - 69.63 - 69.24 

a Electrostatic solvation free energy from the spherical dielectric cavity model using a linear 
response approximation. 

b Experimental solvation free energy from vacuum to water transfer experiments [17-19]. 
c This is a calculated value taken from Ref. 20 using finite difference Poisson-Boltzmann 

methods. 
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(both explicit and continuum) and solute (amino acid side chain), 

dG~!fv ~ ~ ~qi<<I>(Xi) 
I 

(27) 

where qi and Xi are the magnitudes and positions of the partial charges on the 
amino acid side chain, respectively, and the angle brackets denote averaging 
over Monte Carlo steps for the fully charged side chain. As a rigorous verification 
of the use of the linear response approximation, one could carry out a thermo
dynamic integration over solute charge to capture the nonlinear details of the 
explicit solvent response. In addition, it is necessary to find an optimal radius 
for the explicit solvent region, and to tune the non bonded parameters of the mol
ecules involved (see Sec. 4.2), since, as is well known, unaltered standard molecu
lar mechanics parameters give poor agreement between calculated and empirical 
solvation energies. It may also be necessary to impose geometrical constraints 
on the outer layer of explicit water molecules to prevent overpolarization and also 
to consider the transmission of thermal fluctuations from the outer bulk solvent 
to the explicit particles (see Sec. 6) since the dielectric continuum model is clearly 
a simplification that does not take into account all the degrees of freedom of 
the external bulk. No such attempts were made here. However, in the next section, 
we suggest improved treatments of the boundary to redress some of these short
comings. 

4.2. Simulation details 

Side-chain analogues were placed in the center of an approximately 12 A sphere 
and surrounded by - 60 water molecules. The analogues were taken in their standard 
initial configuration from the CHARMM [21] program. For partial charges and van 
der Waals radii, the CHARMM19 parameters [21] were used. The side chains were 
solvated using a box of pre-equilibrated TIP3P [22] water, removing all water 
molecules within 2.6 A of the side chain, and those beyond 7 A from the center. These 
starting coordinates were generated using the CHARMM program and were sub
sequently passed into an in-house implementation of the spherical model driven by 
dynamics and Monte Carlo algorithms. The side-chain covalent bonds were fixed by 
rigid constraints during simulation. Because water is generally involved in all biolo
gically relevant simulations, we chose to develop a specific algorithm to treat explicit 
water rotations rather than using constrained optimization schemes such as SHAKE 
[23], which is a desirable alternative for treating macromolecular constraints. Aver
ages were taken over the last 15000 steps of 20000 step runs. Configurations were 
updated using the Langevin equation [24] (equivalent to constant N,V,T Monte 
Carlo) at T = 298 K. 

Because here our goal was to demonstrate the usefulness of the long-range electro
static approximation, the short-range forces of external origin were modeled by 
a simple repulsive spherical wall potential (1/r12) placed slightly inside the dielectric 
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Fig. 3. Typical trajectory from side-chain solvation simulation (glutamine). 

boundary. This is probably the crudest method to represent the interfacial short-range 
forces from the external bulk water. A reasonable radius was estimated by observing 
the distribution of water molecules in a test run with given cavity radius, and roughly 
determining the excluded volume due to the repulsive boundary. To ensure the correct 
pressure, the system radius was scaled at the beginning of the simulation to reflect the 
correct density (p ~ 0.334 molecules/A3) ofliquid water, with the excluded volume of 
the boundary force in mind. In addition to supplying pressure, the boundary is needed 
also to prevent evaporation. 

Figure 3 shows a typical trajectory from a side-chain solvation simulation 
(glutamine) using the simulation protocols described above. Half the average 
interaction energy between solute and solvent is plotted against the Monte 
Carlo step. Notice that the energy falls off quickly toward equilibrium within 
the first few thousand steps of the simulation and is followed by equilibrium 
fluctuations. 

Figure 4 shows the radial distribution function for an example MC simulation of 56 
TIP3P water molecules in a cavity with radius 10.53 A. A simulation protocol similar 
to the above was used. The tapering of the curve at larger distances reflects the finite 
size of our explicit water sphere. 
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5. Permeable boundaries and the 'polaron' model 

In many respects, the spherical dielectric cavity model above is primitive and does 
not fully exploit the ideas presented earlier involving the division of the potential into 
external and internal components. In this sense, we regard this model as a 'warm-up' 
exercise that may help guide us toward more sophisticated methods. 

There are three important issues not addressed in this model which we will 
briefly discuss in this section. However, all the ideas below are works in progress 
and we postpone the presentation of details and results to separate research arti
cles [25]. 

First, we would like to minimize the distortions that an impenetrable boundary 
causes on the configurational evolution of the explicit water. Such distortions intro
duce biases in the molecular trajectories or configurational sampling which propa
gates into the interior. This, in turn, would require a larger explicit water layer for 
accurate results. The effect can be viewed essentially as a loss of entropy due to the 
decreased degrees of freedom of the explicit water near the boundary. Ideally, we 
would like to preserve the momentum flux of the molecules as in the periodic 
boundary case. 

Second, the cavity above has a rigid, fixed shape. We would like one that can take 
on irregular shapes so that simulations involving only a few hydration shells closely 
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Fig. 4. Oxygen-oxygen radial distribution function for the spherical dielectric cavity model. 
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fiducial surface 
polarons 

lIr12 potential wall container 

Fig. 5. Polaron approach to the dielectric sphere model. 

hugging the solute of interest become possible. In this case, owing to the flexibility of 
the solute, we need a boundary that adjusts its shape dynamically as the simulation 
proceeds. 

Finally, the explicit solute particles in the above are described entirely in terms of 
fixed partial charges and van der Waals radii. In reality, electronic polarizability plays 
a significant role in determining the energetics and dynamics of solvated systems [2]. 

We are currently pursuing four possible solutions among the many imaginable. All 
four rely on the determination of surface charge that reproduces bulk effects. The first 
two address the issue of short-range boundary distortions. 

The simplest among them extends the spherical model by allowing particles to 
penetrate the boundary (see Fig. 5). We start with a spherical cavity and introduce an 
additional spherical boundary slightly inside to define a fiducial volume. We ask the 
question, 'what is the surface charge distribution (on the fiducial surface) that repro
duces the external bulk solvent if we assumed the solvent extended to infinity?' This 
can be modeled quite easily. We introduce this unknown surface charge distribution 
during simulation by attaching appropriate charges to the water molecules in the 
buffer region (between the hard wall and fiducial surface). These buffer molecules, 
which we call 'polarons', reproduce the polarization of the bulk medium. The polaron 
charges are then adjusted to satisfy a discrete version of the linear integral equation 
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17. Each polaron is associated with a surface area patch AA. However, unlike the 
boundary element approach, we do not wish to take AA to zero. This is not necessary 
since they now represent the actual discretization of fluctuations of the underlying 
surface water distribution. (The polarons are intended as a mesoscopic model as 
discussed in Sec. 6.) In a sense, the internal boundary defines the beginning of the 
dielectric continuum, while the outer boundary acts as a container, supplying the 
appropriate short-range forces. To make the transition smooth, we may adopt 
a switch function that gradually turns on the 'polaron character' of a water molecule 
as it leaves the internal volume and enters the buffer region. 

The second idea involves the use of a periodic boundary that incorporates long
range electrostatics in an unconventional fashion (see Fig. 6). In this scheme we 
periodically extend the short-range force and allow the molecules to enter and exit the 
system as in the normal periodic boundary. We then depart from this standard 
scenario by introducing an imaginary boundary, just inside the periodic one that 

polaron 

periodic boundary 
periodic image fiducial surface 

Fig. 6. Polaron approach to periodic boundary conditions. 
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again defines an internal fiducial volume. We solve the average surface charge 
problem with the appropriate polaron charges attached to the molecules in the buffer 
region during simulation as before. Again, we may use a switch function to smooth 
out the transition. 

The third approach addresses the issue offtexible boundaries. Here we surround the 
solute of interest with one or two layers of explicit water, and allow the water droplet 
to define its own boundary rather than forcing it into a container. At each MD step, 
the boundary is defined as being the (solvent-accessible) surface of the droplet. 
Equation 17 is numerically solved, and the appropriate polaron charge is attached to 
the surface molecules. Since every MD step is a small perturbation from the previous 
configuration, polaron charge and surface area updates require very few additional 
numerical iterations. An additional force normal to the surface may be supplied to the 
polarons to represent the missing short-range forces that reproduce the correct 
pressure and prevent evaporation. This force can be used as a convenient calibration 
parameter to fit the model against experimental data. The challenge here is the 
development of efficient algorithms to approximate the surface and solve for the 
surface charges. 

Finally, we would like to introduce a polarizable solute model by solving for the 
induced dipoles on each atom or charged group from the polarizability tensor (Yij) and 
electric field (E). This leads to a new set of linear equations, 

(28) 

three for each dipole Po at Xo. The electric field is, of course, given by - V <I> where 
<I> has an additional term, 

(29) 

Note that the induced dipole equation (Eq. 28) has almost the same form as the 
surface charge equation, Eq. 18. We feel strongly that the surface charge problem can 
be combined with the induced polarization problem to form one efficient algorithm 
that simultaneously solves both. Indeed the two problems are fundamentally the 
same. There is an electrostatic problem in the volume outside the individual atoms 
and inside the bounding cavity which both react to induced polarization effects. 

6. Discussion 

Thus far we have reviewed a few fundamental issues related to the electrostatics of 
macromolecular solvation and have suggested possible computational methods that 
may help us understand this extremely important topic without reference to current 
approaches in the field. In this section, we would like to at least partially make up for 
our 'sins of omission' by giving a brief and selective mention of ideas and methods 
developed by other workers and comparing them with the concepts presented in this 
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article. We wIll not attempt to give a comprehensive survey. For this, we refer the 
reader to the many review articles that address general issues in macromolecular 
electrostatics and related computational methods [1-5,26]. Of course, many relevant 
discussions can also be found in the articles of this and previous volumes of the 
current book series (e.g., Refs. 27-29). 

From the very beginning, solvation models have been constructed with some sort of 
definition of a boundary that divides space into finite and infinite parts with different 
physical properties. The celebrated Born model [30] is an example in which an ion is 
modeled with a dielectric sphere and a point charge in the center embedded in another 
dielectric with different permittivity. This simple model was extended by Kirkwood 
and Tanford [15,16] to represent a protein with a dielectric sphere and arbitrary 
charge distribution inside. 

Recent efforts in this general direction involve the modeling of macromolecules 
with a dielectric region whose boundary approximately delineates the van der Waals 
volume of the protein of interest, and which contain partial atomic charges where 
polar or ionizable groups exist. This is embedded in a dielectric continuum represent
ing water, and the Poisson-Boltzmann equation is solved numerically for the electro
static potential using finite difference methods [31]. Alternatively, Poisson's equation 
can be solved via the boundary element method [32,33], which has the advantage that 
the partial charges of the protein need not lie on grid points, and the external solvent is 
effectively infinite in extent. 

Progress in quantum chemistry and the advent of the molecular mechanics ap
proach, however, have made it clear that the physical forces among molecules and 
atoms all stem from the same source, namely the electron cloud distributions and how 
they interact and alter one another as a function of distance of separation. Thus, at 
a microscopic scale, the distinct two-phase system of water and solute has become 
blurred; these are nothing but two different regions in space with different mean 
properties. Only at macroscopic scales does this mean description become appropriate 
and the distinction clear. 

Of course, if the computation were practical (or if very large amounts of com
putational resources were available), we could reproduce a solvated system most 
accurately using 'brute force' simulations that involve a very large number of ex
plicit solvent [34-38]. If the microscopic system is carefully constructed (e.g., 
through consideration of electronic polarization as reviewed extensively in Ref. 2), 
we can in theory recover through these simulations the correct averages from very 
large to very small time and length scales. All that is required is for one to monitor 
a subset of the system (say a pair of solvent particles for pair correlations, or 
the particles that make up the protein) and evaluate time or Monte Carlo averages 
over them. 

On the other hand, one rarely (if ever) requires a complete description of the entire 
system over all time and length scales. This would mean that one requires exact 
reproduction of the dynamics trajectories of the system as it evolves in nature. In 
reality, some parts of the system can be adequately described by mean properties. 
These can be a priori 'integrated out' of the probability distribution and incorporated 
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into the potential that governs the system evolution as an effective potential. This 
allows the possibility for including different degrees of accuracy in the simulation by 
deciding how much (and which coordinates) to 'partially integrate' a priori, and how 
much to leave for the simulation to explicitly carry out. Thus, rather than the 
two-phase explicit versus continuum picture, it is more natural to think of the 
differences in length scales ranging from the macroscopic (i.e., dielectric and the 
Navier-Stokes equations) to the microscopic (i.e., molecular mechanics or quantum 
mechanics). In between, we have the mesoscopic picture, which does not 'exist' in 
nature in the traditional sense, but which we are free to construct in any fashion such 
that they reproduce the required level of detail. The polarons in our proposed models 
are intended as a first attempt at such a meso scopic description. 

Mesoscopic models that incorporate both large- and small-scale properties into the 
particles undergoing dynamics have been an active area of research in statistical 
physics for many years. A few notable models that are currently receiving attention 
include lattice gas models [39], dissipative particle dynamics [40], and direct simula
tion Monte Carlo [41]. In addition, much research has gone into the development of 
acceleration algorithms via fast Fourier transforms or multigrid methods [42]. Ap
plication of these ideas to biological simulation may not be immediately straightfor
ward, but one cannot preclude this possibility. 

For biological macromolecules, one generally needs detailed structural information 
of the protein and nearby water; the rest of the bulk water affects the system only in 
the mean sense. Thus, from a practical simulation standpoint, it is more natural to 
divide the system into near and far regions rather than solute and solvent. The 
question then becomes one of reconciling the two descriptions at the boundary. 

These notions have been exploited by many researchers in the field. One of the first 
studies that considered the problem of finite size simulations was that of Stace and 
Murrel [43], who placed a spherical shell of fixed Lennard-Jones particles at the 
boundary to simulate a gas-phase system. 

Berkowitz and McCammon [6] proposed a model consisting of three concentric 
spherical regions for liquid simulations. The central sphere contains the reactive 
chemical system of interest including explicit solvent particles governed by molecular 
dynamics. This is surrounded by a buffer region (a mesoscopic transition) which 
contains particles that obey the Langevin equation and which thus acts as a heat bath. 
Outside this region is a reservoir that consists of a frozen configuration of particles 
taken from a prior molecular dynamics run. The three spheres are defined with respect 
to the central solute that lies in a much larger system of solvent particles. The spheres 
are thus allowed to move with respect to the 'extra' particles and coordinate axes of 
the larger system together with the central solute. 

Brooks and Karplus [44] developed and used an effective potential (which they 
call a mean force field approximation or MFF A) due to the external, implicit 
solvent region based on pair correlation data. Their initial model was developed for 
nonpolar liquids. Later, Brunger et al. [7] extended the MFF A approach to simulate 
ST2 [45] water although the long-range effects of the electrostatic potential were not 
considered. 
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The problem of polar solvents was carefully examined by Warshel [46], who 
proposed the surface constrained soft sphere dipole (SCSSD) model. Here, the 
solute is surrounded by a collection of van der Waals spheres with point dipoles 
in their centers (i.e., mesoscopic water models). These are surrounded by a spherical 
shell of the same particles but fixed in their positions and orientations. The long
range electrostatic effects from the medium beyond the shell are calculated as a 
macroscopic dielectric reaction field that responds to the solute charge distribution. 
The shell of fixed dipoles was required to prevent overpolarization of the explicit 
solvent. This results from neglect of geometrical constraints that are normally 
imposed on the explicit molecules due to the (implicit) particles in the next layer 
out. These effects cannot be reproduced by a featureless dielectric that responds only 
to the solute. 

Another level of detail was added by Warshel and King [47,8]. They considered the 
transmission of thermal fluctuations across the bulk/explicit boundary through their 
surface constrained all-atom solvent (SCAAS) model. Here, the solute is placed in 
a sphere of all-atom water molecules that are governed by regular dynamics. This is 
surrounded by a shell of explicit solvent which obeys a constrained potential based on 
a Brownian harmonic oscillator with parameters fitted against large-scale simula
tions. This constrained potential is meant to prevent overpolarization in a more 
sophisticated manner than the SCSSD model. The region beyond is given a dielectric 
treatment as before. 

Rullmann and van Duijnen [9] constructed a model called reaction field with 
exclusion (RFE). In their approach, the solute and a small number of SPC [48] water 
molecules are placed in a spherical container. The container is defined by rejecting 
Monte Carlo configurations that place particles outside a given radius. This radius 
was made slightly smaller than that for the dielectric sphere. The solute was treated 
via ab initio quantum calculations, with an electrostatic potential governed by the 
dielectric reaction field of the external bulk medium in response to the solute charge 
distribution inside. The reaction field itself was calculated using the first term of 
a reformulated Kirkwood expansion (from solute charges only). Explicit solvent 
motion was computed by determining the net dipole moment of all the solvent 
molecules inside and the corresponding reaction field using Onsager's formula for 
a point dipole in a spherical dielectric. 

Beglov and Roux [10] developed a rigorous theoretical formalism that ties the 
effective solvent boundary potential with the Boltzmann configurational integral, 
similar in spirit to the theme of this article. For electrostatics, they consider a spherical 
cavity embedded in a dielectric continuum and use the Kirkwood equation to 
compute the reaction field, except that the system radius varies according to the 
position of the explicit solvent molecule furthest away from the central solute. 

As can be seen from the above, hybrid solvation schemes combining explicit and 
implicit treatment of solvent have received enormous attention over the last 20 years. 
As a result, much insight has been gained and usebl methods have been developed. In 
fact, many of these methods have been applied to a variety of small biomolecular 
systems. These include the calculation of intrinsic pKa's of ionizable groups in bovine 
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pancreatic trypsin inhibitor [49], estimation of binding free energies of HIV protease 
inhibitors [50], and simulation of enzyme catalysis [51]. 

Each method described in this section has its share of strengths and weaknesses. 
These invariably revolve around the concepts of computational efficiency, scalability, 
and accuracy. It is our firm belief that the classic dilemma between cost and accuracy 
can be resolved by taking a fundamental perspective, being careful not to incorporate 
too little or too much detail. This general notion is embodied in our mesoscopic 
approach, in which we are allowed to include varying levels of detail into the model. 
We believe that the development of efficient and practical dynamic solvation schemes 
will remain an active area of research for many years to come. . 
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Introduction 

One of the most difficult problems encountered in the dynamical simulation oflarge 
macromolecular systems is how to deal adequately with the huge number of atomic 
interactions involved. For aqueous-phase simulations the computational burden 
associated with solvent water molecules can easily outstrip that associated with the 
macromolecule, even though the behavior of the solvent itself may not be of much 
interest. Not surprisingly therefore, considerable interest has been focused on the use 
of methods in which explicit solvent water molecules are replaced by an implicit 
dielectric continuum representation; an excellent review of such methods was given by 
Sharp [1] in the previous volume of this series. Perhaps the most generally accepted 
continuum-based approach centers on the use of the Poisson-Boltzmann (PB) equa
tion of classical electrostatics [2], a method which owes its success to the fact that 
many solvation-related phenomena (with the notable exception of the hydrophobic 
effect) appear to be essentially electrostatic in nature. Until very recently, use of the PB 
approach has largely been restricted to calculations involving static representations of 
molecular structure, but the recent development of methods to obtain solvationforces 
from the PB equation [3] means that it can now, in principle, also be used in dynamics 
simulations. Applications of the former type have been comprehensively reviewed in 
the literature [2] and are not discussed further in this article; instead, we restrict our 
attention to the potential use of PB electrostatics in dynamical simulations of 
macromolecules. 

The advantages of a PB-based approach for dynamics simulations of large systems 
relate not only to reductions in the size of the system, but also to the accessible 
timescale of the simulation. For example, the relaxation time of dissolved mobile ions 
that surround highly charged molecules such as DNA is typically estimated to be on 
the order of hundreds of picoseconds. A simulation of such a system must therefore 
extend for nanoseconds if absolute convergence of ion atmosphere effects is required. 
For such situations a PB-based approach offers special advantages since the mean 
distribution of mobile ions around charged molecules is readily obtained from, and is 
partly the basis of, the PB equation [2]. Furthermore, in cases where large-scale 
structural changes occur, so that the ionic atmosphere is strongly perturbed, a simple 
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update ofthe solution to the PB equation is all that is required to determine the extent 
and effects of ion redistribution. An additional advantage is that since bulk mobile ion 
concentration enters explicitly into the PB equation, simulations can, in principle, be 
performed at varying ionic strength. 

Further timescale-related advantages accrue from the omission of the molecular 
nature of the solvent. The large-scale motions of macromolecules, be they either the 
global motions of rotation and translation, or more local conformational changes, are 
often subject to significant damping due to solvent viscosity. In a PB-based approach 
the solvent, being only implicitly represented, is effectively of zero viscosity and the 
frictional and stochastic forces due to collisions with water molecules are neglected. 
Since the latter two forces are often important for redistributing energy between 
a molecule's vibrational modes, their absence represents something of a problem; their 
effects can, however, be reincorporated relatively easily, so that correct equilibrium 
properties are obtained, using the technique of stochastic dynamics (SD) [4]. Despite 
this slight technical difficulty, the ability to set the solvent frictional constant to a low 
value is expected to allow structural transitions to occur much more readily than if 
solvent molecules were explicitly represented. 

The molecular nature of the solvent raises difficulties for conventional simulations 
in other ways. Ligand docking and macromolecular association, for example, are 
almost always accompanied by some degree of desolvation of one or both molecules. 
In extreme situations, such as a ligand passing down a narrow solvent-lined tunnel 
into the active site of an enzyme, the difficulties associated with expelling solvent 
molecules so that the ligand can pass are sufficiently great that the process is next to 
impossible to study by conventional means. Obviously, no such problem is faced 
when the solvent is treated simply as a dielectric continuum. 

Clearly, significant advantages are to be expected from adopting a PB-based 
approach for simulating large macromolecular systems. What is also apparent from 
the above discussion, however, is that the dynamical behavior of such systems will be 
strongly altered by the omission of explicit solvent and ions: a combination of PB and 
SD methods (PB/SD) can be tuned to provide a fairly realistic description of the solute 
dynamics, or - by using artificially low friction coefficients - to provide more rapid 
configuration sampling, which still yields valid equilibrium information. 

Having detailed the potential advantages of the method, it is of course necessary 
to demonstrate that these benefits are actually obtained in practice. An important 
step in this direction was recently taken in work reporting the use of a combined 
PB/SD method to study the conformational preferences of the small molecules 
dichloroethane and alanine dipeptide [5]. In the study, a conventional molecular 
mechanics force field was used to represent the internal bonded and nonbonded 
interactions (including Coulombic interactions). This 'gas-phase' force field was sup
plemented by electrostatic solvation forces obtained by solving the PB equation using 
finite difference (FD) methods. The solutes were each simulated for ~ 2 ns using 
stochastic dynamics to obtain probability distributions for the internal dihedral 
angles, which were then compared with reference distributions obtained from static 
energetic calculations. Probably the most important aspect of this work was the 
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finding that very good agreement between simulated and reference conformational 
distributions was obtained even with relatively coarse grid spacings in the FDPB 
calculations. 

It is obviously important to demonstrate that a PB/SD method can work well in the 
setting of a small-molecule model system. In most cases, however, it will be preferable 
to study such systems by the use of explicit solvent simulations, particularly as 
currently available computational resources seem more than adequate for the pur
pose. It remains important then to show that the method can be meaningfully applied 
to macromolecular systems since, as outlined above, it is in such settings that 
a continuum-based approach is likely to be of most use. Accordingly, as a first step 
towards this goal, we consider in this article some of the aspects that are more relevant 
to simulations of macromolecules. We begin by very briefly reviewing the expressions 
derived for the electrostatic forces acting in a system modeled by the PB equation. 
Qualitative aspects of the PB forces are then illustrated using simple models, before 
practical problems relating to their implementation in MD simulations are discussed. 
By way of an example, a relatively simple application of the method is outlined next: 
the simulation of a model protein-DNA interaction. Finally, future prospects and the 
remaining problems associated with the implementation of the PB/SD method are 
outlined. 

Theory 

In the PB model [2], the molecule of interest is modeled as a set of point charges 
embedded in a cavity of low dielectric (Em) which is itself immersed in a (generally 
much higher) dielectric solvent medium (E.). The charges and atomic radii (the latter of 
which are used to define the extent of the low dielectric molecular interior) are most 
commonly taken from conventional molecular mechanics (MM) force fields such as 
AMBER [6] or CHARMM [7], although parameter sets specifically designed for use 
in PB calculations of solvation energies have been developed [8,9]. In applications of 
the PB equation to macromolecular energetics, it is common to use a solute dielectric 
of 2-4 in a somewhat ad hoc attempt to include effects due to the polarizability of the 
macromolecule. In combination with molecular mechanics, however, it is more 
correct to use a solute dielectric of 1.0, since most MM force fields, and in particular 
those intended for use in explicit solvent simulations, are parameterized with this 
value of the solute dielectric in mind. This is the approach adopted here. 

The total electrostatic force fi on any atom of the system can be expressed as the 
sum of four contributions [3]: 

j=N qjrij 

fi = qi I 4 1 13 + qiErf + fdbf + f ibf 
j #i 7tEm rij 

The first of these components is the Coulombic interaction of atom i with all the other 
(N - 1) atoms of the system, evaluated with the solute dielectric Em' It should be 
remembered that in molecular mechanics calculations it is usual to scale 1-4 Cou
lombic (and van der Waals) interactions between atoms and omit such 1-2 and 1-3 
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interactions entirely. The same approach is adopted here for the combined PB-MM 
force field: the Coulombic terms are dealt with entirely by a conventional MM 
program. 

The remaining three force components can be considered together as 'solvation' 
forces since they are the additional forces that result from transferring the (macro) 
molecule from a medium of dielectric Em to a dielectric of Es (which may also 
additionally contain dissolved mobile ions). The first of these components, qjErf , is the 
familiar reaction field force that expresses the interaction ofthe solute atom of charge 
qi with the electrostatic field resulting from the polarization the charges induce in the 
solvent environment. The second component, Edbf, of more subtle origins, is a dielec
tric boundary force representing the propensity of high dielectric to move into regions 
of strong electrostatic fields by displacing the low dielectric (solute). The last term, 
Eibf , analogous to the dielectric boundary forces and present only when there is 
nonzero ionic strength, is a force exerted at the mobile-ion-accessible boundary 
expressing the tendency of such ions to move into regions of strong electrostatic fields. 
Expressions for the calculation of each of these components from finite difference 
solutions to the PB equation have been derived and discussed in detail [3]; these 
expressions have been implemented in the PB program UHBD [10]. 

As a very simple illustration of the basic qualitative behavior to be expected from 
solvation forces, it is instructive to examine a very simple model system. Figure 1 
(upper panel) shows qualitatively the electrostatic forces acting between two oppo
sitely charged atoms. The Coulombic forces, which are evaluated using the solute 
molecule's dielectric (i.e. Em = Es = 1), are of course attractive and directed along the 
line connecting the atom centers. The solvation forces, on the other hand, are 
repulsive and point in the opposite direction. This offsetting of the attractive Coulomb 
component by a repulsive solvation component yields the intuitively correct result 
that ion-pair formation is less favorable in a high dielectric medium (water) than in 
a low dielectric medium (gas phase). The origin of this effect lies in the unfavorable 
change in electrostatic solvation energy of the system as the ions are brought closer 
together. According to the simple Born [11] model of electrostatic solvation, the 
solvation energy of an ion is proportional to the square of the atomic charge. At 
infinite separation then, the solvation energy of the two-ion system is proportional to 
( + 1)2 + (- 1f; at zero separation, however, the solvation energy is zero since the sum 
of the two opposite charges is zero. A similar offsetting occurs in interactions between 
like-charged ions (lower panel of Fig. 1). Here of course the Coulombic force is 
repulsive, but this is largely balanced by a favorable solvation force. Again, the net 
effect is intuitively reasonable: like ion-pairs are more likely to occur in water than in 
the gas phase. In this case, the favorable solvation force results from an increase in 
charge density: the solvation energy of a single ion of charge + 2, obtained when the 
two ions are at zero separation, is more favorable (proportional to ( + 2)2) than the 
combined solvation energy of two singly charged ions « + 1)2 + (+ 1)2). 

This compensating effect of solvation forces is a quite general feature of PB 
electrostatics [2]. Figure 2 shows the electrostatic forces acting in a more complex but 
realistic example: that of a short DNA hexamer of sequence d(AT A T AT)z in 
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Fig. 1. Qualitative illustration of electrostatic forces acting between (top) oppositely charged and 
(bottom) like-charged spheres in high dielectric solvent. Coulombic forces are represented by light 
gray vectors and solvation forces by dark gray vectors. 

a 150 mM 1- 1 salt solution. In this figure, the forces acting on each of the five atoms of 
the phosphate group (including the 03' and 05' atoms) are summed together and 
centered on the phosphorus atom to give an indication of the overall force acting on 
each of the phosphate groups. Not surprisingly, the Coulombic interactions between 
the phosphates are repulsive and directed outwards from the minor groove where 
cross-strand repulsive interactions are the strongest. The solvation forces again 
essentially point in the opposite direction and tend to force the two strands together 
across the minor groove. The net forces are small, consistent with the fact that, despite 
the presence of large Coulombic repulsions between phosphates, the high degree of 
solvent screening serves to stabilize DNA in a double-helical form. 

Practical aspects 

Having illustrated the qualitative behavior to be expected from solvation forces, we 
now discuss the incorporation of these forces into dynamics simulations. In combin
ing FDPB electrostatics with stochastic dynamics, there are two major questions 
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Fig. 2. Illustration of electrostatic forces acting on the phosphate groups of a DNA hexamer of 
sequence d(ATATATh (the lower view is looking down the helical axis). Arrows pointing outwards 
from the helical axis are Coulombicforces and those pointing inwards are solvation forces. Forces 
were calculated at 150 mM ionic strength. 

which need to be addressed. The first is how accurately the PB forces need to be 
calculated to ensure a reasonable behavior of the system. Solving the PB equation 
using finite difference methods inevitably introduces grid dependencies to the results; 
such effects are a familiar aspect of PB energetics studies and similar concerns also 
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naturally arise with force calculations. In general, a finer grid used in a PB calculation 
will yield more accurate (by which we mean less grid-dependent) forces and energies, 
but will require considerably more computer time than a similar calculation with 
a coarse grid. This is not usually a problem for energetics calculations since computer 
time is rarely a limiting factor, but for dynamics simulations, where the PB forces may 
have to be recalculated many thousands of times, this is likely to be a major concern. 
Since speed will obviously be of importance then, the question essentially boils down 
to one of how coarse a grid can one get away with whilst retaining forces of sufficient 
accuracy. In this regard it is worth repeating the most promising aspect of the work of 
Gilson et al. [5]: that good results could be obtained for equilibrium conformational 
distributions even with relatively coarse grids of around 1 A spacing. By examining 
the variability of forces calculated for the DNA hexamer described above, we show 
below that similar results might also be obtainable with macromolecules. 

The PB solvation forces acting on the atoms of the DNA hexamer were first 
calculated using a grid spacing of 1.0 A, and charges and atomic radii taken from the 
AMBER94 force field [6]. Forces were obtained with 16 different orientations of the 
molecule on the grid and averaged separately for each atom; we use these average 
atomic forces as a reference for determining the variability of the forces on changing 
the grid orientation. For each of the 16 individual forces, an error was calculated as 
the difference between the force and the average 'correct' force acting on the same 
atom. Figure 3 shows the rms magnitude of this force error for each of the atoms of the 
DNA. A series of 12 evenly spaced peaks are visible which correspond to the atoms of 
the phosphate groups; also indicated is a series of six smaller double peaks corre
sponding to the adenine NHz groups. Figure 4 shows that the force errors correlate to 
some extent with the magnitude of the atomic charge, an effect which of course is not 
particularly surprising: given that the solvation forces themselves are expected to be 
larger in magnitude at highly charged atoms, the errors are also likely to be larger. Of 
the various components of the forces, the major contribution to the force errors 
appears to come from the dielectric boundary forces (Fig. 5); this is understandable 
since the discretized grid representation of the dielectric surface is expected to be 
particularly poor at a grid resolution of 1.0 A. Figure 3 also shows the rms force errors 
obtained with a grid spacing of 0.4 A. It is encouraging, though not particularly 
surprising, that the magnitudes of the force errors decrease sharply as the grid spacing 
is changed from 1.0 to 0.4 A so that the largest average error for any of the atoms is 
reduced from around 5 kcal mol- 1 A -1 to around 1 kcal mol- 1 A - 1. The increased 
accuracy of the forces obtained with the smaller grid spacing is displayed graphically 
in Fig. 6, which plots each of the 16 individual forces calculated for a central 
phosphorus atom, together with their average, for the 0.4 and 1.0 A grid spacings. 

At first sight these results would appear to suggest that attempts to use a coarse grid 
for macromolecules with large electrostatic forces will lead to poor behavior. How
ever, although forces obtained with the coarse grid of 1.0 A spacing are clearly subject 
to a much greater degree of variability, the average forces obtained are in quite good 
agreement with the average forces calculated with the much finer grid of 0.4 A (Fig. 7). 
Overall, the differences between the average forces obtained for the 0.4 and 1.0 A grid 
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Fig. 3. Plot of rms solvation force error for each of the 384 atoms of the DNA hexamer. For clarity, 
values for the grid spacing of 0.4 i are shifted down by 1 kcaimor l i-I. Atoms 1-192 are for the 
first DNA strand and atoms 193-382 are for the second (identical) DNA strand. 

spacings are around 1 kcal mol- 1 A -1, with errors for the phosphate atoms being 
around 1.4 kcal mol- 1 A -1. The one major exception is the non-Watson-Crick paired 
proton of the adenine NH2 groups, which clearly remains inaccurate: this is presum
ably a consequence of the combination of its small radius (1 A), relatively high charge 
( + 0.417e) and location at the dielectric boundary. 

This overall more promising result leads directly to a discussion of the second 
major question to be addressed: how often to update the solvation forces. In principle 
of course, these forces could be recalculated at every step of an MD simulation. In 
practice, such an approach is, for the moment, out of the question since solving the PB 
equation for each new configuration of the system, particularly for macromolecular 
systems, would be prohibitively expensive. The most obvious way around the problem 
is simply to update the solvation forces only every n steps, keeping them constant for 
all intervening steps. However, the above results suggest that computational efficiency 
is not the only factor to be considered in determining the frequency of updating 
solvation forces. The fact that averaged forces can be relatively accurate, even though 
the instantaneous forces might be much more variable, indicates that the question of 
solvation force update frequency is also to some extent linked to the coarseness of the 
grid: more frequent updating might be required for coarse grids in order to provide 
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Fig. 4. Correlation of rms solvation force error with atomic charge. 

a reasonable degree of averaging of the solvation forces. Obviously, this question is 
further connected with the relaxation properties of the system and it seems reasonable 
to expect that so long as the time between solvation force updates is considerably 
shorter than the relaxation time of the system, so that the system experiences an 
average of the instantaneous PB forces, reasonable results might be obtained. This will 
obviously vary from system to system, but for macromolecules, in which large 
motions of groups are subject to considerable damping, updating solvation forces 
every 0.1 ps should be a reasonable compromise between computational speed and 
force accuracy. On a related point, one could envisage more elegant schemes for 
updating the PB forces, such as only recalculating them when the configuration of the 
system has changed appreciably, for example if any atom moves more than a certain 
distance from its position at the previous solvation force update [5]. One could 
perhaps also argue that updating PB forces by simply overwriting the existing forces is 
undesirable since the forces change discontinuously. Indeed, Niedermeier and Schul
ten [12], in the first application of PB solvation forces to macromolecular dynamics 
(albeit using a model neglecting dielectric boundary forces), used an exponential 
scaling method for smoothly updating solvation forces. It should be remembered, 
however, that there is perhaps little point in adopting a method for smoothly updating 
the solvation forces when the forces themselves are subject to considerable numerical 
inaccuracy. 

Questions of PB force accuracy and update frequencies are not the only concerns 
that must be faced in implementing a combined PB/SD method. An equally important 
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problem, and one that is much less easily tested, concerns the overall balance of forces. 
As seen earlier for DNA, but also true for most systems with strong electrostatic 
forces, is the fact that Coulombic and solvation forces largely compensate one another 
so that the net electrostatic force is modest, even though the individual components 
may be large in magnitude. This requirement that large force components cancel out 
to leave a small net force would appear to represent a considerable challenge for 
proper parameterization of the method. Whilst it is, in some cases (e.g. amino acid 
side-chains), possible to adjust the atomic parameters (charges and radii) so as to 
reproduce experimental hydration free energies [8], this is not always the case owing 
to a lack of adequate experimental data (e.g. nucleic acid bases [13]). In any case, since 
the overall binding affinity of two molecules results from a balance of Coulombic and 
solvation contributions, there is no reason to believe that parameters developed 
simply to fit solvation energies will necessarily provide a good description of inter
molecular interactions. As it stands, it appears that perhaps the only truly unambigu
ous method of verifying a suitable overall balance of forces is to run a long dynamics 
simulation with a view to assessing the long-time stability and behavior of the 
structure. In keeping with the considerable amount of care put into developing 
conventional explicit solvent force fields [6,7], it is therefore likely that the 
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Fig. 6. Illustration of the variation of solvation forces acting on a central phosphorus atom of the 
DNA hexamer for 16 orientations using grid spacings of (left) 1.0 i and (right) 0.41 

development of a properly balanced force field for use in PBjSD simulations will be 
a laborious undertaking. 

At this stage, it is perhaps worth mentioning one final effect likely to be encountered 
specifically in continuum solvent simulations. The atomic fluctuations that naturally 
occur in the course of dynamics often result in the formation of small cavities; in 
conventional explicit simulations, solvent will only enter such cavities if they persist 
for some time. This is due both to the time requirements of the purely diffusive solvent 
exchange process and to the presence of often significant energetic barriers. However, 
PBjSD simulations allow high dielectric solvent to enter such cavities instantaneously 
since the dielectric map is recalculated each time the solvation forces are updated. 
Instantaneous solvent relaxation is normally viewed as a major advantage of a con
tinuum-based approach; in this case, it serves to increase the frequency of significant 
fluctuations occurring relative to explicit simulations, since the solvent, being fully 
relaxed, effectively lowers the kinetic barrier to any given conformational change. 
Whether this effect is actually an advantage or not will depend to a large extent on 
one's viewpoint: in terms of allowing fast exploration of configuration space as might 
be required in free energy calculations, the effect is clearly advantageous; for simula
tions aimed at studying a particular (hopefully stable) macromolecular conformation 
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on the other hand, the effect is potentially a significant drawback, allowing a much 
greater degree of conformational freedom than might otherwise be desirable. The 
effect can be alleviated, but not eliminated, by the use of a probe-accessible surface 
definition [14] which requires cavities to attain a reasonable size before becoming 
so I vent -accessi ble. 

Example application to a model protein-DNA association 

The above section has outlined some of the more important questions to be 
addressed in implementing a combined PBjSD method, and it will be necessary to 
deal with each of these questions properly in turn before applying the method to 
systems of real interest. As an indication of the potential utility of the method 
however, in this section we describe one relatively straightforward application to 
a model protein-DNA association reaction. 

Proteins often induce large and surprising structural changes in DNA upon associ
ation, the most famous example so far being provided by the crystal structure of the 
TAT A-box binding protein (TBP) complexed with DNA [15,16]. The protein binds in 
the minor groove of the DNA, bending the DNA away from the protein surface 
through an angle of nearly 90° and causing a dramatic increase in the minor groove 
width. These structural changes, which were unprecedented at the time the crystal 
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structures were first announced, have since been observed in other protein-DNA 
complexes such as the sex-determining SRY protein [17]. It had previously been 
suggested [18] that a significant contribution to the groove-opening effect might come 
from the loss of solvent screening of phosphate charges which accompanies protein 
binding: the expulsion of high dielectric solvent by the approach of a low dielectric 
protein ought to increase cross-strand phosphate repulsions. 

We recently investigated this idea by using the combined PBjSD method [19]. 
A model protein consisting of seven atoms (each of radius 10 A), designed to fit snugly 
in the DNA minor groove, was constructed and placed at a distance of 30 A from 
a DNA 16-mer (Fig. 8). The model protein was uncharged and did not directly interact 
with the DNA in any way (i.e. there were no Coulombic or van der Waals interac
tions); the protein therefore simply acts to define a region oflow dielectric immersed in 
the otherwise high dielectric solvent. 

The response of the DNA to the approach of this model protein into the minor 
groove was then investigated by hybrid PBjSD simulations carried out using a combi
nation of the CHARMM [20] and UHBD [10] molecular simulation programs, with 
information transfer being controlled by simple command scripting. All dynamics 
calculations were performed within a version of CHARMM modified to read in PB 
solvation forces calculated periodically by UHBD; once read in, the solvation forces 

Fig. 8. Views of the model protein- DNA system at a separation distance of 30 i The protein, 
represented here by gray spheres, consists of seven atoms, each of zero charge and radius 10 l 
arranged to match the minor groove of DNA at a separation distance of 7.51. The DNA sequence 
used in the simulations is d(ATATATATATATATATh-
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were reapplied at each timestep of the simulation. Interactions between DNA atoms 
were represented using the CHARMM22 force field [7] with the addition of weak 
harmonic restraints (10 kcal mol- 1 A -1) to maintain base-pairing during the simula
tions. Solvation forces modeling the effects of transferring the system from the gas 
phase to a 150 mM 1-1 salt solution were obtained by solving the PB equation with 
UHBD on a 75 3 grid of spacing 1 A. To be consistent with the use of an MM force 
field for the bonded and non bonded interactions, a solute dielectric of 1.0 was used in 
the PB calculations. The response of the DNA to the approach of the protein was 
modeled with the technique of stochastic dynamics at 300 K using a low friction 
coefficient of 6.5 pS-1 [5] to allow a fast structural response of the system. The protein 
was moved closer to the DNA in 2.5 A steps (to a final separation of 7.5 A), with 1 ps 
of dynamics being performed at each protein-DNA distance using a time step of 1 fs. 
PB solvation forces were updated every 0.1 ps: in the light of the earlier discussion 
concerning the interplay between force accuracy and update frequency, this should be 
sufficient to ensure a reasonable averaging of the solvation forces. 

The overall protein-DNA association reaction is therefore completed in 10 ps. Of 
course, this is several orders of magnitude faster than the real process, so the 
simulations are not intended to provide a realistic model for the dynamic process of 
protein-DNA association. Instead, the purpose of the present simulations is to 
investigate only the likely structural consequences of protein approach. In other 
words, we stress here the use of the combined PB/SD method as a means of simulating 
average structural responses rather than as a method for the simulation of true 
macromolecular dynamics. To ensure that the structural changes that occur during 
the simulation actually result from the approach of the protein, and not from some 
other artifact of the system such as a gross imbalance in the potential functions or the 
use of a coarse grid spacing, a control simulation of the DNA alone, from which the 
protein was omitted, was performed in an exactly analogous fashion. 

Perhaps not surprisingly, the approach of the low dielectric protein does indeed 
cause significant structural changes in the DNA. This is best illustrated by comparing 
the protein-DNA complex obtained at the end of the simulations with what would 
have been obtained had the DNA structure been held fixed (Fig. 9). It can be seen that 
with the DNA held fixed, a very considerable degree of structural overlap occurs at 
the position of closest approach of the protein to the DNA. In particular, it will be 
noticed that a number of the DNA phosphate groups are completely hidden. In 
contrast, the structure obtained at the end of the PB/SD simulation shows the DNA 
phosphates no longer embedded within the protein but, instead, fully exposed to the 
high dielectric solvent. This structural change is effected (or accompanied) by a dra
matic opening-up of the minor groove, an effect which is not observed in the control 
simulation of the DNA alone: the central interstrand phosphate-phosphate distances 
in the protein-DNA system are on average 5.1 A longer than those in the control 
simulation. 

An energetic interpretation can be placed on these structural changes by examining 
the solvation energy of the system as a function ofthe protein-DNA distance (Fig. 10). 
When the DNA is held fixed, the approach of the protein, and the accompanying 

257 



A.H. Elcock et al. 

Fig. 9. Structure of the protein-DNA system at the end of the simulation (right) compared with what 
would have been obtained if the DNA had been held rigid (left). 

exclusion of high dielectric solvent, causes a large unfavorable change in the solvation 
of the DNA. When the DNA is allowed to move in the PB/SD simulations, its 
structural response is such as to limit this loss of solvation, primarily by pushing the 
phosphate groups out towards the regions of nearby high dielectric. It is important to 
emphasize again that, in these simulations, no direct forces acted between the protein 
and the DNA; groove opening does not result, for example, from steric clashes with 
the protein since no van der Waals interactions operate between the protein and the 
DNA. The structural changes observed therefore result only from changes in the 
solvent and ionic environment of the DNA and, in particular, the decreased solvent 
shielding of phosphate repulsions. 

The simulations suggest, therefore, that large structural changes in DNA can be 
induced without introducing new charge-<:harge interactions between the protein and 
the DNA, by modifying the charge-<:harge interactions already present within the 
DNA. Real protein- DNA systems are of course much more complicated than the 
simple model system investigated here, and other effects, such as hydrophobic and 
charge-<:harge interactions between the protein and the DNA, will undoubtedly be 
important in determining the overall protein- DNA structure [18,21]. As such, it will 
probably be difficult to provide unambiguous experimental support for the presence 
or contribution of dielectric effects. Despite this, the probable importance of such 
effects suggested by the present results is underlined by the fact that the DNA-binding 
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Fig. 10. Relative electrostatic solvation energy of the protein-DNA system as a jUnction of the 
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domains of the proteins inducing the most dramatic changes in DNA structure are 
extremely hydrophobic [18]. 

Remaining problems and future prospects 

The above results show that the PB/SD method can be usefully applied to approach 
interesting problems which would otherwise be difficult or impossible to study. The 
next important step will be to demonstrate that the method is capable of producing 
stable simulations of macromolecules over much longer periods of time. As discussed 
earlier, such simulations should provide the most unambiguous test of the method's 
utility, an aspect which may ultimately rely on the development of a suitably balanced 
and parameterized force field. In terms of systems for study, DNA undoubtedly 
represents one of the most challenging owing to the magnitude of the Coulombic and 
solvation forces present, and as such there is good reason to believe that a method 
capable of allowing stable simulations of DNA will also be of more general use. It 
should be pointed out that just this situation has recently been reached for explicit 
solvent simulations of DNA: simulations extending to 2 ns have been reported, 
indicating a high level of stability in the structures [22,23]. Clearly, to have full 
confidence in the method, it will be necessary for PB/SD simulations to demonstrate 
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a similar degree of stability, although it should be remembered that the timescale of 
conformational changes in a PBjSD simulation can be made much shorter than that 
obtained in conventional MD simulations. Because of this latter aspect, it is worth 
pointing out that comparisons of the relative computational efficiency of continuum 
and explicit methods based solely on CPU time per picosecond of simulation are not 
likely to be useful. 

In addition to parameterization issues, other aspects of the method will also require 
further investigation. The optimization of factors such as solvation force update 
frequency, solvent friction constants, etc. will be important, though undoubtedly, to 
an extent, system dependent. Such aspects are currently under study for small
molecule systems [24]. In identifying areas for future study, it is worth emphasizing 
that our discussion has focused exclusively on electrostatic aspects, omitting any 
mention of other effects such as hydrophobic forces which are clearly of major 
importance for macromolecular stability. Hydrophobic energies are of course com
monly expressed as being proportional to the solvent-accessible surface area, and the 
recent development of computationally efficient methods for the calculation of sur
face-area-dependent forces [25] should facilitate their inclusion in more physically 
complete continuum-based dynamics simulations. Ultimately, for a combined PBjSD 
method to be of general use for macromolecular simulations, it will be necessary to 
address all of the above aspects. With further developmental work, however, PBjSD 
should become a valuable simulation method, providing information complementary 
to that obtainable using explicit solvent techniques. 
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Introduction 

New techniques in crystallography, the use of synchrotron radiation and freezing 
techniques, have led to a quickly expanding number of protein structures determined 
at high resolution. High-resolution data provide for a more detailed description of the 
protein, allowing analysis of the relative flexibility of different regions of the molecule 
and of the details of water structure. 

The conformations of a protein allowed within the crystal are conventionally 
modeled by isotropic temperature factors and sometimes by multiple conformations 
of a particular side chain. A better representation of the atomic mobility is obtained 
by application of the method of time-averaging refinement. This method fits the data 
with an ensemble of structures, generated by molecular dynamics, rather than a single 
structure [1-8]. This method was initially developed for the refinement of NMR 
structures to properly account for conflicting data that cannot simultaneously be 
satisfied by one structure [9,10]. The method of time-averaging refinement was first 
applied to protein crystallography in the refinement of phospholipase A2 [1]. Given 
sufficient data, this method gives a better representation of the conformational 
variability of a biological molecule than can be obtained by the use of either isotropic or 
anisotropic temperature factors [3]. The force field used in the simulation restricts the 
structures of the ensemble to be of low energy and physically reasonable; thus, con
formational variability is represented by multiple sterically reasonable configurations. 

Refinement procedure 

The term restraining the refinement to the experimental structure factors in time 
averaging is V~~stn which is added to the physical potential energy function, V phys' This 
potential function restrains the system to the X-ray data (Eq. 1) just as in traditional 
molecular dynamics or simulated annealing refinement. 

V = V phys + V~~str (1 ) 

The difference from traditional refinement is that V~~str is a function of an ensemble of 
structures rather than a single structure (Eq. 2). 

(2) 
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and 

t 

< Fcalc(S) >~ .. t = ["Lx(1- e-t/t.)]-l J e-(t-t')/t. Fcalc (S'; f(t'»dt' 
o 

(3) 

There are two force constants in the experimental restraining potential, V~~str. 
ksc scales the calculated to the observed structure factors and ksf scales the restraining 
potential to the physical potential. The force constant ksf must be chosen carefully 
since the time-averaging potential is dependent on previous configurations of the 
molecule and does not conserve energy. The optimal force constant is one that still 
refines the ensemble to the X-ray data, but does not heat the system more than 15% 
over the bath temperature. Empirical tests of such a force constant scale the X-ray 
term to be approximately 5% of the magnitude of the rest of the force [4]. 

"Lx is the relaxation time over which an ensemble of structures is accumulated and 
averaged. The relaxation time is related to temperature factors, since both parameters 
affect the spatial distribution of the electron density due to a particular atom. The 
temperature factor gives an instantaneous contribution, whereas the averaging con
tributes as many atom positions as are taken into account within time "Lx. Temperature 
factors should not be independently refined during a time-averaging refinement 
simulation as this would be redundant; rather a small constant temperature factor 
(such as 2 A 2) should be assigned to all atoms. However, choosing a reasonable 
relaxation period is critical to the success of the refinement. 'x needs to be sufficiently 
long to allow mobile parts of the molecule to cover configurational space adequately. 
Too short a "Lx will result in the ensemble of structures sampling a region of space that 
is between the observed conformations and a poorer fit to the data. In practice, the 
constraints of computer time mean that fast relaxing disorder can be properly 
accounted for, but slow relaxing disorder will not be sampled. Thus in setting up 
a refinement simulation, the longest practical relaxation time should be chosen. 

The exponential decay function in Eq. 3 is built into the standard formula for 
averaging the structure factor over a time period t, during the course of the refinement. 
The simulation time should be at least lO-fold longer than the relaxation time to 
reduce model bias toward the starting configuration. The force calculated from 
Eq. 2 depends on the rate of change of the time-averaged structure factor 
which is dependent on both the length of the simulation, t, and the relaxation 
time, "LX" This allows for the calculation of a running R-value: 

R( . )_LIFobS - <Fcalc>t .. tl 
runnmg - IF I 

Lobs 
(4) 

which can be monitored over the course of the simulation. 
A limitation of time-averaging refinement is that the ratio of observations to 

unknowns must be sufficiently high to describe multiple conformations. Protein 
molecules have restricted geometries, which are determined by the peptide bonds and 
the sterically allowed conformations of the side chains. Thus, individual atoms are not 
free to move independently of each other. This restricted geometry reduces the 
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number of independent parameters that must be fit by the data in determining 
a structure. In time-averaging refinement, the structures ofthe ensemble refined to the 
data are also not independent of each other; rather they are related both by the 
restrictions of chemistry and by their relationship to each other in time. To signal 
overfitting of the data, a free R-value [3,11] can be used during the refinement 
simulation. The refinement is proceeding well if the free R-value stays coupled with the 
refined R-value during the simulation. However, if the free R-value diverges from the 
refined R-value and starts to ascend, this is a clear indication that the refinement 
simulation is not set up appropriately. 

Expanding the asymmetric unit to a full unit cell provides additional searching 
capabilities in time averaging [4,7]. This can enhance the sampling statistics over 
conformational space, since each asymmetric unit can fit the data slightly differently. 
Refining the full unit cell can also provide independent verification of how frequently 
a particular event is likely to occur. 

A time-averaging refinement simulation provides a unique ability to examine water 
structure and the relative accessibility of water sites around a protein structure. To 
accomplish this, the simulation box, either the asymmetric unit or the unit cell must be 
filled with water. This full hydration of the unit cell also allows the use of a force field 
with full charges, and thus should better mimic the electrostatic environment that 
exists within a crystal. However, use of the correct protonation state to mimic the pH 
within the crystals is essential, since incorrect electrostatics may disrupt the crystal 
lattice. 

Analysis of results 

Analyzing and usefully interpreting the results of a time-average refinement is not 
trivial. Structure factors from time-averaging crystallographic refinement are cal
culated from the ensemble of structures in the simulation. At the end of the simula
tions, the structure factors are averaged over the analysis period to provide an average 
calculated set of structure factors for the refinement defined as 

1 

< Fcalc(s) >1 = C 1 J Fcalc (s, f(t'))dt' 
o 

and this leads to the calculation of a final R-value: 

R = I IF obs - < F calc > 00.1 I 
II Fobs I 

(5) 

(6) 

All the molecular motions that occurred in the refinement simulation over the analysis 
period are averaged into these structure factors. Electron density maps generated 
from these calculated structure factors and average calculated phases provide a view 
of the predominant motions sampled in the calculation. Difference maps assess the fit 
to the observed data. For example, if the protonation state of the molecule is incorrect, 
the electrostatics for the simulation box will be incorrect, forcing many side chains 
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into the wrong conformation and producing many difference peaks in the electron 
density maps. 

Atomic coordinates are saved frequently during the simulation which allows for 
a detailed analysis of the ensemble of structures. From the atomic trajectories, 
a temperature factor for the protein atoms can be calculated, 

(7) 

where < d2 > is the mean-square positional fluctuation. This is a useful quantity to 
assess the types of motion that occur and allows for comparisons with the temperature 
factors belonging to the conventionally (single-structure) refined crystal structure. 
This is especially pertinent for ~-carbon atoms whose positions tend to be less 
variable. Dihedral angles for the side chains as a function of time can also be extracted 
from the trajectories. 

The water structure has to be assessed somewhat differently since, during the course 
of the refinement simulation, the water molecules are free to move throughout the 
simulation box. The relative accessibility of water sites around the protein molecule is 
more interesting than the trajectory of any particular water molecule. These sites can 
be mapped by recording the positions of the water molecules at every time step on 
a fine three-dimensional grid [12]. The contribution of each water molecule can be 
spread over grid points by a Gaussian and normalized so that the sum over all grid 
points of contributions of one water molecule equals one. Over the analysis period, 
grid points that are frequently occupied by water molecules can be defined as a water 
site. These water sites can then be compared for correspondence with peaks in the 
electron density map. 

Once these water sites are determined, they can be characterized in terms of the 
number of water molecules visiting a site, the percentage of time a site was occupied, 
and the shape of the visiting distribution. A water site temperature factor can be 
calculated using positions, r;, of visiting water molecules around the site position, rs;te: 

B = 8/32 7(2 < (r; - rsite)2 > = 8/37(2 < A r2 > 

The anisotropy of a water site can be defined as 

A = 2 < Ar; > /( < Arf > + < Ar~ > ) - 1.0 

(8) 

(9) 

where < Ar; >, < Arf >, < Ar~ > are the mean-squared displacements from the 
water site in three orthogonal directions, and where < Ar; > is the largest in 
magnitude of the three displacements. Finally, if an entire unit cell was refined in the 
simulation, the characteristics of symmetry-related water sites from the trajectory 
analysis can be compared for reliability. 

Conclusions 

Time averaging provides a useful method for the detailed refinement of high
resolution crystal structures. Analysis of the conformations of the protein's side chains 
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and loops characterizes the attainable flexibility of the molecule within the limits of 
the experimental data. This description of the protein is more accurate than either 
isotropic or anisotropic temperature factors. In addition, the ensemble of protein and 
water configurations can be analyzed to determine the relative accessibility of ordered 
water around a protein molecule, a determination which is not possible by any other 
experimental analysis. As computers become faster and high-resolution data become 
available for more proteins, time-averaging refinement will become a practical 
method for further characterization of a protein's structure and flexibility. 
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Introduction 

Protein structures determined from X-ray or NMR data are generally refined by 
including empirical energy terms for intramolecular interactions [1-3]. A good 
stereochemical quality of an experimentally determined protein structure is a neces
sary requirement for a high-resolution structure [4-7]. Several force fields for intra
molecular interactions in proteins are nowadays in widespread use [8-14]. However, 
a low intramolecular energy of an experimentally determined structure does not prove 
that this structure is correct, as the analysis of incorrectly determined experimental 
and deliberately misfolded protein structures shows [15,16]. It is necessary to include 
the protein-solvent interaction in the refinement process. 

Various models for treating the protein-solvent interaction have been suggested 
and their strengths and limitations were critically evaluated in several recent reviews 
[17-19]. Protein-solvent interaction can be computed with either explicit moving 
solvent particles [20-24], or in continuum models based on the Poisson- Boltzmann 
equation [25,26] or on the solvent accessible surface area [27-33]. Treating protein
solvent interactions in a continuum approximation is an order-of-magnitude faster 
than computations with explicit molecules. This efficiency makes this approach 
attractive for refinement calculations and studies of protein docking and folding. 

The first methods calculated the accessible surface area of an atom by numerical 
integration of the accessible arc lengths of cross sections. These numerical methods, 
which have been optimized over the years, are robust and easy to implement. 
However, analytical expressions of the areas and their gradients with respect to the 
atomic coordinates are needed for use in energy refinement programs. An analytical 
approximation of the surface area was proposed for that reason [34]. Connolly 
[35-37] first presented an exact analytical solution of the integration of the accessible 
surface area. Richmond [38] suggested a different mathematical representation of 
intersecting circles. 

Several improvements of the continuum approach were necessary to allow its 
application to the refinement of protein structures [39-42]. Recently, we showed that 
these calculations can be further simplified by new and computationally more efficient 
equations, which calculate the derivative exactly [43,44]. Several computational 
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aspects ofthis approach are still being developed, with regard to handling singularities 
or introducing approximations for higher efficiency [45-49]. 

An important aspect of the surface area approach is the choice of the atomic 
solvation parameter sets. Different atomic solvation parameters have been tested for 
their ability to discriminate between native and alternative folds and their merits in 
the energy refinement of protein structures derived from NMR data [50-56]. 

The next sections describe basic mathematical features for calculating the accessible 
surface areas and their derivatives analytically. The strengths and limitations of each 
refinement method are evaluated and compared to the use of explicit water molecules 
in unconstrained and constrained molecular dynamics calculation. 

Calculation of the solvent accessible surface area 

Chothia [29] correlated the gain in free energy for the transfer of residues from the 
surface of a protein to the interior with the loss in accessible surface area, and 
estimated a free-energy gain of 24 cal/mol A 2 from the observed linear correlation. 
Considering the different polarity of atoms or atom groups on the surface of the 
protein and using more precisely measured transfer energies of amino acid residue 
analogues [33], Eisenberg and McLachlan [32] calculated the free energy of inter
action of the protein with water, Ehyd, by 

Ehyd = I O"i Ai (1) 
i= 1, n 

where Ai is the solvent accessible surface area of atom i and O"i is a 'solvation 
parameter' depending on the atom type. The atoms are treated as spheres where the 
radii of the spheres are the van der Waals radii enlarged by 1.4 A, to represent the 
water molecule rolling over the van der Waals surface of the protein [27]. An 
analytical expression for the Ai and their derivatives is needed to include the 
protein-solvent interaction Ehyd in an empirical energy function for energy minim
ization or molecular dynamics calculations. 

Following the general procedure of Connolly [35,36] and Richmond [38], we have 
further developed the basic equations for the analytical calculation of the accessible 
surface area and its derivatives [43,44]. Figure 1 shows a typical arrangement of 
spheres occluding parts of sphere i. The solvent accessible surface Ai of sphere i is 
enclosed by p intersecting accessible arcs. The global Gauss-Bonnet theorem for the 
case of intersecting spheres leads to an analytical expression for Ai which can be 
calculated from the arc lengths and tangential vectors at the end points of the 
accessible parts of the intersecting circles: 

Ai = rr[21t + I !lA,HI + I COSE><l>] 
A=I.p A=I,p 

(2) 

The polar angle E> is the opening angle of the circle of intersection at the center of 
sphere i (Fig. 2). The distance from the center of sphere i to the center of the 
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Fig. 1. Accessible surface area of a sphere i (dark area), intersecting with three other spheres k, 
I and m. Two spheres i and k form a circle of intersection, which is in general partially solvent 
exposed. The solvent-exposed part is the arc A. (bold line). The end points of A. are defined by cutting 
two other circles of intersections A. - 1 and A. + 1 (dashed lines) with spheres m and I. The length of 
the arc A. is given by cP Pk where cP is the angle at the center of the circle corresponding to the solvent 
accf!ssible part and Pk is the radius of the circle of intersection. The angle between the tangential 
vectors of successive arcs is given by Q. 

• I 

J I 

k 

0(1) 
ikj 

e J.1 

(0,0,0) 

Fig. 2. Definition of the polar angle e, the angle cP corresponding to the accessible arc, and the 
angle Q between tangential vectors nlrl. The complementary angle CP* = 2n - cP corresponding to 
the buried arc is shown. The three indices ijk label the three spheres which intersect in the 
considered point. The first two indices, i and j, give the intersection circle to which the vector is 
tangential. The number of the intersection point p (1 or 2) is written in superscript. The intersection 
points can be classified as 'entry' or 'exit' points. These are the points where one enters or leaves 
the buried arc when moving on the oriented intersection circle. For example, PI is an exit point of 
the intersection circle k. 
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intersection circle k is ex. The polar angle E> can be calculated from ex and the radius of 
the sphere rj by 

ex 
cosE> = -

rj 
(3) 

The angles <I> and n can be calculated from the tangential vectors nlf~. As the angle 
of the accessible part of the intersection circle <I> can be larger than 1t, special 
consideration has to be taken for the two cases [43]. For <I> < 1t the angle is given by 

<I> = arccos ( n l!l' n l~l ) (4) 

For the angle n no special case needs to be treated separately, as n cannot be larger 
than 1t: 

n = arccos ( nl!l' nlI~ ) (5) 

The tangential vectors themselves can be calculated from the coordinates of the 
intersection points P 1 and P 2' The equations for the three intersecting spheres lead to 

(Xj - p)2 = rf 
(Xk - p)2 = r~ 

p 2 = rr 

(6) 

(7) 

(8) 

A convenient decomposition for the intersection points P 1 and P 2 is in three 
orthonormal vectors p, v and co (Fig. 3): 

(9) 

All individual components of P 1,2 can be calculated from Eqs. 6-8 (see Ref. 43): 

d~ + rr - r~ 
ex = 2dk 

(10) 

1 
(11) ~ = -.-(gj - gkCOSCP) 

smcp 

Y1,2 = ± Jr; - ex2 _ ~2 (12) 

Xk 
(13) p =-

dk 

v = -.- ...2 - cos CPP 1 (x. ) 
smcp dj 

(14) 

co = pl\V (15) 
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Fig. 3. The sphere i is supposed to be in the origin of the coordinate system. The center of any other 
sphere k is then determined by the vector x k = (xl, x 2, x 3) with IXk I = dk• Three spheres i, k and 
j intersect in the two points PI and P2 . The intersecting points can be decomposed in three 
orthonormal vectors, /l. v and ro. The unit vector p. points from the center of sphere i to the center of 
sphere k, and v is orthogonal to p., pointing towards the center of j. 

Calculations of the derivatives 

The derivatives of the scalars ex, ~, y and the unit vectors p, v, 0) can be directly 
calculated from Eqs. 10-15. With the equations for the intersection points and their 
derivatives, we can now calculate the values cos e, <I> and n in the Gauss-Bonnet 
formula. For the calculation of the gradient of the solvation energy, Eq. 1, we need the 
derivative of every solvent accessible surface Ai with respect to all atom coordinates. 
The matrix 'OAJ'Oxk is, however, sparse, as only those derivatives are different from 
zero where the sphere k intersects sphere i. From the Gauss-Bonnet theorem we have 

'OAi 2[ ~ an).., 1..+ 1 ~ a cos e m ~ a 'O<I>J 
- = r L. + L. ---qI + L. COs~-
'OXk )..= l,p 'OXk )..= l,p 'OXk )..= l,p 'OXk 

(16) 

All dependencies of the angles n, e and <I> on the atomic coordinates of sphere 
k have to be considered in Eq. 16. Using the notation 

a 
'0=

'Oxr 

the derivatives of the individual terms in Eq. 16 can be calculated as 

an - _1_('0 (1). (1) (1).'0 (1») 
- sinn n ikj nijk + nikj n ijk 

'Ocose 
ri 
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Practical implementations 

The program MSEED [39] calculates surface areas and derivatives by first locating
only accessible vertices P connected by edges. Vertices are common points of three 
intersecting spheres, connected by intersecting circles (edges). The time-saving proce
dure in MSEED is based on a fast method for searching for vertices only through 
following accessible edges. The CPU time required to calculate the solvation energy 
Ehyd is not the time-limiting factor, as the method scales with a factor between n2 /3 and 
n. However, buried surfaces are not found by this method, which might be a limitation 
in certain applications. 

In the program FANTOM [42,43] two internal lists are used to speed up the 
calculation: a near-neighbor list for intersecting atoms and a list of atoms on the 
surface. The number of atoms in this intersection list is only dependent on the average 
packing density of the protein and not on the overall size of the protein. Thus, the 
major part of the CPU time needed for the calculations increases linearly with the 
size of the protein. The intersection points of the atoms i, k and j are calculated from 
Eqs. 9-15. A further aspect for practical implementation is the handling of singular
ities, where for example two spheres are contacting each other, or three atoms are 
collinear. These critical cases can be handled through careful implementation 
[42,43,45]. 

A great variety of techniques have been described to improve on the efficiency of 
surface calculations. These methods use new hardware architecture such as parallel 
computers, implement more sophisticated search methods or simplify the earlier 
approaches to reduce CPU time while assuring that the calculated values of the 
surface area or derivatives are still good approximations of the values. 

Implementation on parallel computers 

The method of Lee and Richards [27] has been implemented on an Intel 
parallel computer with 64 processors [57]. The accessible surface area of each sphere 
is calculated by sectioning the space occupied by the protein in a set of parallel 
planes (z-sections) with a certain distance !:iZ between neighboring planes. The 
lengths of accessible arcs, La, are determined for each sphere i on a given plane. 
The accessible surface area is then computed -by numerical integration along the 
z-axis: 

r-
Ai=L~DLa 

a ri - Za 
(21) 

The calculation of the surface area of each atom can be performed independently 
from the calculation for other atoms. Partitioning and mapping of the atoms to the 
available processor has been arranged to balance the work load. The overall efficiency 
of the parallel computation was reported to be 67% for 64 processors and almost 90% 
for 16 processors. 
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The analytical calculation of the surface areas and their gradients was also ported 
to a parallel machine, an Intel Paragon [43]. The computation of the individual areas 
Ai by Eq. 2 and their gradients by Eq. 16 can be independently processed if the 
coordinates of all atoms and their radii have been broadcast to all processors. One 
master processor broadcasts the data, synchronizes the parallel computation, and 
collects the result. The remaining (n - 1) slave processors calculate the solvation 
energy and its gradient for approximately M/(n - 1) atoms for a protein of M atoms. 
An almost optimal load balance was achieved by assigning every (n - 1)th atom to 
the same slave processor. In that particular study, only the solvation energy was 
calculated in parallel as it is the most time-consuming part. The fraction of time to 
calculate the protein-solvent interaction dropped to about 10% of the total time, 
using 20 processors in the parallel version of FANTOM. 

Improvement of the Shrake and Rupley method 

The Shrake and Rupley method (SR) [28] generates a certain number Ntot of test 
points which are uniformly distributed on the surface of the sphere. Then it counts 
how many of these points are not buried by other atoms (Nacc). The accessible surface 
area of the sphere can then be approximated from the ratio NacclNtot: 

A. = 41tr~ Nacc 
1 1 Ntot 

(22) 

The method can be improved by replacing the test points on the surface of the 
sphere with spherical triangles covering the whole sphere. In the GEPOL procedure 
[58], 60 spherical triangles cover the spheres, and the tesselation can be improved 
further by a finer granularity at the boundaries. Triangles are checked to determine if 
they are buried by other spheres, and the accessible surface area is estimated by 
summing the surface of all exposed triangles. Numerical tests proved that the conver
gence of the surface areas towards the correct values is faster with this method than 
when using uniformly distributed test points. 

Another variant of the SR method places the molecule in a cubic grid [59]. All grid 
points within the molecule are assigned a value of 1, while those outside have zero 
value. A test point is not occluded by neighboring atoms if its grid point has value 
zero. This test can be performed without calculating distances to neighboring atoms. 
The time saving is similar to the time saving using a near-neighbor list, but because 
most of the operations can be done with logical bit operations, the method is reported 
to be a factor of 8 faster than the SR method [59]. 

Another method [60] restricts the test for the occlusion of test points by neighbor
ing atoms only to certain test points. This is achieved by appropriately distributing 
and numbering the test points on the atoms (Z-ordering). A substantial reduction of 
the number of checks and a factor of 3 in speed-up were reported. 

More sophisticated lattice methods reduce the number of checks by using precal
culated libraries [61], or combine fast methods for creating a list of neighboring atoms 
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by cubic grids, as used routinely in distance geometry methods [62], with grid search 
methods for the surface points (double cubic lattice method) [47]. However, most of 
these recent methods have not yet been included in refinement procedures. 

Probabilistic methods 

Wodak and Janin [34] greatly simplified the accessible surface area problem by 
applying a statistical approach. The accessible surface area Ai of a sphere with radius 
ri in the presence of a second intersecting sphere with radius rk is a simple analytical 
function of the interatomic distance d between the centers of the two spheres. 
Analytical integration or applying Eq. 2 leads to 

[ d2 + rt - r~J 
Ai = 2mi ri + 2d (23) 

The fraction of Ai to the total area of this sphere can be regarded as the probability 
for a point on the surface of sphere i being outside of an intersecting sphere k. 
Assuming that all intersecting spheres are randomly and independently distributed 
around the sphere i, the probability for a point on the surface of sphere i being outside 
of all intersecting spheres can be calculated from the product of the individual 
probabilities. It was shown that the total accessible surface areas of globular proteins 
can be approximated within 2---4% error by this method. The error for the accessibility 
of individual residues was about 20%. These low error rates might be low enough 
such that protein-solvent interactions can be reliably included in simplified energy 
potentials derived from data sets of known protein structures [63]. 

In this probabilistic approach, the first and second derivatives of the hydration 
energy can be calculated. A modification of this approach by calibrating the surface 
area in 270 small molecules empirically [64] has been included in the energy minimi
zation program MacroModel [65]. 

Approximate methods for the derivatives 

An approximation of the derivative of the accessible surface areas has been 
recently given by a geometrical argument [48]. The algorithm combines some aspects 
of the SR method to determine the fractional accessibility of circles of intersections. 
The method was shown to be comparable in speed to the MSEED approach, but 
as in all numerical methods the speed of the method depends on the desired level 
of accuracy. For hen egg-white lysozyme, an overall root-mean-square error of 
the gradient of 1-2% was achieved, compared to the gradient calculated by 
ANAREA. It remains to be seen how useful these approximated derivatives are in 
actual refinement calculations. As the absolute values of the gradients are decreased in 
optimization, small errors in gradients can prohibit or significantly slow down 
convergence. 
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Methods for calculating excluded volumes and their derivatives 

Volume-dependent energy terms have also been proposed to calculate solvation 
energy in a continuum method [66]. A number of algorithms have been derived to 
calculate the excluded volume of a protein. Fast numerical methods [65,67,68] classify 
cubes of a grid lattice containing the protein to be exterior, surface or interior (white, 
gray or black). Critical cubes, mainly surface cubes, are reclassified on a grid of half 
mesh size. The approximate volume is given by the sum of the volumes of the interior 
and half of the volumes of the surface cubes. This procedure eliminates most of the 
interior atoms early in the calculation. By several iterations of dividing the mesh size 
in half, any required accuracy of the volume can be achieved. 

Derivatives of volumes are needed for refinement methods. A fast analytical 
approach for calculating the first and second derivatives of the excluded volume as 
a function of atomic coordinates has been described C69]. The molecule is cut by 
parallel planes (z-sections), which are typically 0.1-0.2 A apart, and the contribution 
for the first and second derivatives of each z-section is calculated and summed up to 
give the total contribution. For each accessible arc on a given z-section, the force 
acting on the 'central atom', i.e. the atom which is currently considered in the loop 
over all atoms of the proteins, is calculated by integration of 

dF = P'ndS (24) 

The analytical energy-minimized structures of hen egg-white lysozyme have been 
compared with the pressure-induced changes as determined by a crystal structure of 
1000 atm. Volume changes are less than 1 %, so structural changes have to be 
analyzed carefully. The first and second derivatives of excluded volumes as a function 
of atomic coordinates have been worked out, implemented in a truncated Newton 
optimization method. Pressure-induced changes were calculated and were found to be 
qualitatively in agreement with the experimentally observed values. 

Comparison of different atomic solvation parameter sets 

Several new studies derived atomic solvation parameters O'j from transfer free 
energies of amino acid analogues [40,50-52], along similar lines as Eisenberg and 
McLachlan [32] derived it from transfer energies between n-octanol to water [33], 
but with enlarged data sets. Another approach uses the preference of atoms or atom 
groups to be on the surface in three-dimensional protein structures [63,70-72]. 
Schiffer et al. [41,55] derived a parameter set in direct relation with their molecular 
mechanics force field, AMBER [12]. They calculated the effect of surrounding water 
molecules with a distance-dependent dielectric constant in a simulation of bovine 
pancreatic trypsin inhibitor (BPTI) and determined the solvation parameters that 
most closely fit this simulation. 

Empirical energy functions are used to test whether the native protein structure has 
the lowest energy within a set of alternative three-dimensional structures. A second 
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criterion for the validity is the stability of the native structure in energy minimization, 
Monte Carlo or molecular dynamics calculations. A third criterion tests the ability to 
drive perturbed structures towards the native structure. 

BPTI, a classic protein for testing new computational procedures, was used to 
evaluate atomic solvation parameter sets for their ability to differentiate native from 
near-native conformations [52]. A set of 39 conformations, generated with Monte 
Carlo methods in the vicinity of the X-ray structure with rms deviations of 
0.68-1.33 A, were used as test conformations [73] for several ·atomic solvation 
parameter sets. The test data sets included the classic parameter sets from Eisenberg 
and McLachlan [32] and Ooi et al. [50]. As expected, minimization of the conforma
tional energy without including solvent contribution did not favor the native con
formation. If solvent contribution was included, the conformation with the lowest 
rms deviation from the X-ray structure had the lowest energy for the E&M parame
ters, but not for the OONS parameters. 

A related question addressed in the same study [52] was: Is there a monotonic 
relation between energy and the rms deviation from the native structure? This would 
be very useful for the predictive power of an energy function, although it is not clear to 
what extent a realistic model for the protein-solvent interactions should show this 
monotony. The authors used the Kendall coefficient for a quantitative comparison of 
the data sets. They found the highest concordance for a data set derived from the NMR 
coupling constants of peptides in water. This study clearly showed that there are several 
atomic solvation parameter sets whose energy terms used during refinement should 
improve the 3D structure. However, the study does not allow a final judgement of the 
relative merits of the parameter sets, as the number of sampled conformations is 
relatively small. Further, the maximal deviation to the native structure was, with 1.3 A 
for COl atoms, only slightly greater than the deviation of the solution to the crystal 
structure, as estimated by comparing NMR and X-ray structures [5]. 

Refinement of proteins with protein--solvent terms 

All 39 conformations of BPTI were also subjected to energy minimization with 
three different solvation parameters [53]. The concordance coefficient for two of the 
data sets increased, but calculations with the data set which had the highest concor
dance in the previous test produced unrealistically large perturbations. For the two 
other data sets, the rank of the conformation, according to the rms deviation from the 
X-ray structure PTI4 with lowest energy, significantly decreased from 22 to 4 and 
from 20 to 1. The studies were complemented with Monte Carlo plus minimization 
(MCM) [74] starting from the X-ray structure PTI5. The structure stayed nearer to 
the initial starting structure (within 1.8 A) than minimization without solvent, but 
actually converged more towards the X-ray structure PTI4. This compares fairly well 
with a recent molecular dynamics study of BPTI using explicit water molecules, where 
the final backbone deviation from the initial NMR structures after 1-1.4 ns is about 
1.5 A, and the deviation from the crystal structure is about 2 A [75]. 
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The effect of protein-solvent interactions on refining protein structures with and 
without NMR constraints was investigated for the (X-amylase inhibitor, tendamistat 
[42]. Four parameter sets from Richards [31], Ooi et al. [50], Vila et al. [52], and 
Wesson and Eisenberg [40] were tested. The refined structures changed only slightly 
by 0.5 A backbone rms deviation from the initial unrefined structures with all four 
parameter sets. Without constraints the best parameter set (Richards) produced a final 
structure with a significantly smaller deviation from the NMR structure (backbone 
root-mean-square deviation (rmsd) of 1.1 A) compared to the minimization in vacuo 
(1.7 A). 

A more systematic study of the quality of atomic solvation parameters in the 
refinement procedure was carried out with 25 BPTI and tendamistat conformations 
[54]. These conformations were perturbed from the NMR solution structures in 
a range of 0.4-2.7 A backbone rms deviation. Two parameter sets from Ooi et al. [50] 
and Wesson and Eisenberg [40] were compared to the restraining force of the total 
accessible surface or the nonpolar part of the surface. The in vacuo energy function did 
not improve the perturbed structures as measured by the backbone rms deviation 
before and after energy refinement. The surprising result was that simple parameter 
sets were as efficient as the more sophisticated parameters in driving the perturbed 
structures back towards the solution structures. 

Comparison with molecular dynamics simulation using explicit water molecules 

Molecular dynamics calculations with explicit water molecules yield valuable 
information on the time scales and the amount of fluctuations of the backbone and 
side-chain motions in water, of the diffusion of the surrounding water molecules and 
of residence times for surface water molecules. Teeter [17] and Daggett and Levitt 
[24] have critically reviewed a large number of these calculations. One particular 
aspect is the accuracy with which these simulations can reproduce known NMR or 
X-ray structures. The rms deviations of the (X-carbons from the crystal or NMR 
solution structures are similar to those found by refining protein structures with 
surface area potentials. It remains to be seen to what extent molecular dynamics 
calculations with explicit water molecules can reproduce the X-ray or NMR struc
tures, if the trajectories are started from perturbed solution structures. 

Application to folding and prediction studies 

The usefulness of surface area potentials on folding or prediction of the 3D 
structures of proteins have been examined in a few studies. As part of a more general 
procedure for predicting the 3D structure of proteins, solvation models were included 
in calculating the three-dimensional structure of the avian pancreatic polypeptide 
[76] and rat galanin [77]. In both cases the protein-solvent contribution was an 
important selection criterion. 

280 



Energy refinement and folding of proteins 

The three-helix bundle protein Er-l0 was folded from an unfolded state containing 
three preformed helices by energy minimizations and Monte Carlo simulations with 
highly weighted protein-solvent interactions [43]. The unfolded structures that were 
minimized with the intramolecular interactions alone did not change their conforma
tions towards the native structure, even though their energy values dropped consider
ably. In contrast, all structures obtained by minimizing the intramolecular and the 
protein-solvent interaction had significantly lower rmsd values compared to the 
NMR reference structure. The Monte Carlo simulations with the·adaptive temper
ature schedule [78] produced structures which resemble the native Er-lO structure. 
The three structures with the lowest energies had rmsd values of 4.7, 3.8 and 3.0 A 
compared to the correct structure. 

The solvation contribution to the free energy of folding, AGs, was also examined for 
several parameter sets [79,80]. A linear correlation of AGs with the number of residues 
was obtained for all parameter sets. However, the absolute value and even the sign of 
AGs varies between the data sets. Some of the parameter sets resulted in negative AGs 
values, meaning that the folded state is favored over the unfolded state, as expected, but 
other data sets lead to positive values. Several of these data sets were derived with 
different intramolecular force fields and the analysis is based on the assumption that the 
intramolecular contribution is independent of the protein-solvent interaction. Current
ly there is no parameter set available which is best for all purposes. 

Conclusions 

Protein structure refinement including the protein-solvent interaction in a con
tinuum approximation is a computationally efficient and practical approach. The 
quality of the resulting protein structures is similar to structures obtained with 
molecular dynamics calculation using explicit water molecules. Realistic atomic 
solvation parameters must still be optimized and tested for a variety of different 
protein folds. A good parameter set should: (i) favor the native state over all alterna
tive structures; (ii) drive perturbed structures towards the native state; and (iii) give 
realistic estimates of the protein-solvent interaction. 
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Normal mode analysis of biomolecular dynamics 

Introduction 
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The past decade has seen an impressive advance in the application of molecular 
simulation methods to problems in chemistry and biochemistry. As computer hard
ware has become faster and software environments more sophisticated, the amount of 
detailed information available and its expected level of accuracy has grown steadily 
[1]. But it has become increasingly clear that the 'easy' part of a simulation project is 
setting up and carrying out the calculations, and the hard part generally lies in 
extracting useful data from among the very many things that can be calculated from 
a trajectory or Monte Carlo simulation. Normal mode analysis provides an approx
imate but analytical description of the dynamics, and has long been recognized as an 
important limiting case for molecular dynamics in condensed phases [2]. A principal 
limitation arises from the fact that normal modes are defined by an expansion about 
a particular point on the potential energy surface, and hence have difficulty describing 
transitions from one local minimum to another. The quasiharmonic and 'instan
taneous' mode theories discussed below attempt to ameliorate some of this neglect of 
the 'rugged' nature of protein energy landscapes. Yet there remains a 'paradoxical 
aspect' [3] of biomolecular dynamics that is still the subject of considerable study: 
even though the energy surface contains many local minima, proteins behave in some 
ways as though the energy surface were harmonic, and normal mode analyses are 
often more correct than one might expect. This article reviews some recent experience 
on the application of normal mode ideas to biomolecules, looking at how this 
technique describes short-timescale motion as well as longer timescale, collective 
motions. The use of harmonic ideas in the analysis of crystallographic and NMR data 
will also be outlined. 

Fundamentals of normal mode analysis 

Basic ideas 

The basic idea of normal mode analysis is to expand the potential function V(x) in 
a Taylor series expansion about some point Xo: 

V(x) = V(xo) + gT (x - xo) + ! (x - XO)T F(x - xo) + (1) 
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If the gradient g of the potential vanishes at this point and third- and higher order 
derivatives are ignored, it is straightforward [4,5] to show that the dynamics of the 
system can be described in terms of the normal mode directions and frequencies 
Qi> COi> which satisfy 

M- 1/ 2 FM- 1/ 2 Qi = COrQi 
(2) 

In Cartesian coordinates, the matrix M contains atomic masses on its diagonal, and 
the Hessian matrix F contains the second derivatives of the potential energy evaluated 
at Xo. The time evolution of the system is then 

Xi(t) = Xi(O) + 21/2 L Qikmi 1/2 O'k cos (COkt + Ok) 
k 

(3) 

where O'k is an amplitude, cokthe angular frequency and Ok the phase of the kth normal 
mode of motion. The phases and amplitudes depend upon the positions and velocities 
at time t = O. It is conventional in molecular problems to divide the frequencies COi by 
the speed of light to report the results in cm -1 units. 

A straightforward computation of normal modes in Cartesian coordinates thus 
involves a numerical diagonalization of a matrix of size 3N x 3N, for a molecule with 
N atoms. It is now about 10 years since computers have become powerful enough to 
allow normal mode calculations to be carried out on proteins and nucleic acids [5-9], 
following earlier and influential studies on peptides. With present-day computers, it is 
not difficult to study proteins up to about 150 amino acids with an all-atom model, or 
to about 200 amino acids using a united atom description in which hydrogens bonded 
to carbon are not explicitly represented. A common approximation for larger systems 
assumes that bond lengths and angles are fixed. This can reduce the size of the matrix 
involved by about an order of magnitude. Calculations can be carried out by direct 
construction of the potential and kinetic energy matrices in (curvilinear) internal 
coordinates [10,11], or through matrix partitioning techniques that start from Car
tesian derivatives [12-14]. In general, reductions of the dimensionality of the expan
sion space have noticeable but not overwhelming effects on the resulting normal mode 
description of the dynamics. The directions of the lower frequency modes are largely 
preserved, but frequencies in general are higher in the lower dimensional space 
[15,16], suggesting that small fluctuations in bond lengths and bond angles have the 
effect of allowing the dihedral angles to become more flexible. Many practical aspects 
of computing modes for large molecules can be found in recent articles by Brooks et 
al. [14] and Wako et al. [11]. 

In the normal mode coordinate frame, each mode is independent of the rest, 
and average quantities can generally be written as sums of contributions from each 
mode: 

(4) 

285 



D.A. Case 

The thermal averages ofthe second moments crr of the amplitude distributions can be 
calculated for both classical and quantum statistics [17]: 

cr~c'ass = kT/mr, 
2 h hmi 

cri,qm = 41tm. coth 41tkT 
1 

(5) 

where hand k are the Planck and Boltzmann constants. The two statistics coincide in 
the limits oflow frequency or high temperature. For biomolecules, the most important 
difference is generally that higher frequency modes have little amplitude in classical 
statistics but have nonnegligible zero-point motion in quantum statistics. Harmonic 
models thus provide one of the few practical ways for including quantum effects in 
biomolecular simulations. 

Time-dependent averages can also be determined for normal mode dynamics. The 
most common case is a correlation function, where f is the product of two time
dependent functions, f = A(x, 0)' B(x, 't). In the special case where A and B are linear 
functions of x, Eq. 4 becomes 

3N aA aB 
< A(O)· B('t) > = L L ~ ~ (mkmr 1/2 QikQilcrr cos(mi't) + <A> <B> (6) 

i k,' UXk uX, 

For small (infinitesimal) displacements from equilibrium, the calculation of aver
ages such as those in Eq. 4 is independent of the underlying coordinate system used to 
describe the molecule. This is not true for larger fluctuations, which can become 
significant for low-frequency motions of biomolecules: a finite displacement along 
a normal mode direction in a curvilinear coordinate system (such as one defined 
through bond lengths and angles) will generally have a different character than one 
expressed in Cartesian coordinates. Each normal mode represents a concerted motion 
of the molecule that is linear in the space in which the analysis is carried out; if two 
coordinate systems are related by a nonlinear transformation, the predicted fluc
tuations (and even the average structure) can depend upon which coordinate system is 
used. As a simple example, consider the torsional mode about the symmetry axis of 
a methyl group. In dihedral angle space, the protons move in a circle, maintaining 
constant C-H bond lengths, whereas in Cartesian coordinates, the hydrogen atoms 
move off on a tangent, distorting internal bond lengths and angles. Similar behavior is 
seen for many other types of local motions. Sunada and Go [10] have analyzed such 
effects in BPTI by computing the transformation coefficients between Cartesian and 
dihedral angle space through second order. They find good agreement between the 
two coordinate systems only if second-order terms are included. It is also possible to 
obtain 'exact' results even for finite fluctuations by carrying out Monte Carlo simula
tions on the harmonic potential surface, where the transformation between curvilinear 
(angle) space and Cartesian coordinates is performed exactly at each instantaneous 
conformation, and not merely for the minimum-energy conformation. Because of the 
smoothness and simplicity of the potential, these simulations converge relatively 
quickly. For most properties examined so far, it appears that a second-order expan
sion about the average position gives results nearly identical to those from the Monte 
Carlo simulations [10]. 
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Internal coordinate frames related to dihedral angle variables, however, have their 
own problems when applied to large molecules, especially when closed rings (or 
'quasirings' closed by hydrogen bonds) are present. This leads to a consideration of 
the question of finding an 'optimal' coordinate frame, in which the harmonic approxi
mation would be most correct even for finite displacements from equilibrium. A some
what similar problem is faced in the development of 'natural internal coordinates' for 
geometry optimization [18-20], where again the goal is to minimize anharmonic cou
plings between potential displacement directions. Application of these ideas to macro
molecules might lead to interesting results. 

Langevin modes 

It is also possible to solve for normal mode dynamics in the presence of viscous 
damping by a continuum 'solvent' [21]. In this approach, Newton's equations are 
replaced by Langevin equations that include terms describing viscous damping and 
random (white) noise. 

mx = - V'(x) - ~v + r(t) (7) 

Here v is the velocity vector, ~ is the friction matrix and r(t) is a vector of random 
numbers. The random numbers follow Gaussian distribution with the following 
properties: 

< rj(t) > = 0 

< rj(t)rit') > = 2~ijo(t - t')/kBT 
(8) 

Equation 8 is a fluctuation-dissipation relation that ensures that the long-timescale 
behavior of the system converges to an equilibrium one characterized by the temper
ature T. Expanding the potential to quadratic terms as in Eq. 1, and defining for 
convenience ex == Ml/2(X - x) and v == eX, yields a matrix version of the Langevin 
dynamics: 

(~) = (- M-l/~FM-l/2 - M-l/~sM-l/2) (~) + (R~t)) 

==~+~J ~ 
The random numbers Rj(t) now satisfy 

< Rj(t) > = 0 
(10) 

< Rj(t)Rj(t') > = 2mj-l/2 ~ijmj-l/2 o(t - t')/kB T 

If the macromolecule has N atoms, then A is a 6N x 6N matrix and is nonsymmetric. 
It is useful to construct the distributions arising from these stochastic differential 
equations from solutions to the homogeneous (ordinary) equations that are obtained 
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when R(t) vanishes [21]. These solutions involve the propagator exp(At), which can be 
expressed in terms of an eigenanalysis of the matrix A. Dynamical averages can then 
be computed using an analogue of Eq. 6, where the frequencies are now complex, 
describing in general damped oscillatory motions. 

The coupling between solvent and solute is often represented by a 'bead' model in 
which each atom is a source of friction, with some corrections to represent the effects 
of burial or of hydrodynamic interactions between atoms [21]; alternatively, effective 
friction couplings can be extracted from molecular dynamics simulations [22,23]. 
Computational details can be found in some of the early publications [21,24]. 
Calculations on small proteins and nucleic acids using a bead model for fractional 
coupling to solvent indicated that most modes with vacuum frequencies below about 
75 cm -1 would become overdamped, and that frequency shifts could be significant 
[24]. These frictional models, however, may overestimate solvent damping, especially 
for lower frequency motions [25]. An analysis of molecular dynamics simulations of 
BPTI in water suggested a model in which the frictional coupling was nearly the same 
in all modes, with a value near 47 cm - 1, so that modes with effective frequencies 
below about 23 cm - 1 would become overdamped [23]. Analysis of inelastic neutron 
scattering data [26] led to a model in which the effective friction is a Gaussian 
function of the frequency, so that the lower frequency collective modes experience 
a greater frictional damping than do more localized, higher frequency modes (cf. 
Fig. 1). In this model, modes below 15 cm -1 are overdamped, and some frictional 
damping effects are noticeable up to about 75 cm -1. 

A classic study of the effects of solvent damping on vibrational motions involves the 
'hinge-bending' motion between two domains of lysozyme, which was originally ana
lyzed in terms of the energy profile along an assumed bending coordinate, and found 
to be overdamped [27]. More recent normal mode investigations of this system 
provide a detailed description of the nature of the hinge-bending coordinate; projec
tions of Monte Carlo or molecular dynamics trajectories onto the normal mode 
coordinates support the basic features of the normal mode analysis and allow the 
dynamics to be analyzed in terms of harmonic and anharmonic contributions [3,28]. 

Quasiharmonic analysis 

Another important extension of normal modes is to 'quasi harmonic' behavior, in 
which effective modes are computed such that the second moments of the amplitude 
distribution match those found in a Monte Carlo or molecular dynamics simulation 
using the complete, anharmonic force field [29,30]. The basic idea is to compute the 
fluctuation matrix from a dynamics or Monte Carlo simulation: 

(11) 

and to assume that the complete conformational probability distribution is approxi
mately a multivariate Gaussian: 

P(x) = (21t)- n/2 1 det or 1/2 exp[ -! (x - X)T 0"-1 (x - x)] (12) 

288 



Normal mode analysis 

The probability distribution can also be related to the potential energy: 

P(x) :::::: exp[ - V(x)jkT] (13) 

In the quasiharmonic model, V is a quadratic function of position: 

V(x) = ! (x - xY Fquasi (x - x) (14) 

so that the effective force constant matrix becomes the inverse of the fluctuation 
matrix found in the simulation: 

Fquasi = kT[ cr] - 1 (15) 

Since Fquasi and cr have common eigenvectors, the quasiharmonic modes can be 
determined from the mass-weighted fluctuation matrix, and it is not necessary to 
explicitly construct Fquasi. 

It is important to recognize that this sort of quasiharmonic analysis is based on 
a static analysis of the fluctuation matrix and not on any time-series analysis of actual 
motions. Many features of the correlation matrix, including aspects of the 'low
frequency' behavior, are present even in fairly short molecular dynamics simulations 
[30,31]. The convergence characteristics of these modes (and, indeed, of molecular 
simulations in general) are still the subject of study, and I will return to this subject 
below. 

The quasiharmonic assumption that the distribution of configurations is a multi
variate Gaussian provides an analytical form that permits the calculation of quantities 
such as the vibrational entropy, which are otherwise hard to estimate [29,32,33]. As 
with true normal mode analysis, a contribution to thermodynamic quantities can be 
associated with each mode; the overall entropy can be expressed in terms of the 
logarithm of the determinant of cr, which is less expensive to determine than the full 
eigenvalue analysis. This approach has been used recently, for example, to estimate 
energetic consequences of cross-links to protein stability [34], or entropic effects 
associated with protein oligomerization [35]. 

The quasiharmonic approach includes some effects of anharmonic terms in the 
potential, at least to the extent that they influence the mean-square displacements, but 
it still assumes distributions that are unimodal in character. Tests of this assumption 
using MD simulations give mixed results. The atomic displacements in an ex-helix 
appear to be approximately Gaussian over a wide temperature range [36], and MD 
simulations on lysozyme suggest that most atoms have fluctuations that are highly 
anisotropic but only slightly anharmonic [37]. Other studies, including those on myo
globin [38], crambin [39], mellitin [40], and lysozyme [41], have found distribution 
functions with more than one maximum, especially along low-frequency directions. It 
is possible to account approximately for such results in estimates of the entropy [33], 
but any significant deviations from unimodal behavior are very difficult to accom
modate into a quasiharmonic description. 

Alternative connections between MD simulation results and harmonic models can 
also be drawn. Bialek and Goldstein [42] discuss a model in which the effective 
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Hessian is derived from the mean curvature rather than by fitting the elements of cr. 
Roitberg et al. [43] have described an interesting approach that uses a vibrational 
self-consistent field approach, expanding the potential to quartic terms in normal 
mode coordinates. This leads to the construction of a mean-field potential for each 
mode, and solution of the quantum vibrational problem as a series of one-dimensional 
Schrodinger equations. Application to BPTI showed significant anharmonic contri
butions to the effective frequencies and to computed mean-square displacements. 
Although this approach is not 'quasiharmonic' in the sense used here, it does allow the 
interpretation of anharmonic results within the framework of normal mode analysis, 
and may lead to a variety of interesting calculations on quantum effects on protein 
dynamics, particularly at low temperature. 

Harmonic descriptions of biomolecular dynamics 

When considering the applications of normal mode analyses to large molecules, it is 
convenient to divide the discussion into considerations of short-timescale dynamics 
and long-timescale, collective motions. Most early applications to biomolecules used 
simplified force fields and concentrated on the low-frequency behaviors that charac
terize overall molecular flexibility and which were thought to be reasonably indepen
dent of force field details. Recent studies have emphasized the wealth of information 
that can be gleaned from the analysis of biomolecular dynamics even on very short 
timescales. The following sections consider these two areas. 

There is a close connection between mode frequency and the colleCtive character of 
the atomic motions. Figure 1 plots a 'collectivity index' Kj against frequency for 
crambin [44]. This index is proportional to the exponential of the 'information 
entropy' of the eigenvector: 

Kj = N- 1 exp [ - ~ ur.n 10gUr.n] (16) 

where Uj,n measures the extent of motion of atom n in mode i, normalized such 
that the sum of its squares is unity [44]. Kj can vary from 1jN to 1, where a 
value of 1 indicates maximal collectivity where all the eigenvector amplitudes are the 
same (as for the modes describing global translations). There is a clear drop-off in 
collectivity as the frequency increases, with large collectivity only found in modes 
below 200 cm - 1. 

Short-timescale dynamics 

At short timescales, transitions from one local minimum region to another are 
minimal, and an analysis that uses normal mode ideas makes good sense. Beyond 
estimating the intrinsic vibrational frequencies, interest in the dynamical behavior in 
this region often centers on the anharmonic transfer of energy between modes, and the 
accompanying loss of phase coherence for individual modes. These are closely related 
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Fig. 1. Mode collectivity K; (Eq. 16) as a function of mode frequency (in cm -1) for normal modes of 
crambin. Adapted from Ref 44. 

to important questions about the nature of the potential energy surface and the 
efficiency of vibrational energy transfer. Some typical features are illustrated in Fig. 2, 
which compares solvated molecular dynamics, normal mode and Langevin mode 
predictions for a time correlation function related to NMR relaxation in a zinc-finger 
peptide [45]. Here the short-time oscillations predicted by the gas-phase normal 
modes reproduce the behavior of the solvated MD simulation for about 0.5 ps, but 
beyond that the dephasing behavior arising from collisions with solvent molecules 
and from anharmonic interactions within the protein itself leads to divergent behav
ior. The simple Langevin treatment shown here (using a 'bead' model for frictional 
interactions) forces the oscillations in the correlation function to decay (as they will 
never do in the pure normal mode treatment), but this damping takes place on much 
too short a timescale. 

Temperature and velocity echoes. Some recent and novel simulation techniques 
point the way to a more general exploration of this sort of short-timescale behavior 
[46--49]. In the simplest experiment [46], kinetic energy is 'quenched' (all velocities are 
instantaneously set to zero) at two different times separated by a variable evolution 
time t1. A spontaneous echo (drop in temperature) can then appear at time tl 
following the second quench. The intensity of the echo is related to vibrational 
frequencies of the system and to the strength of anharmonic coupling between modes. 
It is typical to find periodic modes in proteins with phase coherence times on the order 
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Fig. 2. Orientational correlation function (Eq. 18) of the ca_Ha bond of Ala l5 in a zinc-finger 
peptide [45] Heavy solid curve: solvated molecular dynamics simulation; light solid curve: 
gas-phase normal mode calculation; dashed curve: Langevin mode calculation. 

of 1 ps. A Fourier transform into the frequency domain gives information about 
the density of states that appears to be in good agreement with the results from 
inelastic neutron scattering. These results suggest that a large amount of information 
is available from very short time (subpicosecond) dynamical behavior. Extensions to 
other types of velocity reassignment protocols [48,49J suggest that a significant 
amount of interesting dynamical behavior may be obtained by this general approach. 

Instantaneous normal modes. It has been recognized for some time that one of the 
salient features of protein dynamics is the existence of many local conformational 
minima, and that transitions from (the vicinity of) one local minimum to another 
represent an important feature in macromolecular dynamics [50,51]. The normal 
mode model, which expands the potential about a single local minimum, does not 
directly include contributions from such transitions on a rough or corrugated surface. 
Recent studies on peptide and protein systems show that between 30% and 70% of 
the total atomic fluctuation arises from transitions between minima, with normal 
mode theories working better for the more tightly constrained systems [31,52]. An 
interesting approach to understanding the dynamics of fluid systems that do not 
oscillate about a single or small number of conformational minima involves the 
calculations of modes about the instantaneous configurations sampled in a simula
tion. Since these are in general not local minima, the frequency spectrum contains 

292 



Normal mode analysis 

both real and imaginary components, and the nature and distribution of these 
'unstable' modes can be related to dynamical quantities [53-57]. Straub and 
Thirumalai [58,59] have applied such ideas to the ribonuclease S-peptide, computing 
the instantaneous normal mode spectrum between 40 and 500 K. The number and 
character of the unstable modes can be used to characterize the distribution of 
barriers between 'conformational substates'. At room temperature, about 4% of the 
modes are unstable, and this value is predicted to increase to about 10% in the 
high-temperature limit. A distribution of barrier heights between conformers that fits 
the frequency data has the following form: 

(17) 

Here there is a constant density of low-energy barriers for ED < E10w (9(E) is the 
Heaviside function), and a Poisson distribution of higher energy barriers with 
a maximum at Eo. For the S-peptide, a = 0.325 (kcaljmol)-t, E10w = 0.2 kcaljmol, 
b = 0.13 (kcaljmol)-2, and Eo = 1 kcaljmol. This fit yields a broad distribution of 
barrier heights that includes many very small barriers. It should be of considerable 
interest to see what distributions are obtained in other biomolecular systems. 

Long-timescale motions 

As indicated above, considerable attention has been given to using normal mode or 
quasiharmonic analysis to probe low-frequency, longer timescale motions in bio
polymers. Since the amplitude of mode fluctuations is inversely proportional to 
frequency (cf. Eq. 5), normal modes have the attractive feature of describing motions 
that contribute most to atomic fluctuations in terms of a relatively small number of 
mode directions and frequencies: a rough rule of thumb is that 1 % of the modes 
contribute up to 90% of the overall root-mean-square atomic fluctuations. This has 
inspired an interest in the characterization of low-frequency modes along with hopes 
that interesting domain movements [60] might appear as identifiable modes, or as 
a combination of a small number of modes. A further hope is that the 'essential 
dynamics' [41] of proteins might involve motions confined to a subspace of low
frequency normal modes. 

A fairly large amount ofliterature now exists in which large-scale collective motions 
of proteins have been studied with normal mode calculations [61]. In addition to the 
analyses of the lysozyme hinge-bending modes mentioned above, interdomain 
motions of G-actin (with ADP and calcium bound) [62] and a 'mitten mode' of 
an epidermal growth factor [63] have recently been characterized through normal 
mode analyses. Molecular dynamics simulations of myoglobin have been analyzed 
in terms of rigid-helix and side-chain dynamics, with low-frequency rigid-helix 
vibrations being characterized through Fourier transforms of velocity autocorrelation 
functions [64]. 

An obvious problem in evaluating harmonic models for long-timescale motions is 
the lack of a secure standard for comparison. It is generally not possible to run 
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molecular dynamics simulations for long enough periods of time to obtain statistically 
meaningful information about nanosecond-scale motions. For short peptides of four 
to six amino acids, simulations from 10 to 100 ns sometimes appear to be approaching 
an equilibration among various conformational states [65], and studies using simplifi
ed solvent models (such as Brownian dynamics or mean-field simulations) can study 
much longer timescales [66]. But it is clear that most picosecond-to-nanosecond 
simulations of proteins and nucleic acids in water are not well equilibrated, at least for 
some aspects of interatomic correlations [67], and that most of the simulations on this 
timescale contain 'rare events' that complicate straightforward analyses based on the 
assumption of an equilibrated sample [68-70]. The nature of the protein energy 
landscape is such that there are likely to be conformational transitions on nearly all 
timescales [51] so that any individual time segment of a simulation will probably not 
be in equilibrium with respect to some types of motion. Slow motions that involve 
relatively large or correlated conformational changes may dominate the lowest 
frequencies in a quasiharmonic analysis. While individual low-frequency quasihar
monic modes are sensitive to the details of the trajectory that produced them, it is 
less clear how to interpret the subspace spanned collectively by the large-amplitude 
eigenvectors. Balsera et al. [69] have conchided from a scaling analysis and com
putational studies on G-actin that the character of the large-amplitude quasiharmonic 
subspace is so dependent upon the details of the underlying simulation that the 
'essential dynamics' of the system cannot be ascertained from it. The quasiharmonic 
analysis tends to mix ordinary normal modes together, so that the density of states 
is a smoother function of frequency than for a true normal mode distribution, and 
much of the distinction between local and global character (cf. Fig. 1) is lost [31]. 
Further study will be required to ascertain the extent to which quasiharmonic 
directions are useful in describing or rationalizing the global behavior ofbiomolecular 
motions. 

Normal modes in crystallographic and NMR refinement 

Thermal parameters in crystallography. One nice feature of the normal mode 
description is that it provides a compact description of dynamical behavior in which 
the major contributions to atomic fluctuations are dominated by a relatively small 
number of low-frequency modes. The quasi harmonic picture can thus be viewed as 
a description of molecular motion parametrized by a fairly small number of adjustable 
parameters. Two groups have used this idea to refine the temperature factors in 
proteins, using either the frequencies [71] or frequencies plus mode-mixing param
eters as adjustable parameters [72-74]. The results appear to give a good picture 
of fluctuations that contribute to the thermal parameters, although the caveats 
discussed above concerning distribution functions with multiple peaks should be kept 
in mind. 

There are a variety of potential advantages to using a normal-mode-based model 
for thermal parameters compared to more conventional B-factor refinements that 
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appear to be borne out in practice. First, this model provides a clear distinction 
between true internal motions and 'external' contributions to thermal parameters 
arising from lattice vibrations or crystalline disorder. Second, the model includes 
important aspects of anisotropic and correlated atomic motions without the introduc
tion of an unmanageably high number of adjustable parameters. Finally, the mode 
adjustment procedure appears to be robust, yielding behavior in a 'free R-factor' 
analysis [75] that is better than that of more conventional isotropic B-factor refine
ment [74]. 

Diffuse scattering. In addition to Bragg diffraction intensity that appears at recipro
cal lattice points, crystals with internal thermal fluctuations also exhibit diffuse 
scattering that arises from correlated fluctuations in the average electron density [76]. 
Studies on diffuse scattering in some protein crystals suggest that correlated atomic 
displacements are complex and liquid-like, with correlations that decay over a relax
ation distance of about 6 A [67,77,78]. It is difficult to capture such effects in 
molecular dynamics simulations, and some evidence suggests that a normal mode 
model gives a good account of most diffuse features [78]. As with ordinary B-factors, 
normal mode analysis can be used to create a motional model in which the directions 
of low-frequency eigenvectors are kept fixed, but the amplitudes of motions (or, 
equivalently, the effective frequencies) are treated as adjustable parameters to be mod
ified to fit experimental data. An extension of this idea allows the mixing of some 
low-frequency modes, creating a more flexible model with a larger number of adjust
able parameters. Preliminary applications of these ideas to lysozyme have been 
reported [79], and more quantitative studies should help establish the extent to which 
the effective mode model captures the fundamental aspects of atomic motions that are 
reflected in diffuse scattering. General questions about the frequency distribution and 
damping of low-frequency vibrations can also be addressed by the analysis of inelastic 
neutron scattering, discussed elsewhere [26,80,81]. 

Normal modes and N M R relaxation. In biomolecular NMR, a great deal of poten
tial important structural information can be obtained from the analysis of dipolar spin 
relaxation. Longitudinal spin relaxation rates in biomolecules are determined by time 
correlation functions of the general form [82] 

(18) 

where r is the distance between spins and X is the angle between the interspin vector at 
time 0 and at time 'to These correlation functions can be readily computed from 
formulations like that in Eq. 6 [82,83], and 'order parameters' that reflect the effects of 
internal motion on relaxation rates can be compared with experimental measure
ments. NMR relaxation experiments are commonly interpreted in terms of an inter
mediate-level 'model-free' analysis which assumes that the spectral density function 
for dipolar relaxation can be written as the sum of two Lorentzians [82,84]: 

(19) 
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where 

(20) 

and to is an effective internal correlation time. S2 is then related to a plateau value (if it 
exists) of correlation functions like that in Eq. 18 and to to the rate at which the 
plateau value is reached [84]. 

Vibrations and other rapid motions scale NOESY and ROESY cross-relaxation 
rates by the same quantity, which has been called the dynamic scaling factor y [85] or 
correction factor Q [86]: 

r dyn 

Y == Q = -- = < r > 6 < r- 6 > S2 == RS2 r stat . 
(21) 

where r dyn corresponds to the dynamically averaged relaxation rate and ptat to 
a static reference structure. A value of y < 1 reflects a dominance of angular over 
radial motions, with the reverse for y > 1. Henry and Szabo [83] have considered 
vibrational contributions to these quantities, performing the average in internal rather 
than Cartesian coordinates, and provide explicit formulas for dipole-dipole interac
tions that separate radial and angular behavior. 

(22) 

The dependence ofNMR order parameters on the coordinate system used to describe 
finite displacements can be significant, and Cartesian coordinates are often poody 
suited to the description of local motions that may often be dominated by floppy 
torsions. More correct results are probably obtained by the use of Eq. 22, or by 
higher-than-first-order expansions of both the operator involved in correlation decay 
[24] and of the fluctuations about equilibrium in an internal coordinate system [10]. 
These corrections can become significant for order parameters far from unity. 

Recently, normal mode analyses of NMR order parameters have been reported for 
BPTI [87], for a zinc-finger peptide [45] and for crambin [44]. Figure 3 shows some 
results for BPTI for heteronuclear relaxation ofthe backbone COl_HOI spin pairs. More 
flexible parts of the backbone (lower order parameters) are found at the N- and 
C-termini of the chain and in the loop region of the anti parallel ~-sheet, near residue 
27. Results assuming quantum statistics exhibit lower order parameters, since the 
presence of zero-point oscillations leads to a wider spatial probability distribution. 
The systematic difference between classical and quantum results is around 5%, and 
this effect should be corrected for in comparisons of experiment with classical MD 
simulations. 

For homonuclear proton-proton cross-relaxation as observed by NOESY or 
ROESY experiments, quantum effects are found to be much smaller than in the 
heteronuclear case. This is a consequence of the fact that proton pairs are separated by 
larger distances, and hence the motion of their internuclear vector is less susceptible to 
high-frequency local vibrations. Typical quantum corrections are less than 1 % for 
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Fig. 3. Theoretical heteronuclear angular order parameters S2 of the ca_Ha atom pairs of the BPT! 
backbone calculated from a normal mode analysis at a temperature of 309 K [87] The upper curve 
corresponds to classical statistics and the lower curve to quantum statistics. 

interresidue pairs [45], and below 3% for geminal proton pairs [87]. Molecular 
dynamics simulations predict order parameters with similar trends but with iarger 
deviations from unity, indicative of motions affecting spin relaxation that are not 
included in the normal mode picture [45,82]. 

NMR refinement. As in crystallographic refinement, the quasiharmonic normal 
mode description can be viewed as a model for molecular motions containing 
a relatively small number of adjustable parameters (the effective frequencies of the 
low-lying modes) that can be fit to experimental data. In particular, this approach 
offers a way to analyze both heteronuclear and homonuclear spin relaxation param
eters in a common framework. Figure 4 shows some sample calculations ofN-H and 
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Fig. 4. Order parameters for a zinc-finger peptide. Solid line: results from normal mode analysis; 
open circles: results from solvated molecular dynamics simulation; filled circles: normal mode 
values with adjusted frequencies. Adapted from Ref 88. 
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Fig. 5. Order parameters for myoglobin-CO. Dotted line: results from normal mode analysis; 
solid line: results from 1.5 ns solvated molecular dynamics simulation; open circles: normal 
mode values with adjusted frequencies as described in the text. 

C"'-H order parameters for a zinc-finger peptide [88], where a solvated molecular 
dynamics simulation [45] was used to generate the 'experimental' order parameters. 
The upper curve shows order parameters computed from a normal mode analysis; as 
is typical, the fluctuations are underestimated in this approximation compared to 
those seen in the solvated dynamics simulation. The open circles show the MD target 
values, and the filled circles show the fitted results with the adjustment of 250 
frequencies. The fit is essentially perfect, except for the N-H order parameter for 
residue 4, indicating that the low-frequency space provides a useful expansion space 
for describing motions involved in 15N and 13C relaxation in proteins. 

A similar, but more challenging, example is shown in Fig. 5, which looks at N-H 
order parameters in myoglobin. Again, the 'experimental' results are from a solvated 
molecular dynamics simulation of 1.5 ns duration [89]. The upper curve shows the 
order parameters computed from a normal mode calculation, and the open circles 
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show the results when the amplitudes and mixing parameters of the 26 lowest modes 
are adjusted, along with a 'global' scaling of frequencies under 1000 cm - 1 (i.e. a single 
additional scale factor multiplied these normal mode frequencies). This is probably 
a somewhat more realistic test of this method, since the target order parameters vary 
over a wider range (which is probably more representative of larger proteins) and 
because fewer modes (and hence fewer adjustable parameters) were used in the fitting 
procedure. Overall, the character of the fitted motion fits the target values fairly well, 
except for a dip near residue 24 (between the A and B helices) where even a scaling of the 
low-frequency amplitude parameters cannot yield order parameters much below 0.8. 

The adjusted frequency normal mode models illustrated in Figs. 4 and 5 provide 
a description of the dynamics that can also be used to predict motional contributions 
to proton-proton nuclear Overhauser peaks that are involved in structure determina
tion. In principle, this provides an approach by which protein structure and dynamics 
can be refined against both homonuclear (proton-proton) and heteronuclear e sN 
and 13C) NMR relaxation data. Preliminary studies suggest that many features of the 
dynamical scaling factors for proton pairs are reproduced by dynamical models fit to 
heteronuclear eSN and 13C) relaxation data, but that large correction factors are 
often underestimated [88]. It seems likely that some combination of normal mode 
analysis with models that allow larger conformational transitions (such as jumps 
between alternate side-chain conformers) will be required to carry out realistic 
refinements of this sort. 

Conclusions 

Normal mode analyses continue to occupy an important niche in the dynamical 
analyses of biomolecules by providing a compact and analytical representation of an 
important limiting case. The directions of the low-frequency modes often provide 
useful quantities for the description of correlated motion even in the presence of 
significant anharmonicity. Extensions to disordered or significantly anharmonic sys
tems provide interesting insights into protein dynamics, and suggest new approaches 
to the analysis of experiments and molecular dynamics simulations. 
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Part IV 
Simulation of large systems 



Dynamics of biomolecules: Simulation versus X-ray, neutron and 
infrared experiment 

Jeremy C. Smith 
Molecular Simulation Group, SBPM/DBCM, Commissariat a l'Energie Atomique, 

CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France 

1. Introduction 

In the present chapter we examine the use of computer simulation in the inter
pretation of experiments on the dynamics in condensed phases of small molecules, 
polymers and biological macromolecules. Computer simulation provides a step
ping stone between experiment and simplified descriptions of the physical behav
iour of complex systems. There are two stages involved in this. The first is the 
comparison of physical quantities that are measurable or derivable from measure
ments with the same quantities derived from simulation. The second is the inter
pretation of the experimental results using the detailed information present in the 
simulation. 

The comparison with experiment can be made at several levels. The first, and 
most common, is in the comparison of 'derived' quantities that are not directly 
measurable: for example, a set of average crystal coordinates or a diffusion con
stant. A comparison at this level is convenient in that the quantities involved de
scribe directly the structure and dynamics of the system. However, the obtention of 
these quantities, from experiment and/or simulation, may involve approximation 
and model-dependent data analysis. For example, to obtain experimentally a set 
of average crystallographic coordinates, the imposition of a physical model to 
interpret an electron density map is required. To reduce these problems a com
parison can be made at the level of the measured quantities themselves, such 
as diffraction intensities, dynamic structure factors or absorption coefficients. A 
comparison at this level still involves some approximation. For example, back
ground corrections have to be made in the experimental data reduction. However, 
fewer approximations are necessary as to the structure and dynamics of the sample 
itself and comparison with experiment is normally more direct. This approach 
requires a little more work on the part of the computer simulation team, as methods 
for calculating experimental intensities from simulation configurations must be 
developed. 

Having made the comparison with experiment, one may then make an assessment 
as to whether the simulation agrees sufficiently well to be useful in interpreting the 
experiment in detail. In cases where the agreement is not good, the determination of 
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the cause of the discrepancy is often instructive. The errors may arise from the 
simulation model or from the assumptions used in the experimental data reduction, or 
both. In the case where the quantities examined agree, the simulation can be de
composed so as to isolate the principal components responsible for the ob
served intensities. Sometimes the dynamics involved can be described by an analytical 
model. 

The spectroscopic techniques that have been most frequently used to investigate 
biomolecular dynamics are those that are commonly available in laboratories, e.g. 
nuclear magnetic resonance (NMR), fluorescence and Mossbauer spectroscopies. 
However, these methods involve motions on timescales that are not well sampled by 
molecular dynamics simulation using present computer power. Moreover, the estab
lishment of relations linking NMR and fluorescence with atomic motion is fraught 
with theoretical difficulties. The experimental techniques examined here were chosen 
for their suitability for the examination of motions presently accessible to atomic
detail computer simulation. Far-infrared and neutron spectroscopy probe dynamics 
on subnanosecond timescales that can be well sampled with present-day molecular 
dynamics simulations. Moreover, underlying relations between dynamics and 
measurement are relatively easy to express formally for these techniques. Neutron 
scattering gives information on self- and cross-correlations in atomic motions. Far
infrared spectroscopy provides a description of charge fluctuations and is thus 
a promising tool for examining the pervasive problem of modelling electrostatics in 
biomolecular simulation. X-ray crystallography is also examined here, as a method 
that does not as yet give temporal dynamical information but which, when combined 
with computer simulation, is a potentially powerful probe of atomic fluctuations. All 
three of these techniques share the property of using expensive sources not commonly 
available in the laboratory. Neutrons are produced by a nuclear reactor or spallation 
source. The X-ray and far-infrared experiments discussed here were performed using 
intense synchrotron radiation, although in favourable cases laboratory sources may 
also prove to be useful. 

This chapter is divided into three sections. In the first, the basic principles of X-ray 
and neutron scattering and far-infrared absorption and their relations with computer 
simulation are examined. In the last two sections, examples of the interpretation of the 
experiments are given using harmonic analyses and molecular dynamics simulation 
performed with the CHARMM program and potential function [1]. In the second 
section, a variety of atomic motions is examined in a number of condensed
phase systems: small-molecule liquids and crystals, and polymer crystals. The molecu
lar crystal dynamics examined involves vibrational and diffusive motions. The 
combined simulation-experimental procedure is particularly useful for the charac
terization of the dynamics of biological macromolecules, where the direct interpreta
tion of experiments using simplified models is made difficult by the diversity of the 
vibrational and diffusive motions present. In the final section, therefore, we derive 
a picture of global, picosecond (ps)-timescale protein dynamics by combining 
X-ray and neutron scattering experiments with harmonic and molecular dynamics 
calculations. 
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2. X-ray, neutron and far-infrared experiments and their relation to simulation 

2.1. Dynamic structure factor 

We first examine the relation between particle dynamics and the scattering of 
radiation in the case where both the energy and momentum transferred between the 
sample and the incident radiation are measured. Linear response theory allows dynamic 
structure factors to be written in terms of equilibrium fluctuations of the sample. For 
neutron scattering from a system of identical particles, this is as follows [2-4]: 

. Scoh(Q, (0) = 2~ Hdtd3rei«U-cot)G(r, t) (1) 

(2) 

where Q is the scattering wavevector, (0 is the energy transfer, and the subscripts coh 
and inc refer to coherent and incoherent scattering, discussed later. Gs{f, t) and Grr, t) 
are van Hove correlation functions which, for a system of N particles undergoing 
classical dynamics, are defined as follows: 

(3) 

(4) 

where K(t) is the position vector of the ith scattering nucleus and < ... > indicates an 
ensemble average. 

Grr, t) is the probability that, given a particle at the origin at time t = 0, any particle 
(including the original particle) is at r at time t. Gsrr, t) is the probability that, given 
a particle at the origin at time t = 0, the same particle is at r at time t. 

Equation 1 has an equivalent form in X-ray scattering, where the scattered intensity 
is given as follows [5]: 

I F(Q, (OW = 211t Hd3r dt prr, t) ei«U-cot) 

where prr, t) is the spatiotemporal Patterson function given by 

prr, t) = HdR dt p(R, t) prr + R, t + .) 

(5) 

(6) 

and prr, t) is the time-dependent electron density. Unfortunately, X-ray photons with 
wavelengths corresponding to atomic distances have energies much higher than those 
associated with thermal fluctuations. For example, an X-ray photon of 1.8 A 
wavelength has an energy of 6.9 keY corresponding to a temperature of 8 x 107 K. 
X-ray detectors have not been sufficiently sensitive to measure the minute fractional 
energy changes associated with molecular fluctuations, and so the practical ex
ploitation of Eq. 5 has been difficult. Therefore, in subsequent discussions of X-ray 
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scattering we examine only the cases where inelastic and elastic scattering are indis
tinguishable experimentally. In contrast to X-rays, the mass of the neutron is such 
that the energy exchanged in exciting or de-exciting ps-timescale thermal motions is 
a large fraction of the incident energy and can be measured precisely. A thermal 
neutron of 1.8 A wavelength has an energy of 25 me V corresponding to kB Tat 300 K. 
To further examine the neutron scattering case, we perform space Fourier transforma
tion of the van Hove correlation functions: 

(7) 

I (Q- t) = ! '\'b~ b. (e-iQ'Ri(O)eiQ'Rj(I» coh, N ~ I,coh J.coh 
I,) 

(8) 

_ 1 +00 . I _ 

Sinc(Q, co) = -2 J dt e -lID linc(Q, t) 
7t - 00 

(9) 

(10) 

Neutrons are scattered by the nuclei of the sample. Due to the random distribution 
of nuclear spins in the sample, the scattered intensity will contain a coherent part 
arising from the average neutron-nucleus potential and an incoherent part arising 
from fluctuations from the average. The coherent scattering arises from self- and 
cross-correlations of atomic motions and the incoherent scattering arises from single 
atom motions. Each isotope has a coherent scattering length bi,coh and an incoherent 
scattering length bi. inc which defines the strength of the interaction between the 
nucleus of the atom and the neutron. We see from Eqs. 7 and 9 that the coherent and 
incoherent dynamic structure factors are time Fourier transforms of the coherent and 
incoherent intermediate scattering junctions Icoh(Q, t) and Iinc(Q, t). Sinc(Q, co) and 
SCOh(Q, co) may contain elastic (co = 0) and inelastic (co "# 0) parts. The elastic scattering 
process probes correlations of atomic positions at long times, whereas the inelastic 
scattering process probes position correlations as a function of time. 

2.2. Incoherent neutron scattering 

Neutron scattering from organic molecules is dominated by incoherent scattering 
from the hydrogen atoms. This is largely because the incoherent scattering cross
section (47tbtnc) of hydrogen is ~ 15 times greater than the total scattering cross
sections of carbon, nitrogen or oxygen. In the systems examined here, incoherent 
scattering thus essentially gives information on the self-correlations of hydrogen atom 
motions. 

The intermediate scattering functions are quantum-mechanical time-correlation 
functions that are replaced by classical time-correlation functions if they are cal
culated from molecular dynamics simulations. This leads to a problem with the 
detailed balance condition, which relates the intensities of neutron energy loss and 
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gain processes as follows: 

- I3h -Sine(Q, (0) = e msine( - Q, - (0) (11) 

where f3 = I/kBT. 
The detailed balance condition does not hold in the classical limit n ~ O. To correct 

for this, one can apply a semiclassical formula (given here for isotropic systems, such 
as for polycrystalline, powder or solution samples [4]): 

1Th00 
Sine( Q, (0) ~ 1 I3hm Sine, el (Q, (0) 

-e 
(12) 

The semiclassical correction (Eq. 12) is an approximation valid only in the linear 
response regime noo < kB T. A program for calculating neutron scattering properties 
from molecular dynamics simulations has recently been published [6]. 

In practice, the measured incoherent scattering energy spectrum is divided into 
elastic, quasielastic and inelastic scattering. Inelastic scattering arises from vibrations. 
Quasielastic scattering is typically Lorentzian or a sum of Lorentzians centred on 
00 = 0, and arises from diffusive motions in the sample. Elastic scattering gives 
information on the self-probability distributions ofthe hydrogen atoms in the sample. 
We now examine these forms of scattering in more detail. 

2.2.1. Quasielastic incoherent scattering 

It is useful for subsequent analysis to review here the procedure commonly used to 
extract dynamical data directly from experimental incoherent quasielastic neutron 
scattering profiles [7]. It is assumed that the atomic position vectors can be decom
posed into two contributions, one due to diffusive motion, ri,d(t), and the other from 
vibrations, iii,v(t), i.e. 

(13) 

Combining Eq. 13 with Eq. 10 and assuming that ri, d(t) and iii, v(t) are uncorrelated, 
one obtains 

(14) 

where IiQ, t) and Iv(Q, t) are obtained by substituting Ri(t) in Eq. 10 with ri,it) and 
iii, v(t), respectively. 

The Fourier transform of Eq. 14 gives 

(15) 

where Sd(Q, (0) and SiQ, (0) are obtained by the Fourier transformation ofId(Q, t) and 
Iv(Q, t) and the symbol ® denotes the convolution product. 

The vibrational intermediate scattering function is given by [4]: 

Iv(Q, t) = })?e - «Q.Ui,v)2)e([(hii.v(O)][Q·Ui.v(l)]) (16) 
i . 
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To derive an analytically tractable form of Sinc(Q, (0) in the quasielastic energy 
window (typically -15 cm -1 < 1i(O < 15 cm -1), we align Q with the Cartesian axis 
x in the laboratory frame. Assuming that (i) (u;,x), the x-axis vibrational mean
square displacement, is the same for all the hydrogens and (ii) Q2(u;,x)«I, Sy(Q, (0) 
can be expressed as follows: 

(17) 

where e-Q2(u;.x>S~nel(Q, (0) is the vibrational inelastic dynamic structure factor. Com
bining Eqs. 15 and 17 one obtains 

Sinc(Q, (0) = e - Q2(u?x> [Sd(Q, (0) + Sd(Q, (0) ® s~nel(Q, (0)] (18) 

s~nel(Q, (0) will contain high-frequency inelastic peaks due to intramolecular vibra
tions that fall outside the quasielastic energy window and may also contain intensity 
within the energy window. The contribution within the energy window is assumed to 
be due to the lattice phonon background. The density of states, g«(O), corresponding to 
the latter contribution is assumed to be given by the Debye model, i.e. g«(O) oc (02. 
Given that Q2(u;,x)«I, then s~nel(Q, (O)_Q2(U;.x)g«(O). If (u;,x) OC (0-2 in the 
quasielastic region, then s~nel(Q, (0) oc Q2. We therefore represent Sd(Q, (0) ® 
s~nel(Q, (0) as an energy-independent background, B(Q), leading to the equation 

(19) 

In directionally averaged versions of Eq. 19, the above mean-square displacement is 
replaced by the corresponding two- or three-dimensional quantity divided by a factor 
of 2 in the two-dimensional case and six for a spherically averaged dynamic structure 
factor. 

2.2.2. Elastic incoherent structure factor 

IiQ, t) can be separated into time-dependent and time-independent parts as 
follows: 

Id(Q, t) = Ao(Q) + Id(Q, t) (20) 

The elastic incoherent structure factor (EISF), Ao(Q), is defined as follows [7]: 

Ao(Q) = lim Id(Q, t) = Jd 3reiq .• lim Gd(f, t) 
t-+oo t-+oo 

(21) 

where Gd(f, t) is the contribution to the van Hove self-correlation function due to 
diffusive motion. Ao(Q) is thus determined by the diffusive contribution to the space 
probability distribution of the hydrogen nuclei. 

Taking the Fourier transform of Eq. 20 and combining it with Eq. 19 yields 

(22) 

This equation contains three terms, representing the elastic [e- Q2(u?) Ao(Q)8«(O)], 
quasielastic [e- Q2(u;> Sd(Q, (0)] and inelastic [B(Q)] scattering. 
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Experimentally, the scattering spectra will have a finite energy resolution, given by 
a resolution function, R(ro). Incorporating this effect in Eq. 22, the dynamic structure 
factor becomes 

(23) 

Ao(Q) and S'(Q, ro) may be extracted from experiment by fitting Eq. 23 to the 
measured scattering profiles. For this, it is necessary to assume a priori parametric 
forms for Ao(Q) and S'(Q, ro); these depend on the dynamical model that one wishes to 
fit. Several such models, such as continuous diffusion on a circle or sphere or jumps 
between sites, are described in Ref. 7. It turns out that Ao(Q) and S'(Q, ro) obtained 
from experiment may also depend on the instrumental resolution function. If slow 
motions occur in the system, the dynamic structure factor may contain quasielastic 
contributions with widths much narrower than that of R(ro). These contributions will 
then be experimentally indistinguishable from the elastic scattering and the extracted 
experimental EISF will be different from the EISF in the long-time limit. 

Extraction of Ao(Q)from a molecular dynamics simulation. This assumes that we are 
able to determine the diffusive contribution to the atomic trajectories. In this case the 
EISF can be obtained in two ways: from the long-time limit ofId(Q, t) using Eq. 21 or, 
assuming that the position vector of any given atom is uncorrelated with itself at 
infinite time, the EISF can be written as follows (cf. Eq. 10): 

Ao(Q) = ~)rl<eiQ.r"d)12 (24) 
i 

If the full molecular dynamics trajectories are used, without separation into dif
fusive and nonvibrational components, a different EISF, which we call Ao.to.(Q), that 
includes contributions from all types of motions can be calculated: 

Ao,tot(Q) = I brl<eiQR')1 2 
i 

Given the assumptions used in deriving Eq. 22, we can write 

Ao,tot(Q) = e- Q2 (u;'>Ao(Q) 

2.2.3. Inelastic incoherent scattering 

(25) 

(26) 

Scattering intensity. For a system executing harmonic dynamics, the transform in 
Eq. 2 can be performed analytically and the result expanded in a power series over the 
normal modes in the sample. The following expression is obtained: 

Sinc(Q, ro) = Ibrnc exp[ - 2Wi(Q)] TI [~)xp(nA1iroA~/2) 
i A ~ 

(27) 
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In Eq. 27, M is the hydrogen mass, A labels the mode, e",j is the atomic eigenvector for 
hydrogen i in mode A, and ro .. is the mode angular frequency. n .. is the number of 
quanta of energy tiro .. exchanged between the neutron and mode A. 

Wj(Q) is the exponent of the Debye-Waller factor, exp[ -2Wj(Q)], for hydrogen 
atom i and is given as follows: 

(28) 

In Eq. 28, N is the number of modes, n(ro .. ) is the Bose occupancy and < U~,j > is the 
mean-square displacement for atom i in the direction of Q. 

Equation 27 is an exact quantum-mechanical expression for the scattered intensity. 
A detailed interpretation of this equation is given in Ref. 8. Inserting the calculated 
eigenvectors and eigenvalues in the equation allows the calculation of the incoherent 
scattering in the harmonic approximation for processes involving any desired number 
of quanta exchanged between the neutrons and the sample, e.g. one-phonon scattering 
involving the exchange of one quantum of energy tiro .. , two-phonon scattering, and 
so on. 

The label A in Eq. 27 runs over all the modes of the sample. In the cases examined 
here, normal-mode analyses have been performed for isolated molecules (proteins) 
and molecular crystals. In the case of an isolated molecule, A runs over the 3N - 6 
normal modes of the molecule, where N is the number of atoms. In the case of 
a crystal, A runs over the phonon modes in the asymmetric unit of the first Brillouin 
zone. 

Vibrational density of states. The vibrational density of states, G(ro), is related to the 
classical dynamical structure factor by 

ro2 
G(ro) = lim Q2 Sc(Q, ro) 

Q .... O 

(29) 

where (Vj(O)Vj(t) is the autocorrelation function of the velocity, Vj(t) of atom 
i. g(ro) is the kinetic energy of the hydrogen atoms in the system as a function 
of frequency. Equation 29 holds formally also in the quantum case. Experi
mentally, G(ro) can be obtained in principle by performing the extrapolation 
of S(Q, ro) to Q = O. From molecular dynamics simulations, G(ro) can be cal
culated as the Fourier transform of the velocity autocorrelation function. For 
harmonic analysis, G(ro) is simply the cross-section-weighted frequency distri
bution, i.e. 

(30) 
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2.3. Coherent scattering of X-rays and neutrons 

Coherent scattering allows cross-correlations in atomic positions to be probed. 
Here we examine the following types of coherent scattering: (i) solution scattering of 
neutrons (orientationally averaged without energy analysis); (ii) scattering of X-rays 
and neutrons by crystals without energy analysis (diffraction and diffuse scattering); 
and (iii) coherent inelastic neutron scattering by crystals. 

2.3.1. Solution scattering 

Solution scattering from biological macromolecules has been employed particu
larly at small scattering angles to provide low-resolution information on molecular 
structure. Small-angle neutron scattering has the advantage over its X-ray counter
part that, due to the difference in sign of the coherent scattering lengths of deuterium 
and hydrogen, experimental conditions can be optimized so as to obtain a good 
contrast of the macromolecule over the solution. Time integration of Eq. 7 and 
orientational averaging then lead to the following equation for the scattered intensity: 

Scoh(Q) = K2 < IF(QW > (31) 

where < IF(QW > is the form factor of the protein molecule and K is its average 
contrast given by 

K = ~t(p(f) - pO)dT (32) 

where V is the volume giving rise to the contrast, p(f) is the coherent neutron 
scattering length density in the protein at point T, and pO is the solvent scattering 
length density. 

Neutron small-angle scattering has been applied to derive the configurational 
distribution of phosphoglycerate kinase (PGK) strongly denatured in 4 M guanidin
ium hydrochloride solution [9]. The denaturing of the protein produces a clear 
change in the scattering profile and a large increase of the radius of gyration, Rg , from 
24 A in the native form to 78 A in the denatured form. To interpret the data, a model 
was derived in which the excess scattering density associated with the protein is 
pictured as a freely jointed chain of N spheres of radius L linked by rigid bonds of 
length 2L. The form factor for this is as follows: 

< IF(QW > = f f IF(QW[sin(2QL)]II-ml 

1=1 m=l 2QL 
(33) 

The space Fourier transform of Scoh(Q) gives the radial density distribution function 
P(r). Fits of the freely jointed spheres model to the experimental P(r) for denatured 
PGK are shown in Fig. 1. A good fit was found to have '" 100 spheres with radius 
'" 8.5 A. The freely jointed spheres description was used to define bounds for the 
generation of atomic-detail molecular models for individual configurations of the 
denatured chain, one of which is depicted in Fig. 2. Further analysis of the 
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Fig. 1. Radial distribution functions for phosphoglycerate kinase denatured in 4 M guanidine 
hydrochloride solution. (- - -): experimental distribution function obtained from small-angle neutron 
scattering data; (-): distribution function obtained from the freely jointed chain of spheres with 1, 
10 and 100 spheres. From Ref 9. 

experimental data using random polymer theory showed that over the range 
3R;-1 < Q < 0.20 A - \ the polypeptide behaves as an excluded volume chain [10]. 

2.3.2. Diffraction by crystals 

In an X-ray crystallography experiment, the instantaneous scattered intensity is 
given by [5]: 

N N 

L L fgexp[iQ'(Ri - R)] (34) 
i=lj=l 

where F hkl is the structure factor, Ri is the position vector of atom i in the crystal and 
fi is the X-ray atomic form factor. For neutron diffraction fi is replaced by the coherent 
scattering length. 

It is not feasible to insert into Eq. 34 the atomic positions for all the atoms in the 
crystal for every instant in the time of the experiment. Rather, the intensity must be 
evaluated in terms of statistical relationships between the positions. One approach is 
to consider a real crystal as a superposition of an ideal periodic structure with slight 
perturbations. When exposed to X-rays, the real crystal gives rise to two scattering 
components: the set of Bragg reflections arising from the periodic structure, and 
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Fig. 2. Full view of a configuration of denatured phosphoglycerate kinase generated by combining 
the low-resolution small-angle scattering data and the freely jointed chain of spheres model in 
Fig. 1 with molecular modelling. Details are given in Ref 9. 
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scattering outside the Bragg spots (diffuse scattering) that arises from the structural 
perturbations: 

(35) 

where I~I is the Bragg intensity, found at integer values of h, k and 1, and I~kl is the 
diffuse scattering, not confined to integer values of h, k and 1. 

In terms of structure factors, the various intensities are given by [5]: 

Ihkl = IFhkl12 (36) 

I:kl = 1 < Fhkl > 12 

I~kl = I~Fhk112 

where ~Fhkl is the Fourier transform of the electron density perturbation. 

(37) 

(38) 

Bragg diffraction. The Bragg peak intensity reduction due to atomic displacements 
is described by the well-known 'temperature' factors. Assuming that the position R; can 
be decomposed into an average position, < R; > , and an infinitesimal displacement, 
ii; = oR; = It; - < R; > , then the X-ray structure factors can be expressed as follows: 

N 

F hkl = L f;(Q) exp(iQ· < R; > ) exp(W;(Q)) (39) 
;=1 

where W;(Q) = - -! < uf.Q > Q2 and < uf.Q > is the mean-square displacement in 
the direction of Q. W;(Q) is the Debye-Waller factor and is equivalent to that given in 
Eq. 28 for neutron scattering. 

Temperature factors are of interest to structural biologists mainly as a means of 
deriving qualitative information on the fluctuations of segments of a macromolecule. 
However, X-ray temperature factor analysis has drawbacks. One of the most serious is 
the possible presence of a static disorder contribution to the atomic fluctuations. This 

H 

Fig. 3. Crystal structure of acetanilide. Acetanilide contains a phenyl group, a methyl group and 
a peptide group that links the molecules of the crystal together via hydrogen bonds into parallel 
chains. From Ref 11. 
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Table 1 Mean-square displacements of hydrogen atoms in crystalline acetanilide at 15 K 

I II III I II III 

Methyl H a 0.0359 0.0352 Phenyl H para a 0.0126 0.0118 
b 0.0366 0.0438 b 0.0273 0.0278 
c 0.0253 0.0258 c 0.0279 0.0258 

Isotropic 0.0326 0.0349 Isotropic 0.0226 0.0218 

Methyl H a 0.0150 0.0160 Phenyl H met• a 0.0215 0.0220 
b 0.0482 0.0510 b 0.0189 0.0194 
c 0.0328 0.0336 c 0.0265 0.0246 

Isotropic 0.0320 0.0335 Isotropic 0.0223 0.0220 

Methyl H a 0.0301 0.0286 Phenyl H met• a 0.0154 0.0162 
b 0.0162 0.0172 b 0.0218 0.0210 
c 0.0483 0.0606 c 0.0296 0.0256 

Isotropic 0.0315 0.0354 Isotropic 0.0222 0.0209 

Amide H a 0.0178 0.0192 Phenyl Hortho a 0.0159 0.0160 
b 0.0110 0.0120 b 0.0189 0.0194 
c 0.0258 0.0300 c 0.0286 0.0250 

Isotropic 0.0182 0.0204 Isotropic 0.0211 0.0201 

Phenyl Hortho a 0.0203 0.0200 
b 0.0170 0.0164 
c 0.0264 0.0254 

Isotropic 0.0212 0.0206 

Column I: hydrogen atoms of acetanilide. Phenyl hydrogens are named according to 
their position relative to the N-substitution site. a, b, c refer to the crystallographic directions. 
Column II: anisotropic (a, b, c crystallographic directions) and isotropic mean-square displace-
ments (A 2), from neutron diffraction data [12]. Column III: anisotropic (a, b, c crystallographic 
directions) and isotropic mean-square displacements (A 2), from harmonic analysis. From 
Ref. 11. 

cannot be distinguished from the dynamic disorder due to the absence of energy 
analysis of the scattered X-ray photons. For quantitative work with X-rays, one 
approach is to choose a system in which there is negligible static disorder and in 
which the harmonic approximation is valid. An example of such a system is acetanil
ide, (C6HS-CONH-CH3)' at 15 K. Acetanilide is shown in Fig. 3. In recent work [11] 
the molecular mechanics force field was parametrized for this crystal and normal
mode analyses were performed in the full configurational space of the crystal, i.e. 
including all intramolecular and intermolecular degrees of freedom. As a quantitative 
test of the accuracy of the force field, anisotropic quantum-mechanical mean-square 
displacements of the hydrogen atoms were calculated in each Cartesian direction as 
a sum over the phonon normal modes using Eq. 28 and compared with experimental 
neutron diffraction temperature factors [12]. The experimental and theoretical 
temperature factors are presented in Table 1. The values of the mean-square displace
ments are in excellent agreement. As we shall see later, the forms and frequencies of the 
individual vibrational modes that sum to give < U~,i > are themselves also in good 
agreement with experiment. 
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2.3.3. X-ray diffuse scattering 

Any perturbation from ideal space-group symmetry in a crystal will give rise to 
diffuse scattering. The X-ray diffuse scattering intensity, I~kb at some point (hkl) in 
reciprocal space can be written as 

I~kl = NI«(Fn - (F»)(Fn+m - (F»)*)exp( - Q·Rm) (40) 
m 

where F n is the structure factor of the nth unit cell, and the sum Lm runs over the 
relative position vectors Rm between the unit cells. The function «(Fn - (F») 
(Fn+m - (F»)*) is determined by correlations between atomic displacements. 

If the diffuse scattering of dynamical origin contributes significantly to the mea
sured scattering, it may provide information on the nature of correlated motions in 
biological macromolecules that may themselves be of functional significance. To 
examine this possibility it is necessary to construct dynamical models of the crystal, 
to calculate their diffuse scattering and to compare with experiment. The advent 
of high-intensity synchrotron sources and image plate detectors has allowed 
good-quality X-ray diffuse scattering images to be obtained from macromolecular 
crystals. 

A program exists, named SERENA (Scattering of Ex-Rays Elucidated by Numer
ical Analysis), for calculating X-ray diffuse scattering intensities from configurations of 
atoms in molecular crystals [13]. The configurations are conveniently derived from 
molecular dynamics simulations, although in principle any collection of configura
tions can be used. SERENA calculates structure factors from the individual configura
tions and performs the required averages in Eqs. 36-38. 

Displacements correlated within unit cells but not between them lead to very diffuse 
scattering that is not associated with the Bragg peaks. This can be conveniently 
explored using present-day simulations of biological macromolecules. However, 
motions correlated over distances larger than the size of the simulation model will 
clearly not be included. Due to computational requirements this has excluded the use 
of atomic-detail molecular dynamics in the examination of the diffuse scattering 
resulting from correlated displacements of biological macromolecules in different unit 
cells. The use of periodic boundary conditions in the simulation suppresses motions of 
wavelength longer than the box edge. Displacements correlated between different unit 
cells lead to characteristic haloes around or streaks between the Bragg spots. Diffuse 
streaks in lysozyme diffraction patterns have been described using rigid-body dis
placements of the molecules in adjacent unit cells [14]. The haloes around the Bragg 
peaks (thermal diffuse scattering) may be due to lattice vibrations. They occur in 
protein crystals [15], but have not yet been examined using molecular simulation and 
remain something of a mystery. Thermal diffuse scattering in small-molecule crystals 
has been examined experimentally and using molecular simulation [16]. Indeed, in 
favourable circumstances, it is possible to energy-analyse neutron thermal diffuse 
scattering to obtain both the frequencies and wavevectors of the lattice modes 
concerned, as discussed below. 
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Fig. 4. Schematic vector diagrams illustrating the use of coherent inelastic neutron scattering to 
determine phonon dispersion relationships: (a) scattering in real space; (b) scattering triangles 
illustrating the momentum transfer, Q, of the neutrons in relation to the reciprocal lattice vector of 
the sample, T, and the phonon wavevector, q. Dots represent Bragg reflections. 

2.3.4. Coherent inelastic neutron scattering 

The use of coherent neutron scattering with simultaneous energy and momentum 
resolution provides a probe of time-dependent pair correlations in atomic motions. 
Coherent inelastic neutron scattering is therefore particularly useful for examining 
lattice dynamics in molecular crystals and holds promise for the characterization of 
correlated motions in biological macromolecules [17]. A property of lattice modes 
is that for particular wavevectors there are well-defined frequencies; the relations 
between these two quantities are the phonon dispersion relations. Neutron scattering 
is the only effective technique for determining phonon dispersion curves. The scatter
ing geometry used is illustrated in Fig. 4. The following momentum conservation law 
is obeyed: 

Q = T+q (41) 

where k; and kr are the initial and final neutron wavevectors. The vibrational 
excitations have wavevector q which is measured from a Brillouin zone centre (Bragg 
peak) located at T, a reciprocal lattice vector. 

If the displacements of the atoms are given in terms of the harmonic normal modes 
of vibration for the crystal, the coherent one-phonon inelastic neutron scattering 
cross-section is given by 

(42) 

where the summation is over all vibrational modes ofthe crystal. For one mode one has 

(43) 
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In this expression roiCD is the frequency of the phonon with wavevector if belong
ing to phonon dispersion branch j. (n(roiq)) + i) is the Bose factor. lFi<t <iW is 
given by 

IFj(Q, ifW = Lm~/2bk(Q' et(ij)) exp(iQ· Rk) exp( -2Wk(Q)) (44) 
k 

where mk is the mass of atom k, bk is its coherent scattering length and Rk its position. 
Wk(Q) in Eq. 44 is the exponent of the Debye-Waller factor and is given by Eq. 28. 
e~(if) is the eigenvector of the kth atom in the jth mode and describes the pattern of the 
displacements in one unit cell. e~(if) has 3s components, where s is the number of 
atoms in the unit cell. For any direction of if in the Brillouin zone there are 3s 
dispersion curves. 

2.4. Far-infrared absorption spectroscopy 

Infrared absorption spectroscopy is a standard technique in structural biology. 
However, its use has been primarily limited to the examination of high-frequency 
(hro»kBT at 300 K) local vibrations in macromolecules and their relation with 
structure. For several reasons, far-infrared spectroscopy, corresponding to ps-time
scale vibrations, has been much less commonly applied to biological problems. 
Firstly, the efficiency of laboratory sources is reduced in the far-infrared region. This, 
together with the high absorption of water in the far-infrared, renders difficult the 
obtention of good-quality spectra from biological macromolecules. However, the 
advent of high-intensity synchrotron far-infrared sources may overcome these difficul
ties [18]. Secondly, the vibrations in the far-infrared region are difficult to assign 
unambiguously. However, these vibrations are of particular interest in molecular 
simulation as they involve collective modes and hydrogen-bond vibrations, i.e. vibra
tions influenced by electrostatic and van der Waals interactions. Moreover, as in
frared absorption arises from charge fluctuations, the combination of simulation with 
far-infrared experiment should provide information on the charge fluctuations asso
ciated with displacements along soft degrees of freedom in biological systems. 

Atomic charges have two distinguishable effects on far-infrared absorption spectra. 
The first is indirect: Coulombic interactions between charges playa role in determin
ing atomic dynamics. In molecular dynamics simulation this enters into the potential 
energy function used for calculating the forces between the atoms. The second effect is 
that the atomic charge fluctuations associated with the nuclear position fluctuations 
directly determine the absorption. Although, in reality, the charge phenomena in
volved in both the above effects are the same, for practical and interpretational 
purposes they are commonly treated separately. In particular, whereas the explicit 
inclusion of polarization terms is not a feature of some successful interaction poten
tials for molecular dynamics simulation, it is a requirement for the spectroscopic 
activation of certain observed far-infrared features. Therefore, for the calculation of 
infrared intensities, a charge fluctuation model including polarization can be applied 
a posteriori to the atomic trajectories generated by molecular dynamics simulation. 
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2.4.1. Absorption coefficient 

The infrared absorption coefficient, 1(00), of a system is given by [19]: 

41t2 00 
1(00) = 3cn(oo) V h (1 - e-Jlhm)C(oo) (45) 

C(oo) = 2~Jdte-imt < M(O)· M(t) > (46) 

where c is the velocity of light, n(oo) is the refractive index of the medium, M is the 
dipole moment of the system and V its volume. The quantum-mechanical C(oo) in 
Eq. 46 fulfils the detailed balance condition that we have already seen in neutron 
scattering in Sec. 2.2: 

(47) 

Molecular dynamics simulations allow the computation of the classical limit, Ccl(oo), 
of the dipole moment autocorrelation function. As mentioned for neutron scattering, 
Eq. 47 does not hold in the classical limit (h -+ 0) where Ccl( - (0) = Ccl(oo). To 
correct the classical correlation function and to re-establish Eq. 47, the classical time
correlation function can be identified as the real part of its quantum-mechanical 
counterpart. This leads to the following transformation: 

2 
Ccl(oo) -+ 1 Jlhm Ccl(oo) +e 

(48) 

The absorption then becomes 

41t2 00 
1(00) = 3cn(oo) V h tanh(j3hoo/2)Ccl(OO) (49) 

2.4.2. Calculation of the system dipole moment 

The time dependence of the total dipole moment of the system, M(t), can be 
calculated a posteriori from the nuclear trajectories generated by a molecular 
dynamics simulation. The dipole moment of a given molecule is expressed as the 
sum of a permanent part, p, that is independent of the environment of the molecule 
and an induced part, d, that depends on the local electric field. d has the following form: 

- " .... d = LJ1i (50) 
i 

where the ~i are the induced point dipoles on the individual atoms. One method for 
calculating the ~i is based on a procedure, originally introduced by Applequist [20] and 
modified by Thole [21], for calculating the polarizability tensor of small molecules, 
given the atomic coordinates and the isotropic atomic polarizabilities. This method has 
recently been applied to examine far-infrared absorption from water [22] and holds 
particular promise for macromolecular calculations. We now briefly review this method. 
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Consider a system of N atoms in an external electric field, E ext. Each atom, i, 
possesses a polarizability, llj, and is polarized by Eext' giving rise to an induced dipole 
moment l1i which itself contributes to the total electric field E tot. This can be written in 
the following way: 

where 

E tot = E ext + L Tij l1j 
j*i 

(51) 

(52) 

The total electric field contains the external field, Eext' and the field due to the induced 
dipoles, Lj*iTijl1j, where Tij is the induced dipole tensor. Equation 52 can be written 
in the following matrix form: 

-1 III -T12 -TIN 111 Eext 

-T21 -1 -T2N 112 E ext ll2 
(53) 

-TN1 -TN2 -1 llN I1N E ext 

Multiplying Eq. 53 by the inverse of the matrix and summing over the atoms reduces 
it to the simple form 

(54) 

where 11 is the total induced dipole moment of the system. It is proportional to the 
external field. A is the polarizability tensor including induced atomic dipole inter
actions. Applequist chose a point dipole model for Tij: 

[

X2 xy 
3 2 

= 5" yx Y 
rij 

zx zy 

(55) 

XZ] 
yz - r13 I 

2 1) 
Z 

(56) 

where ri and rj are the positions of atoms i and j, x, y, z are the Cartesian coordinates 
of rij = ri - rj' and I is the identity matrix. In this model, atom i is subjected to the 
dipolar part of the field generated by an infinitely small charge distribution placed at 
the centre of atom j. However, when the interatomic distance rij approaches 
Sij = (4llillj) 1/6 the model can lead to unphysically large values for the induced dipole 
moments. Thole noticed this problem and introduced a damping effect [21]. If 
rij ::; Sij = a(llill/16, where a is a constant, the potential l/rij which generates the 
dipolar field (cf. Eq. 55) is replaced by that generated by a delocalized isotropic charge 
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distribution, p(f). To reproduce experimental polarizability tensors of small mole
cules, using Eq. 54, with the polarizabilities (Xi as fitted parameters, Thole tried 
several kinds of radial dependences for p(f). The best distribution found gave a = 
1.662 and the following form for Tij: 

[
X2 xy XZ] 

T 3VD 2 (4VD - 3VD) I 
ij=-sYXY yz- 3 

rij rij 
zx zy Z2 

where Vij has the form: 

s.: 1 rij < Sij 
Vij = 1J 1 rij ·f 

1 otherwise 

(57) 

(58) 

To calculate the induced part of the dipole moment of a system of molecules, the 
above procedure must be adapted. The external field Eex! is replaced by Ei, the field 
acting on the ith atom due to the permanent charges qj. For self-consistency within 
the Thole representation, the permanent charges are also represented by isotropic 
delocalized charge distributions. Consequently, the classical formula for Ei is modified 
as follows [21]: 

(59) 

where vij has the same definition as in Eq. 58. 
Equation 51 then becomes 

(60) 

To be consistent with the molecular mechanics potential, intramolecular permanent 
charge interactions involving 1-2 and 1-3 interactions can be excluded from 
the induced dipole calculation. All other dipole-dipole interactions are included as 
in Ref. 21. 

To calculate the induced dipoles on the molecules, Eq. 60 can be solved for each 
molecular dynamics trajectory frame generated. This can be done using an iterative 
procedure in which the iii vectors calculated in the nth step are used as iij in the 
(n + l)st step. The iteration is repeated until convergence of iii. The iteration of Eq. 60 
leads to a self-consistent representation of the local field and the induced dipoles. 

In Eq. 60, two terms require summations over atom pairs: Ei and Lj*iTijiij. These 
summations are expensive to compute for large numbers of atoms. For this and for 
interpretational reasons, it is therefore useful to examine if the form of the calculated 
spectrum is sensitive to the presence of approximations in their evaluation. The 
method used to approximate Ei need not, per se, be the same as that used to 
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approximate Lj*iTij~j. Indeed, the fact that the dipole interaction is short-range (it 
varies as 1/r3) suggests that an approximation to the long-range interactions in the 
calculation of Lj*iTij~j might be appropriate. However, the field It due to the 
permanent point charges, contains a significant long-range component. Therefore, the 
use of a spherical truncation in the evaluation ont although rapid, is likely to lead to 
errors. An Ewald sum would be more accurate. Another possibility is a method 
intermediate between the spherical cutoff and a full all-atom pair calculation, involv
ing adding a reaction field to the cutoff sphere. The reaction field simulates an infinite 
dielectric medium outside the sphere. The induced dipoles are then given by [23]: 

.... [rt ~ ( .... 2(Err - 1) ~j)] J.li = (Xi ni + L... TijJ.lj + 2 1 R3 
j*i Err + c 

(61) 

rij <Re 

where Err is the relative dielectric constant of the medium outside the sphere and Rc is 
the cutoff. Equation 61 is simple to implement. 

3. Dynamics in small-molecule condensed phases 

In this section examples are given of the combination of molecular simulation with 
experiment for the determination of ps-timescale dynamics of crystals and liquids of 
small molecules. The examples are chosen to cover a wide range of dynamical 
phenomena: local and collective vibrations, lattice modes, and diffusive motions of 
molecules and parts of molecules. 

3.1. Vibrational dynamics 

3.1.1. Anharmonic local vibrations in acetanilide 

The crystalline state provides structurally well-characterized systems enabling 
detailed studies of environmental effects on molecular motions. Using a molecular 
mechanics force field, it is possible in principle to obtain a complete description of the 
ground-state nuclear dynamics of a molecular crystal, by working in the full, 3N
dimensional configurational space (where N is the number of atoms in the crystal) 
using computer simulation methods. In this wayan attempt can be made to describe 
the structural and dynamical features of the crystal in a unified fashion. 

An optimized molecular mechanics potential function has been obtained for the 
acetanilide crystal (shown in Fig. 3) by performing energy minimizations and har
monic analyses of the crystal and adjusting the parameters of the function so as to 
reproduce low-temperature structural and spectroscopic data [11]. The resulting 
normal modes provide a description of the low-temperature intramolecular and 
lattice vibrations. With one exception, all the fundamental frequencies of the intra
molecular modes in the refined force field were within 3 % of their values obtained at 
the centre of the Brillouin zone by optical spectroscopy. Most of the mode assign
ments were in agreement with previous assignment schemes. Moreover, the calculated 
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crystal field splitting of the vibrational bands (into eight distinct components for 
acetanilide) was also found to be in quantitative agreement with experiment. 

U sing the results of the harmonic analysis, incoherent inelastic neutron scattering 
intensities were calculated using Eq. 27 assuming the presence of one-, two- and 
three-phonon scattering processes. The results at 25 K are compared with experiment 
in Fig. 5. Because of the large hydrogen displacement in methyl torsion, this peak is by 
far the strongest feature of the experimental spectrum. The peak is narrow and well 
resolved at 145 cm -1. The average intensity of the lattice mode peaks ( < 100 cm -1) is 
'" 20% of the methyl torsional peak at 145 cm - 1. 

Having refined the force field in the harmonic approximation, it was possible to use 
the full, anharmonic potential function in molecular dynamics simulations. Simula
tions ofthe acetanilide crystal were performed using periodic boundary conditions, at 
80, 140 and 300 K, and the temperature dependence of the hydrogen-weighted 
vibrational density of states was calculated using Eq. 29. 

Methyl libration. Figure 6 presents the density of states, G(oo), for the methyl 
hydrogens calculated from the harmonic phonon analysis and from the simulations. 

Methyl torsion 

o 200 400 600 800 1000 

Frequency (cm") 

Amide III 

Experimental 
Calculated 

Anomaly 
1490 cm-'? 

l 

1200 1400 1600 

Fig. 5. Incoherent neutron scattering dynamic structure factor Sine (Q, OJ), measured at 25 K using 
the spectrometer TFXA at the spallation source at the Rutherford-Appleton Laboratory, Oxford, and 
calculated using the results of a normal-mode analysis of the crystal and assuming the presence of 
one-, two- and three-phonon scattering, using Eq. 27. From Ref II. 
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The methyl torsional mode is at 145 cm -1 at 80 K, and shifts downward and 
broadens with increasing temperature above 80 K, to reach -115 cm - 1 at 300 K. 
This temperature dependence is in good agreement with that observed experimentally 
[24,25]. The experiments indicate the onset, above 100 K, of a downward shift from 
142 cm -1 at 100 K to 125 cm -1 at 300 K. The downward shift and broadening are 
due to the anharmonic nonbonded environment of the methyl group and the presence 
of frictional damping. The peak shift is also associated with the onset of torsional 
transitions of the methyl group on the ps timescale, which occur in the simulations at 
140 and 300 K. 

Peptide hydrogen-bond vibration. A significant temperature dependence of the NH 
out-of-plane bands was observed in the acetanilide simulations. Figure 7 displays 
G(ro) for the amide hydrogen from the phonon calculations and from the molecular 
dynamics simulations. This region contains three separate bands, all involving NH 
out-of-plane motion. The peak maxima at 750 and 785 cm -1 shift downward by 
14 cm- 1 at 300 K and the bands change in form. As the temperature rises the bands 
broaden, and the highest frequency band near 785 cm - 1 shifts downward more than 
that centred at 778 cm -1, eventually merging with it above 140 K. These observations 
are again in quantitative agreement with experiment [12,24] and indicate that 

o 100 200 300 

Frequency (cm·') 

-- MD300K 
----- MD 140K 

MD80K 
............ HARMONIC 

400 500 

Fig. 6. G(w) for the methyl hydrogens in the acetanilide crystal calculated from a harmonic 
analysis and from molecular dynamics simulations at 80, 140 and 300 K. From Ref 11. 
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Fig. 7. G(w) for the amide hydrogens in the acetanilide crystal calculatedfrom a harmonic analysis 
and from molecular dynamics simulations at 80, 140 and 300 K. From Ref 11. 

sensitive details of the temperature-dependent anharmonic hydrogen-bond dynamics 
are reproduced by the molecular mechanics force field. 

3.1.2. Hydrogen-bond dynamics in water 

The interpretation of the far-infrared spectrum of water presents some interesting 
questions concerning the nature of the charge fluctuations leading to the absorption 
profile. The experimental 300 K far-infrared spectrum of water contains a wide 
absorption band at ",600 cm -1 due to librations (rotations) of water molecules in 
their local hydrogen-bond networks, and a band at 200 cm - 1 due to hydrogen
bond stretching [26]. Attempts have been made to reproduce these features 
using molecular dynamics simulation [27,28], but quantitative agreement with 
the experimental spectrum is lacking. In recent work [22] with the TIP3P poten
tial [29], an improved agreement with experiment was obtained by using the 
self-consistent polarization method described in Sec. 2.4. Other questions that 
were addressed concerned the role of long-range electrostatic interactions in 
determining the induced dipoles and the dynamics associated with the far-infrared 
absorption. 
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Simulations were performed using two different methods for representing the elec
trostatic interactions in the potential function (spherical cutoff and Ewald sum) and the 
system dipole moment, M, was calculated using two different methods for including the 
induced dipole contribution, i.e. the terms on the right-hand side of Eq. 60 . 

. Induced dipole method EW RF. The polarizability tensor of water is contained in 
the analytical form of the dipolar field tensor, thus leading to a self-consistent 
evaluation of the induced dipoles, i.e. Eq. 60 is solved iteratively to convergence. The 
field due to the permanent charges is calculated by an Ewald sum. 

Induced dipole method NOINIT. This is a noniterative method in which the 
induced dipole on each water molecule is obtained by multiplying the experimental 
water molecule polarizability tensor by the electric field created by the permanent 
charges of the other atoms. This field is evaluated with an Ewald sum. The permanent 
charges used are those from the TIP3P model, i.e. they are increased from their 
gas-phase values. This method is identical to that used previously with the SPC 
potential [28]. 

Figure 8 compares the experimental far-infrared spectrum of water at 300 K with 
spectra calculated from the molecular dynamics simulations using the above methods. 
Decomposition of the calculated spectra indicates that the 600 cm - 1 band is due to 
fluctuations of the positions of the permanent charges in the simulation, whereas the 
200 cm - 1 band is due to induced dipole fluctuations. The comparison of the curves in 
Fig. 8 shows that when the self-consistent, iterative method is used to calculate the 
induced dipoles, the'" 200 cm - 1 translational band produces a strong shoulder in the 
spectrum, whereas this is not the case for the spectrum calculated with the 
noniterative method. 
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Fig. 8. Far-infrared spectra of water at 300 K. (0): experimental spectrum from Ref 26. (-): 
spectrum calculated from a molecular dynamics simulation performed with Ewald summation. 
Induced dipole contribution calculated with method EWRF. (- - -): spectrum calculated from 
a molecular dynamics simulation performed with spherical truncation. Induced dipole contribution 
calculated with method EWRF. (- . .;: spectrum calculated from a molecular dynamics simulation 
performed with Ewald summation. Induced dipole contribution calculated with method NOINIT. 
From Ref 22. 
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The frequency of the ",,600 cm - 1 rotational band is significantly influenced by 
long-range electrostatic interactions in the potential function. This is visible in 
Fig. 8 as a shift to high frequencies when the electrostatic interactions in the potential 
function are spherically truncated compared to the simulation in which an Ewald 
summation was used. Further calculations showed that the mean-field vibrational 
behaviour of individual molecules is similar in both the spherical truncation and 
Ewald simulations and that the frequency shift arises from differences in the dynamics 
of the relative orientations of different molecules. Cross-correlations in the static 
orientations of water molecules can be quantified with the Kirkwood G-factor, Gk, 

defined as 

G - '\' < p;-j;j > 
k-L., 2 

i,j Np 
(62) 

where the Pi are the permanent dipoles and N is the number of atoms. Gk was found to 
be 0.15 in the spherical truncation simulation and 5.06 in the EWALD simulation, i.e. 
the EWALD simulation contains considerably more pair orientational ordering. The 
strong dependence of dipole-dipole correlations and associated dielectric quantities 
on electrostatic truncation had been observed previously in simulations of dipolar 
liquids [30-32]. The dependence calls into question the accuracy of calculations 
of the static dielectric constant of biological macromolecules using simulations with 
spherical truncation. 

In contrast to the rotational band, the induced dipole fluctuations were found to be 
relatively insensitive to the long-range effects; the effective isotropy of the water 
molecular polarization tensor leads to a decoupling of the induced dipole fluctuations 
from the dynamical intermolecular orientational correlations of the permanent 
dipoles. 

3.1.3. Collective vibrations in polyacetylene 

Collective vibrations in molecular crystals are of particular interest in molecular 
simulation as a probe of nonbonded interactions. Here we consider two crystals 
exhibiting low-frequency collective vibrations: one, L-alanine, in which well-defined 
phonon dispersion relations exist and another, polyacetylene, in which low-frequency 
vibrations also exist but are subject to significant anharmonic effects. 

Polyacetylene, (CH)xo is the simplest example of a conjugated polymer. Interest in 
the physical properties of this molecule has been intensified with the finding that it can 
be chemically doped to 'metallic' levels of conductivity [33]. Polyacetylene can be 
crystallized in forms in which the C-C single bond dihedral angles are either mostly cis 
or mostly trans. Inelastic neutron scattering experiments from stretch-oriented cis
rich and trans-rich polyacetylene have enabled the vibrational density of states, G(ro), 
of the system to be determined in directions parallel (Gil) and perpendicular (G-L) to 
the average chain axes depicted in Fig. 9 [34,35]. The experimental G(ro)'s were found 
to be highly anisotropic and to exhibit considerable differences between the cis and 
traris conformers. Also, a marked change in the experimental G(ro) was found on 
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Na - DOPED 

x 

(a) 

DEDOPED PURE TRANS 

Fig. 9. (a) Snapshot of the simulation primary box of sodium-doped polyacetylene. This view is 
approximately perpendicular to the channel axis. (b) Energy-minimized structure of pure 
polyacetylene. From Ref 37. 
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Fig. 10. (a) Experimental Gil and G.l for cis-rich polyacetylene. (b) Gil and G.l derived from cis
(CH)64 simulation. The units of the simulation-derived G(m) are 12 ps. The simulation-derived 
spectra have been convoluted with the experimental instrumental resolution jUnction. From Ref 36. 

doping with sodium. These results threw down a challenge to molecular simulation. 
Would the dependence of the density of states on conformation, geometry and doping 
be reproduced? To examine this, molecular dynamics simulations were performed on 
pure and doped polyacetylene with potential function parameters transferred from 
small-molecule work [36,37]. 

Figure 10 presents the experimental densities of states for cis-(CH)x over the 
0--20meV range (0--160cm- 1), parallel and perpendicular to the chain axes*. Also 
shown in Fig. 10 are the corresponding quantities derived from a molecular dynamics 

* In neutron scattering a variety of energy and frequency units are used: 1 me V = 8.07 cm - 1 = 

0.24 THz = 11.61 K. 
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simulation of the crystal. In the experimental Gil, there is a distinct peak at 1.5 meV 
and a broad peak with a maximum at 15 meV. In the simulation, both the 1.5 meV 
peak and the broad peak are present although the maximum of the latter is at 11 me V. 
In G1-, the 1.5 meV peak is absent in both simulation and experiment whereas the 
broad peak persists. 

Figure 11 presents the experimental and simulation-derived data for trans-(CH}x
The spectra are markedly different from those in the cis case. The changes seen 
experimentally are also present in the simulations. Figure 12 shows the simulation
derived and experimental G1- spectra of sodium-doped trans-(CH}64. There is a 
considerable difference in G 1- between the doped and undoped species in the 
simulations. In the pure system the intensity increases steeply from 5 meV to a plateau 

EXPERIMENT AL TRANS - (CHlx 

G(wl 

10 20 
(a) Frequency (meVI 

TRANS - (CH164 
1.4.-----.-----r-----.-----r'-----.-----.----.-----, 

G(wl 
12 

0.6 

0.6 

0.4 

0.2 

0 
0 17.5 20 

(b) Frequency (meVl 

Fig. 11. (a) Experimental Gil and G~ for trans-rich (CH)x. (b) Gil and G~ from trans-(CH)64 
simulation. The simulation-derived spectra have been convoluted with the experimental 
instrumental resolution function. From Ref 36. 
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Fig. 12. (a) Experimental and (b) simulation-derived G.L for sodium-doped polyacetylene. From 
Ref 37. 

at ~15-20 meV, whereas in doped (CH)64 a broad mInImUm is present at 
~12-18 meV. The experimental data were collected on an instrument with a relatively 
low neutron flux, worsening the counting statistics. Nevertheless, the broad minimum 
in the G.L spectrum at 12-18 me V is clearly present in the experimental data, in accord 
with the simulation results. 

The features of the experimental densities of states are sufficiently well reproduced 
by simulation that a detailed examination of the simulation-derived spectra was 
considered useful. This analysis showed that the Gil feature in the pure species at 
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-1.5 meV in cis and 4 meV in trans is a rigid-molecule vibration that is independent 
of chain length. Higher frequency vibrations (5 meV < 20 meV) are coupled intra
molecular C-C torsions and do show a considerable variation with chain length. It is 
these C-C torsional vibrations that are modified on doping with sodium. 

3.1.4. Lattice vibrations in L-alanine 

Zwitterionic L-alanine (+ H3N-C(CH3)-C02-) is a dipolar molecule that forms 
large, well-ordered crystals in which the molecules form hydrogen-bonded columns. 
The strong interactions lead to the presence of well-defined intramolecular and 
intermolecular vibrations which can usefully be described using harmonic theory. 

Coherent inelastic neutron scattering experiments have been combined with 
normal-mode analyses to examine the collective vibrations in L-alanine [16]. 
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Fig. J 3. (a) Dispersion curves for crystalline zwitterionic L-alanine at room temperature along the 
b* crystallographic direction determined by coherent inelastic neutron scattering. The full circle 
and full square symbols are associated with phonon modes observed in predominantly transverse 
and purely longitudinal configurations, respectively, i.e., for vectors Q and if perpendicular and 
parallel to one another, respectively. They correspond to measurements performed around the 
strong Bragg reflections (200), (040) and (002). The empty square symbols are neutron data points 
obtained around the (330), (103) and (202) reciprocal lattice point in a mixed configuration. Solid 
lines indicate the most probable connectivity of the dispersion curves and dashed lines correspond to 
measurements performed at low temperature, T = 100 K. (b) Theoretical dispersion curves for 
L-alanine determined from normal-mode analysis. From Ref J 6. 
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Fig_ 13_ (continued)_ 

Ab initio quantum-chemical calculations were performed to determine the am
monium: carboxylate hydrogen-bonding interaction energy curve and bond rota
tional potentials. The molecular mechanics potential function was parametrized to fit 
the ab initio results. Using the potential function, normal-mode calculations were 
performed in the full configurational space of the crystal. Experiments were performed 
to obtain coherent inelastic neutron scattering intensities, SCOh(Q, 0)), and to trace 
the phonon dispersion relations along the three principal axes of the first Brillouin 
zone. 

Figure 13 shows the experimental phonon frequencies Vj(q) (v = 0)/21t) for several 
modes propagating along the crystallographic direction b*. The solid lines represent 
the most probable paths for the dispersion curves Vj(ij). The theoretical dispersion 
curves are also given. The forms of the calculated branches are similar to those 
determined experimentally. At the border of the zone the frequencies are in good 
agreement, in the range 46-62 cm - 1 compared with 50-62 cm - 1 experimentally. At 
the zone centre the frequencies of the optical modes are ",10 cm - 1 higher than the 
experimental values and the gap between the frequencies of the second and the third 
optical modes is smaller in the calculations than in the experiment. 

A complete representation of the experimental and calculated neutron data in
volves a three-dimensional plot of the intensities versus q and 0). This is shown for the 
b* direction in Fig. 14. The comparison- shows that the positions and relative 
intensities of the theoretical and experimental peaks corresponding to the acoustic 
and the first two optic modes are in agreement. 
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Fig. 14. (a) Experimental and (b) calculated coherent inelastic neutron intensities for crystal
line zwitterionic L-alanine in the h* direction. From Ref J 6. 

The calculated sound velocities, mean-square displacements, dispersion curves and 
coherent inelastic neutron scattering intensities were found to be mostly in quantita
tive agreement with experiment. An exception is the low-wavevector portion of the 
longitudinal acoustic branch in the c* direction, for which the associated experi
mentally determined sound velocity is a remarkably high 6.6 km/s, twice the theoret
ical value. The c* direction is roughly parallel to the aligned zwitterionic dipoles. It is 
possible that polarization effects and/or long-range dipolar correlations, such as were 
discussed for water in the previous section, playa role in determining the high sound 
velocity and were not completely represented in the potential function. 

3.2. Diffusive motions in molecular crystals 

Molecules or parts of molecules in crystals can undergo diffusive motion on 
timescales accessible to molecular dynamics simulation. These motions can also be 
probed using incoherent quasielastic and elastic neutron scattering. 
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3.2.1. Methyl group rotation in the alanine dipeptide 

The three methyl groups of the alanine dipeptide, (CH r CONH-C"H(CPH3)

CONH-CH3), provide a system where various vibrational and diffusive motions 
combine to produce measured spectra and where molecular dynamics can be usefully 
applied to unravel their contributions [38]. One ofthe methyl groups is the side chain, 
the intrinsic (gas-phase) rotational barrier for which is ~ 3 kcaljmol, and the other 
two methyl groups are adjacent to double bonds and have intrinsic barriers of 
~ 0 kcaljmol. In what follows we refer loosely to the side-chain and terminal groups 
as 'hindered' and 'free' methyls, respectively. This terminology refers to the intrinsic 
barrier; in the crystal an effective rotational barrier exists for all methyls due to the 
influence of nonbonded interactions. 

Figure 15 shows the Q-dependence of the experimental elastic scattering, Atot(Q). 
Also shown is Atot(Q) derived, using Eq. 25, from all the hydrogens in molecular 
dynamics simulations of the dipeptide crystal. The dashed lines represent Atot(Q) 
derived using a correction formula described below. Manipulation of Eq. 27 indicates 
that an EISF that is Gaussian in Q (linear in Fig. 15) is consistent with the presence of 
harmonic motion. At 300 K in both experiment and simulation the EISFs are 
nonlinear. At 50 K both curves are almost Gaussian in Q. 
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Fig. 15. Log of the elastic intensity versus q2 for the crystalline alanine dipeptide. (D): experi
mental; (-): from molecular dynamics simulation; (- - -): using a correction formula (Eq. 63). The 
values ofp, the population factor, are 0 for the simulation at 50 K, 0.15 at 100 K and 0.35 at 300 K. 
The corresponding values for the subtracted vibrational rms displacements, u3, are 0.130 12at 50 K, 
0.133 at JOOK and 0.140 at 300K. From Ref 38. 
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We now examine decompositions of the simulation-derived Atot(Q). Figure 16a 
shows the contribution to Atot(Q) from the translational rigid-body motion of 
the free and hindered methyl groups. The hindered and free groups present almost 
identical translational elastic scattering, linear in Q2, i.e. vibrational. Figure 16b 
presents the equivalent rotational contribution. For the free groups, nonlinearity is 
clear at all temperatures. The form of the curve at 300 K is close to that of the 
spherical Bessel function found for the EISF calculated from an analytical model of 
continuous diffusion of the methyl hydrogens on a circle [7]. The hindered groups 
have a comparatively weak Q-dependence with some nonlinearity. The hindered 
methyl rotational motion is not as fully developed in the simulations as it is experi
mentally. 

The elastic scattering at high Q in the simulations is increased with respect to the 
experiment at all temperatures. This is mainly due to the fact that, in the experiment, 
the detector efficiencies were normalized with respect to the 22 K scattering, leading to 
an experimental underestimation of the vibrational mean-square fluctuations at 
higher temperatures. 

One can summarize the above considerations formally in the following 'correction 
formula' for the EISF: 

A+(Q) 
Atot.cor.{Q) = Atot.sim(Q)· A_(Q) (63) 

A+(Q) is the EISF for rotational motion to be added to the simulation and A_(Q) is 
the EISF for vibrational motion to be subtracted from the simulation: 

(64) 

(65) 

In Eq. 64, p is the fraction of methyl groups not showing rotational transitions 
in the simulation that do undergo full rotation in the timescale resolvable by the 
experiment. Arot(Q) is the EISF of the additional rotational motion. For a rota
tional jump model this is typically a linear combination of zeroth-order spherical 
Bessel functions. In Eq.65, <ui> denotes the mean-square vibrational fluctuation 
to be subtracted. In Fig. 15 the dashed lines show the corrected EISF using the 
simple model described above. The parameters p and <ui> are given in the figure 
caption. 

The picture of the methyl group dynamics that arises from the simulation-experi
mental analysis is illustrated qualitatively in Fig. 17, which shows simulation-derived 
time series for methyl dihedral angles calculated from a free and a hindered group. 
Only librations and no transitions for both types are seen at 50 and 100 K. At 300 K 
the free methyl group undergoes several rotational transitions involving 2-3 rad 
displacements in the 10 ps time period. The time series shows diffusive characteristics. 
For the hindered methyl, one jump-like transition is seen at 300 K, associated with 
a forcing and subsequent damping of the librational oscillation. 
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Fig. 16. Decomposition of EISF in the alanine dipeptide crystal: (a) translational methyl compo
nents; (b) rotational methyl components. From Ref 38. 
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Fig. 17. Time series for methyl dihedral angles (Cruxis) from molecular dynamics simulations of 
the alanine dipeptide crystal: (a) a hindered methyl; (b) a free methyl. From Ref 38. 
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3.2.2. Alkane diffusion in urea inclusion compounds 

Urea inclusion compounds are attractive systems for the characterization of the 
dynamics of n-alkane chains in a confined environment. In these systems the urea 
'host' molecules form a hydrogen-bonded network containing parallel channels into 
which linear 'guest' molecules pack (see Fig. 18). Incoherent quasielastic neutron 
scattering experiments have been performed on n-nonadecane-urea at 180 K in which 
Sinc(Q,O) was determined with Q oriented parallel and perpendicular to the channel 
axes [41]. 

Varying the simulation model. The effect of varying the molecular dynamics simula
tion model system on the calculated quasielastic neutron scattering profiles was 
examined [39,40J. Simulations were performed with differing numbers of n
nonadecane molecules per channel and by varying the packing distance between the 
molecules. The effect of varying the alkane repeat distance along the channel axis on 
the calculated quasielastic scattering is shown in Fig. 19a, b in the QII and Q-L geome
tries together with the corresponding experimental data. Clearly, the calculated 
quasielastic profiles depend strongly on the intrachannel alkane-alkane interactions. 
In simulations MU1 and MU3 the alkane molecule centres of mass are separated by 
00 and -29 A, respectively. In !limulations MU5 and MU10 the repeat distance is 
26.44 A, the experimental value. In MU10 there are 10 molecules per channel in the 
primary box, whereas there are 5 in MU5. Figure 19 shows that simulations MU1 and 
MU3, in which the guest molecules are further apart than observed experimentally, 

a 

b 
z 

c 

x 
Fig. 18. Simulation primary boxes for the urea-n-nonadecane inclusion compound. Upper: in the 
yz plane, (a) model MUl, (b) model MU3, (c) model MU5. The primary box of MUlO is that of 
MU5 but doubled in the Z direction. Lower: in the XY plane. From Ref 40. 
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Fig. 19. (a) Dynamic structure factor for the urea-alkane inclusion compound at 180 K in the 
QII geometry. Q = 1.0 i- 1, (b) Dynamic structure factor in the Ql. geometry. Q = 1.01- 1• 

Experiment (0), simulation MUJO (-), simulation MU5 (- . -j, simulation MU3 (- - -), simulation 
MU1 (- -). From Ref 40. 

are not in agreement with experiment. Their quasielastic spectra in the Q II direction 
are too broad, indicating the presence of too fast diffusive motion, and the chains are 
not sufficiently confined. Figure 19b indicates that the guest-guest interactions also 
noticeably affect the dynamics in the orthogonal Ql. directions. In both the Q II and 
Ql. geometries, the best agreement with experiment is obtained with the experi
mentally determined n-nonadecane repeat distance. Other calculations indicated that 
fixing the urea molecules also leads to quantitative disagreement with the experi
mental quasielastic spectra. 
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Effect of instrumental energy resolution. The effect of finite instrumental 
energy resolution on the scattering functions in the alkane-urea system has been 
investigated. Figure 20 shows the intermediate scattering functions perpendicular 
to the channel axis, calculated with and without taking into account the energy 
resolution of the experimental spectra in Fig. 19. When the I(Q, t) derived from the 
resolution-broadened dynamic structure factor has reached its long-time limit, 
the I(Q, t) calculated without resolution broadening continues to decrease. There
fore, the effect of the instrumental resolution is to hide slower relaxation 
processes in the simulation, leading to an overestimation of the long-time limit of 
I(Q, t): the EISF. Thus, slow motions exist in the simulation that were not detected by 
the experiment. 

To further investigate the slow rotational motions, probability distributions were 
calculated from the simulations [40]. The rotational probability distributions for two 
ofthe molecules are shown in Fig. 21. As the chains are, in principle, equivalent, we see 
that the rotational dynamics has not converged over the 330 ps timescale of the 
simulation. However, averaging over the 20 chains in the simulation produces an 
approximately sixfold symmetric probability distribution (not shown), as expected 
from the hexagonal symmetry of the host structure. From this distribution, <p(cD», 
a potential of mean force was calculated, and is shown in Fig. 22. The potential of 
mean force presents a barrier to rotational transition of '" kB T at 180 K. 

The rotational probability distributions determine the EISF. An experimental EISF 
has been determined with Q oriented perpendicular to the channel axis [41]. It is 
therefore of interest to compare this with EISFs calculated from the simulation 
probability distributions. 

z-
Q. 0.5 

...............•........................•....................... : ....................•.... ' ................. ,'-", 

Time (ps) 

Fig. 20. Intermediate scattering junction, I (Q, t) for the urea-alkane system in the Q.l geometry 
calculatedfrom molecular dynamics simulation. Q = 1.721- 1• (-): without instrumental energy 
resolution effect; (-. -): with instrumental energy resolution effect. From Ref 40. 
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Fig. 21. Distribution of the rotational angle, ifJ, for two alkane chains of simulation MU5. 
From Ref 40. 

Figure 23 presents E1SF curves calculated using five different methods: 
(i) Ao,exp(Q) is the E1SF calculated by fitting Eq. 23 to the experimental S(Q, (0) 

using an analytical model in which the molecules perform restricted rotational 
diffusion [40]. The model was also fitted to the simulation-derived intermediate 
scattering function, 1(Q, t), which was damped by the experimental instrumental 
energy resolution function. An E1SF identical to experiment was obtained, and the 
simulation and experiment are thus in accord. 

0.4 

0.0 a n16 

ell (rad) 

Fig. 22. (-): potential of mean force from symmetrized rotational distribution of alkane chains in 
the urea-alkane inclusion compound calculated from molecular dynamics simulation at 180 K; 
(- . -): corresponding potential energy curve. From Ref 40. 
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(ii) Ao,tot(Q) is the EISF derived from simulation MU5 as a sum over the atoms 
using Eq. 25 and is calculated from the full molecular dynamics trajectories including 
all the degrees of freedom of the alkane molecules. 

(iii) <Ao,CI)(Q) is calculated from simulation MU5 as follows. Assuming no intra
molecular motion, i.e. Ui, y = 0 and Iy(Q, t) = 1 in Eq. 13, and that each molecule 
i performs only rotations in the plane perpendicular to the chain axis (the XY plane), 
the EISF can be expressed as 

AO,i(Q) = IIpi(<I»e- iQ 'i'(CI)l d<l>12 

where r(<I» is the vector 

{ 
r 0 cos(<I» 

ro sin(<I» 

(66) 

(67) 

and ro is the radius of gyration. Analysis of the alkane-urea simulations showed that 
the quasielastic scattering does indeed arise from the alkane molecules acting as rigid 
bodies. Averaging over all the orientations of Q in the XY plane, we obtain 

Ao)Q) = 2~ I d91I Pi(<I»e- iQ(9l i'(CI)l d<l>12 

where Q(9) is the vector 

{
QCOS(9) 

Q sin(9) 

(68) 

(69) 
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The mean value, <Ao,IP(Q}), is calculated from simulation MU5 as the average of 
the AO,i(Q} of the 20 individual chains in the simulation, i.e. 

1 20 

<Ao,IP(Q}) = 20 i~l AO,i(Q} (70) 

(iv) Ao,(lPiQ} is the EISF calculated from simulation MU5 using the distribution 
<p(<I>}), averaged over the molecules and the sixfold symmetry: 

1 
<p(<I>}) = N ~Pi(<I>} 

1 

(71) 

i.e., by analogy with Eq. 68, 

Ao,(IP)(Q} = 2~ 1"d9 11" <p(<I>})e- iQ(O).r(IP)d<l>12 (72) 

This approach resembles that employed in a recent analysis of the dynamics of a pure 
alkane rotator phase [42]. 

(v) Ao, unif(Q} is calculated using Eq. 68 and a flat distribution for Pi(<I>}, i.e. 
Pi(<I>} = 1/21[. 

Figure 23 contains essentially two forms of curve, one in which the EISF has 
converged and is zero at Q = 1.75 A-I and Q = 3.95 A-I, and the other in which it 
has not. Averaging over Pi(<I>} (as in Ao,(IP)(Q)} rather than over AO,i(Q} (as in 
<Ao,41(Q})} has a dramatic effect on the calculated EISF and leads to an effectively 
converged structure factor. Lengthening further the simulation would be expected to 
lead to small changes in <p(<I>}). The accompanying changes in the EISF would be 
expected to be negligible. That the EISF is relatively insensitive to details of <p(<I>}) is 
illustrated by the fact that the EISF calculated using a flat distribution for p(<I» and 
that using <p(<I>)) are hardly distinguishable in Fig. 23. Indeed, it turns out that 
<p(<I>)) possesses a symmetry that gives rise to an EISF identical to that obtained with 
a flat distribution. Other forms of <p(<I>)) lead to markedly different EISFs [7]. 

According to the ergodic principle, the <I> distribution averaged over the 20 alkane 
chains of simulation MU5 is equivalent to that of a single chain sampled over a length 
20 times longer than the simulation MU5, i.e. 6.56 ns. This gives an estimate of the 
upper limit of the time required to reach the long-time limit of the time-correlation 
function, IiQ, t}. 

Three of the curves shown in Fig. 23 are not close to convergence: <Ao,IP(Q», 
Ao,exp(Q} and Ao,tot(Q). Although these curves are broadly similar, the differences 
between them are significant and merit consideration. <Ao,IP(Q» and Ao,tot(Q} were 
both derived from simulation MU5 by averaging over the EISFs from the individual 
molecules. However, <Ao,IP(Q» was derived using a rigid-molecule fit to the alkane 
atom trajectories, whereas Ao,tot(Q} includes all atomic motions in the XY plane. 
Therefore, internal and off-axis motions of the alkane chains have been eliminated 
from <Ao,IP(Q» but are present in Ao,tot(Q). As a result, Ao,tot(Q} is lower than 
<Ao,IP(Q». With a sufficiently long simulation, the individual Pi(<I» would be expected 
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to reach (p(CI>)) such that (Ao.«I>(Q) would reach AO.<<<I»(Q). Ao.tot(Q) would reach 
a form similar to AO.<<<I»(Q), but not exactly the same due to the additional motions 
contributing to Ao.tot(Q). 

In summary, therefore, the work on alkanes in urea provides an example where, 
due to the instrumental energy resolution, the experimentally measured quantity has 
not converged to its long-time limit. In contrast, with appropriate averaging tech
niques, molecular simulation can be used to derive the long-time behaviour. This 
happy situation is the reverse of that most commonly encountered in simulation 
studies. 

4. Protein dynamics 

Picosecond-timescale and A-Iengthscale dynamics in native proteins are of particu
lar interest as they are accessible to molecular dynamics simulation. The ps timescale 
is also interesting physically as all the different types of motion discussed in the 
previous section on small molecules occur in proteins on this timescale at physiolog
ical temperatures, i.e. underdamped vibrations, overdamped vibrations, continuous 
and jump diffusion. Thus, ps-timescale protein dynamics possesses considerable 
complexity and the combination of experiment and simulation is necessary to unravel 
the components of the atomic motions present. 

The combination of simulation and neutron scattering in the analysis of internal 
motions in globular proteins was reviewed in 1991 [43]. Here we briefly recall these 
results and complement them with some newer findings involving the comparison of 
simulation with neutron and X-ray diffuse scattering. 

4.1. Vibrations 

Vibrations in proteins can be conveniently examined using normal-mode analysis 
of isolated molecules. The results of such analyses indicate the presence of a variety of 
vibrations, with frequencies upward of a few cm -1. In most cases the very lowest 
frequency modes dominate the calculated mean-square displacements. For example, 
in a normal-mode analysis of lysozyme, 80% of the mass-weighted mean-square 
fluctuation was found to originate from a small number of modes with frequencies 
< 30 cm -1 [44]. The very low frequency modes are large-amplitude, delocalized, 
correlated vibrations. 

4.1.1. Incoherent inelastic neutron scattering - vibrational amplitudes and damping 
properties 

Incoherent inelastic neutron scattering, combined with normal-mode analysis, is 
well suited to examine low-frequency vibrations in proteins. This is primarily due to 
the fact that large-amplitude displacements scatter neutrons strongly. Experiments on 
bovine pancreatic neutron inhibitor (BPTI), combined with normal-mode analysis of 
the isolated protein, demonstrated that low-frequency underdamped vibrations do 
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exist in the protein [45J. A comparison of absolute scattering cross-sections 
indicated that the average vibrational amplitudes were in quantitative agreement. An 
improved agreement with experiment was obtained by introducing a friction coeffi
cient for each mode in a damped Langevin oscillator description [46J. The distribution 
of friction coefficients p(ro), obtained by fitting to the experiment, follows a Gaussian 
form, i.e. 

p(ro) = A exp [ 2:2 ] (73) 

with A = 30 em -1 and (J2 = 225 em - 2. Therefore, modes with frequencies < 16 em- 1 

are overdamped, that is, they do not oscillate. Thus, the very lowest frequency 
modes predicted by harmonic models, for example, the lysozyme hinge bending 
mode, do not vibrate at the calculated frequencies. They are either absent or over
damped. If overdamped, however, they can still be a source of correlated motions 
in proteins. 

Femtosecond spectroscopic experiments have provided evidence implying low
frequency vibrations in primary electronic transitions in functional photosynthetic 
reaction centres [47J. The lowest frequency vibration identified had a frequency of 
15 cm -1 and was underdamped, close to being critically damped. Although the form 
of this vibration and how it influences the electronic transitions are not yet clear, it is 
interesting to note that 15 cm -1 corresponds to frequencies of the lowest frequency, 
underdamped collective vibrations detected in small proteins using neutrons. More
over, the damping characteristics of the vibration inferred from the femtosecond 
spectroscopic studies are similar to what would be expected from the damping scheme 
introduced phenomenologically in Eq. 73, and also with the damping properties of 
a 15 cm -1 rigid-helix vibration characterized in a molecular dynamics simulation of 
myoglobin [48]. 

Molecular dynamics simulation has shown that the very low frequency vibrations 
of myoglobin can be described in terms of rigid-helix motions [48]. However, 
rigid-helix motions contribute only about 30% of the mean-square displacements of 
helix atoms in this protein. A simplified description of the large-amplitude internal 
helix motions in polyalanine and myoglobin, using the P-curve algorithm [49J, has 
recently been given [50]. 

Experimental incoherent neutron scattering data have been collected on tRNA and 
a comparison has been made with normal-mode calculations [51]. At low temper
atures, a broad peak is seen in the dynamic structure factor due to the low-frequency 
modes. This peak is centred at '" 40 cm - 1, somewhat higher in frequency than that 
observed so far in small, globular proteins. The vibrational frequency distribution 
calculated from the normal-mode analysis rises to a broad maximum at '" 50 cm -1, in 
general accord with experiment. However, the lowest frequency vibrations in the 
harmonic model ( < 40 cm -1) were not present in the experimental sample. This may 
be due to the strong equilibrium solvation effects expected on the tRNA atoms and 
not included in the harmonic analysis. 
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4.1.2. Vibrational density of states 

The low-frequency portion of the vibrational density of states, G(ro), for BPTI has 
been determined experimentally using Eq. 29. Subsequently, attempts were made to 
reproduce this frequency distribution using molecular simulation. In an initial study, 
normal-mode analyses were performed with different electrostatic truncation schemes 
[46]. The resulting G(ro)'s are compared with experiment in Fig. 24. G(ro) obtained 
using electrostatic truncation smoothed by a cubic switching function was found to be 
in better agreement with experiment than that obtained using no electrostatic trun
cation. One possible explanation for this is that the effect of the switch function 
mimics the effect of the environment in the experimental powder sample. By the 
analysis of two 100 ps simulations of BPTI, one in water and one in vacuum, a model 
offrictional damping was developed that describes the effect of water on G(ro) [52]. Of 
the two simulations, G(ro) calculated for the protein in water resembled more closely 
the form of the experimental function. It was shown that treating each vacuum 
principal mode as an independent damped Langevin oscillator, with the natural 
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Fig. 24. Density of states, G(w), for BPT! from experiment (circles) and from four normal
mode analyses. The analysis corresponding to curve A was performed in the extended atom 
approximation with no electrostatic truncation. Curve B used the extended atom approximation and 
shift electrostatic truncation at 7.5l. Curve C used the extended atom method and switch 
electrostatic truncation (from 6.5 to 7.5 l). Curve D included all the atoms explicitly and used 
switch truncation. From Ref 46. 
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frequency of each mode given by its vacuum effective frequency, and assigning all 
modes a friction coefficient of 47 cm -1, gives a G(ro) closely similar to that obtained in 
the solution simulation and in the experiment. This damping scheme 'is different 
from that proposed in Eq. 73, but the frequency of critical damping (23.5 cm -1) is 
similar. 

The existence of temperature echoes in a molecular dynamics simulation of BPTI 
has been demonstrated [53]. Temperature echo involves the application of a sequence 
of two cooling pulses: the first creates a coherent vibrational state and the second 
selects the mode(s) that will echo. The frequency dependence of the depth of the echo 
was shown to have the same form as the experimental G(ro) for BPTI. More recent 
work has demonstrated that, although the echo depth is related to the density of 
states, vibrational dephasing due to anharmonicity of the protein also plays an 
important role [54]. G(ro) has also been calculated from normal-mode analyses in 
which the effect of the environment on the protein vibrations has been approximated 
[55]. The experimental G(ro) for BPTI has been employed in calculations of the 
low-temperature heat capacity of the protein [56]. 

4.1.3. Far-infrared spectroscopy 

Using the National Synchrotron Light Source at Brookhaven, far-infrared absorp
tion in the frequency range 15-45 cm - 1 was detected in samples of lysozyme at 
different hydrations [18]. The form of the absorption profile was found to be 
temperature independent but varied significantly with the hydration of the protein. At 
higher hydrations the profile closely resembles that of water in the region 20-45 cm -1. 

At low hydration marked differences were seen, with, in particular, the appearance of 
an absorption maximum at 19 cm -1. A parallel theoretical investigation has been 
undertaken [57]. Preliminary results suggest that far-infrared absorption from 
lysozyme contains a significant component from induced dipole absorption. 

4.2. Diffusive motion 

4.2.1. Incoherent quasielastic neutron scattering 

Above ",200 K there is a nonvibrational component to protein atom dynamics that 
has been detected using several experimental techniques including neutron scattering 
[43,58]. The dynamical transition is also present in molecular dynamics simulations 
[59]. There is evidence that the nonvibrational dynamics is of particular importance 
for the functioning of some proteins, e.g. in ligand binding [60] or proton transfer 
reactions [61]. Inelastic neutron scattering measurements on bacteriorhodopsin have 
shown that the ability of the protein to functionally relax and complete its photocycle 
is strongly correlated with the onset of anharmonic dynamics in the membrane [61]. 
Neutron experiment indicates that a dynamical transition also occurs in tRNA [51]. 
The transition starts at a slightly lower temperature, '" 180 K, and is somewhat 
sharper than in proteins. This may be related to the relative simplicity of the tRNA 
structure. 
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Various models for the nonvibrational atomic motions in proteins at 300 K have 
been proposed. Most of them are based on the idea of transitions between conforma
tional substates and assume individual or collective stochastic jump dynamics of the 
atoms between minima on the potential energy surface of the folded protein 
[58,62,63]. However, the observed neutron scattering profiles could originate instead 
from continuous diffusive motion and/or from overdamped harmonic motion. To 
determine the nature of the nonvibrational component requires an ab initio test of 
a given model hypothesis. This test can be made using molecular dynamics simula
tions, by determining to what extent the hypothetical atomic motion contributes to 
the simulated atomic trajectories. The contribution to the simulation-derived inten
sity from the simplified model dynamics can then be calculated and compared with 
experiment. 

The dynamical transition of proteins is often discussed within the framework of the 
liquid-glass transition [64]. In this context one may ask whether a granularity of the 
high-temperature 'liquid' phase exists, i.e. whether it is possible to define subunits of 
proteins that can be treated analogously to molecules in a liquid. In a recent analysis 
the individual side chains attached to the protein backbone were considered as rigid 
subunits and their contribution to the neutron scattering profiles of myoglobin at 
physiological temperatures was calculated [65,66]. 

To determine the contribution of the 'side-chain liquid' to the dynamics, rigid 
reference structures of each side chain were fitted to the corresponding structures in 
each time frame of a molecular dynamics trajectory of myogobin. In this way 
a trajectory of the fitted atomic positions was built up and could be analysed in the 
same manner as the full trajectory, enabling a quantitative calculation of the rigid 
side-chain contribution to the neutron scattering. For the fitting procedure the ex 
atoms on the protein backbone were included in the side-chain reference structures 
and constrained to coincide with the ex positions in each time frame of the full 
molecular dynamics trajectory. In other words, the fitted rigid side chains were 
pinioned to the CO! atoms. 

Figure 25 shows the quasielastic neutron spectra obtained, from experiment 
and simulation. Here we are primarily concerned with the nonvibrational 
contribution that dominates the scattering for frequencies < 1 meV. The experi
mental and simulation data match well in the accessible frequency range (10- 2 

to 1 meV). Clearly the rigid side-chain motions account completely for the full 
dynamics. 

That the diffusive motion leading to the quasi elastic scattering arises from rigid 
side-chain motions may seem surprising as most side chains contain rotatable dihed
ral degrees of freedom. Indeed, torsional jump models have been used to describe the 
quasielastic scattering from proteins. However, it is clear from Fig. 25 that conforma
tional transitions of the side chains, although present in the simulation, do not 
contribute significantly to the quasielastic scattering. 

The quasielastic scattering and average mean-square displacement contain a 
dominant component from rigid-body diffusive motions of the side chains. The 
displacements are caused by collisions between atoms in different side chains [48]. 
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These 'kicks' are transmitted through the side chains via stiff covalent forces. The 
result is rigid-body displacement of all the atoms in a side chain. Side-chain collisions 
are very frequent since the atomic packing density in a protein is comparable to that 
of a solid. After some time the form of a side chain may change due to a torsional 
transition, giving rise to an error in the fitted atomic positions. However, the continu
ous diffusive motion of the side chains is still well described since the requirement for 
this is that consecutive side-chain conformations be similar. Although the side chains 
are flexible, they behave as rigid bodies with respect to the diffusive, liquid-like motion 
detected in the neutron scattering experiments. 

The EISF(Q) was calculated from the simulation using Eq. 25. The experimental 
and simulated EISFs are plotted in Fig. 26 and match well. Comparing the rigid 
side-chain contribution with the result from the full trajectory shows, again, almost 
perfect agreement. This means that the average volume accessible to the hydrogen 
atoms is well sampled by the rigid side-chain motions. This conclusion is supported by 
calculations of the time-dependent mean-square displacements, shown in Fig. 27. In 
contrast, the rigid-helix displacements make a minor contribution to the helix-atom 
mean-square displacements. 

UUASIELASTIC SCATTERING 
101 +------------

Experiment 
300 K Simulation 
300 K Simulation 
Rigid side chains 

10 -3 +--~~~~~_'__'_..<.._L..WCU_._____'___.....L...I._'_'_'.L.LL_-----'-___'__L_.MoWO~ 

10-3 10-1 10° 
Frequency (meV) 

Fig. 25. Log/log plot of s(q. w) versus w for myoglobin at 300 K obtained from experi
ment, Ref 58 (triangles), the full molecular dynamics simulation trajectory, including internal side
chain motions (solid lines), and the fitted rigid side-chain trajectory (dashed lines). To reduce 
statistical errors, the experimental data were obtained by averaging over roughly Q-independent 
scattering profiles in a q-range of 2l- 1 [58] The simulation data represent S((2, w) for 
Q = ll-l. From Ref 66. 
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Fig. 26. Elastic incoherent structure factor for myoglobin at 300 K from the experiment, full 
simulation and rigid side-chain model, represented as in Fig. 25. From Ref 66. 

4.2.2. X-Ray diffuse scattering and correlated motions in lysozyme 

The very diffuse scattering found in crystals of lysozyme and insulin has also been 
described in terms of 'liquid-like' motions [67,68], although in a different fashion to 
that described above; the diffuse scattering was interpreted using a phenomenological 
model of random atomic displacements correlated over distances < 6.0 A. This 
description excludes contributions to the scattering arising from correlations 
over longer distances. Ligand binding and cooperativity often· require conform
ational change involving correlated displacements of atoms' [69]. A simple model 
for the long-distance transmission of information across a protein involves the 
activation and amplification of correlated motions that are present in the un
perturbed protein. Although long-range correlated fluctuations are required for 
functional, dynamic information transfer, it is not clear to what extent they 
contribute to equilibrium thermal fluctuations in proteins. It is therefore important 
to know whether equilibrium motions in proteins can indeed be correlated 
over long distances or whether anharmonic and damping effects destroy such 
correlations. 

To further examine the dynamical origins of X-ray diffuse scattering by proteins, 
experimental scattering was measured from orthorhombic lysozyme crystals and 
compared with patterns calculated using molecular simulation [70]. The low intensity 
of the very diffuse scattering necessitated the use of synchrotron radiation with image 
plate detection. An experimental scattering pattern is shown in Fig. 28 together with 
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Fig. 27. Time development of the average mean-square displacement (normalized per atom), 
(Llx 2 Xt), from a molecular dynamics simulation of myoglobin at 300 K and from a fitted rigid 
side-chain trajectory (sc = side chain). From Ref 48. Inset: mean-square displacements from the 
full trajectory (curve a) and rigid-helix main-chain atom trajectories (curves b and c). Curve b: 
rigid-body fit performed using only the N, Ca and C atoms; curve c: rigid-body fit performed using 
all the helix atoms (main chain and side chain). 

patterns calculated from a normal-mode analysis and from a molecular dynamics 
simulation of the isolated lysozyme molecule. Only the 15 very lowest frequency 
modes from the harmonic analysis were required to produce a converged pattern - the 
addition of further modes did not modify significantly the calculated pattern. 
This is partly because the lowest frequency modes dominate the mean-square dis
placements in the harmonic approximation and partly because they are cor
related over many atoms, the diffuse scattering intensity being proportional 
to the number of atoms involved. The average position of the diffuse ring is re
produced by both the normal modes and the molecular dynamics. However, 
a closer examination reveals that the fine details are better reproduced by the 
normal modes. 

That the scattering pattern obtained from a harmonic description of the lysozyme 
dynamics is in reasonable accord with the observed data is consistent with the idea 
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A 

B c 
Fig. 28. Diffuse X-ray scattering patterns from orthorhombic hen egg-white lysozyme: (A) experi
mental; (B) from a normal-mode analysis of the lysozyme molecule; (C) from a molecular dynam
ics simulation. See Ref 70 for details. 

that intramolecular displacements correlated over long distances can exist, in contrast 
to the conclusions of the previous analyses oflysozyme and insulin [67,68]. However, 
as discussed in the quasielastic neutron scattering analysis, a large fraction of the 
atomic displacements at 300 K do originate from 'liquid-like' motions, meaning 
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nonvibrational, diffusive dynamics [66]. In myoglobin, the major contribution to the 
atomic mean-square displacements can be described as diffusive motions of the side 
chains acting as rigid bodies, like molecules in a liquid [48]. 

That nonvibrational, diffusive motions exist in proteins does not contradict the 
above-mentioned simulation/diffuse scattering results for lysozyme. The correlated 
motions visible in the X-ray pattern can be diffusive or vibrational. Frictional 
damping of the modes, as would be incorporated in a damped Langevin oscillator 
description, does not affect their amplitudes and directions. Therefore, frictional 
damping would not affect the calculated diffuse scattering, as the diffuse scattering 
does not depend on the time evolution of the atomic displacements, that is, whether 
they vibrate or not. Thus, it is conceivable that the modes contributing to the diffuse 
scattering pattern are a combination of underdamped and overdamped vibrations, the 
latter containing a diffusive element. 

The question arises as to why the diffuse scattering function calculated using 
a harmonic approximation to the potential function is in closer accord than that 
calculated using the full potential function with molecular dynamics. One reason for 
this is that the molecular dynamics permits the average structure to drift from the 
average crystallographic structure more than the harmonic analysis. Incomplete 
representation of the environment of the protein will exacerbate this problem. 
Furthermore, the diffuse scattering calculated from molecular dynamics simu
lations of proteins is found to converge very slowly, with significant variations over 
timescales of hundreds of picoseconds [71,72]. The calculation of converged diffuse 
scattering from molecular dynamics simulation represents a notable challenge for 
the future. 

5. Conclusions 

The combination of simulation with scattering and absorption experiments allows 
a wide range of dynamical phenomena to be characterized in condensed-phase 
molecular systems. The work described in the present article testifies to the versatility 
of empirical potential energy functions of the molecular mechanics type in describing 
motions on a range of timescales from 10- 15 to 10- 10 s, i.e. from fs, localized 
vibrations to '" 100 ps activated processes. 

As simulation with a molecular mechanics potential function provides, in principle, 
a complete description of the structure and dynamics of a crystal, many associated 
experimental properties can be computed. The vibrations in crystals that can be 
explored range from lattice phonons to localized intramolecular vibrations and the 
effect of the crystal environment on the intramolecular band centres and their 
splitting. Rather subtle anharmonic effects on soft vibrations can also be accurately 
represented, as evidenced by the temperature dependence of the hydrogen-bonded 
NH out-of-plane bending mode of the peptide group acetanilide, and its methyl 
torsion. The experimental determination and theoretical description of lattice vibra
tions in molecular crystals have hitherto mainly been confined to systems containing 
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only a few atoms per unit cell. The work on L-alanine described here demonstrates 
how coherent inelastic neutron scattering experiments can be combined with har
monic analyses to characterize the low-frequency, collective vibrations of a crystal 
containing 52 atoms per unit cell. Coherent inelastic neutron scattering experiments 
on the dynamics of crystalline adenine have also been reported [73]. In a similar vein, 
overdamped and under-damped acoustic phonons have been observed in wet-spun 
DNA fibres [74]. The extension to biological macromolecular crystals awaits. 

The analysis of water leads to a picture of the charge fluctuations associated 
with far-infrared absorption in which long-range interactions and polarization 
play important roles. The method described for calculating polarization effects 
on infrared spectra can, in principle, be extended to the calculation of the dynamical 
trajectories themselves. In this way a unified charge model that reproduces 
both the dynamics and the far-infrared absorption would be obtained. The atomic 
polarizabilities derived using the method described are transferable to a range 
of molecular systems [75]. This opens up the possibility of applying the method 
to many systems, including large, flexible macromolecules for which a mole
cular polarizability matrix method would not be useful. Calculations of the far
infrared spectra of the hydrated protein, lysozyme, using the present method, 
are underway in our laboratory and may afford a means of interpreting 
hydration-dependent experimental spectra obtained recently using synchrotron 
radiation [18]. 

Neutrons are not easy to get hold of. To produce them in controlled conditions 
requires a nuclear reactor or a spallation source, the cost of which does not fall into 
the budget of an average structural biology laboratory! Moreover, even from these 
sources neutron fluxes are very low, typically", 107 neutrons/(cm2 s) compared, for 
instance, to X-ray fluxes at a synchrotron ('" 1012 photons/(cm2 s)). Thus, neutron 
experiments suffer from a counting statistical problem that has limited the range of 
applications to those with large samples ( '" 10- 1 g) and long counting times ('" days). 
However, there is some hope that a future European neutron source will be built with 
'" 50 times the flux of the world's most powerful present facility [76]. This would open 
up a new range of inelastic experiments on biological macromolecules involving 
specific H/D labelling, and spin echo measurements of coherent scattering that 
would provide information on ns-timescale correlations. However, by the time such 
a source is built (may be around 15 years from now), concurrent progress in computer 
power and simulation methodology is likely to have pushed the timescale of events 
accessible to atomic-detail computer simulation well beyond the ns regime. Neverthe
less, the general strategy outlined here for combining simulation with experiment will 
still be applicable and simulations will be required for the reliable interpretation of 
experiments probing the long-time dynamics of complex biological systems. The 
detailed information on the forces present in interatomic potential energy functions 
will thus be incorporated into the analysis of the experimental data, and an unequivo
cal description of the behaviour will be obtained by decomposition of simulations. 
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Introduction 

The theoretical prediction of biomolecular structure from first principles and 
without the crutches of experimental restraints remains a dream. Most theoreticians 
agree that the answer is the global minimum of the free energy function [1,2], but 
disagree about strategies to find the minimum. Several schools of thought have 
formed over the years: dynamicists [3-11], minimalists [12-32], and synthesists 
[2,33-44]. Dynamicists believe that sufficiently long simulations of a quasi-continuous 
trajectory of molecular dynamics of atomic models in vacuo or in water will solve the 
problem using new generations of computers, code parallelization [45,46], and 
optimized simulation techniques. Minimalists, unwilling to play power games and too 
impatient to wait until new generations of processors cover the next mile of a hundred
mile road, simplify the system by using a reduced atomic representation or a lattice, 
inventing a potential and then enjoying the luxury of always finding the global 
minimum of their energies as well as most of the other possible states for a chain of up 
to a hundred simplified residues [27,47]. The third school shares the impatience of 
minimalists, yet resists the temptation to use simple models since it appears that 
accuracy is a pivotal issue. Synthesists focus on the development of algorithms to 
replace molecular dynamics as a generator of conformational changes [42,43,48,35] 
and the design of methods of energy calculation which combine accuracy and speed. 

Let us list some of the ideas and assumptions of the synthesists, including the 
author, which the following review is based upon. 

1. Oscillations of bond lengths and bond angles are not essential for protein 
structure prediction and some of these degrees of freedom are not even excited at 
room temperature. Therefore, using torsion angle space instead of Cartesian coordi
nate space is highly preferable since it reduces the dimensionality of the problem by 
a factor of 7, eliminates fast oscillations, and smoothens the energy landscape. 

2. A continuous molecular dynamics trajectory is not really necessary for structure 
prediction. The optimal structure can be found by a global optimization algorithm 
making much larger steps. 

3. Explicit consideration of water molecules can also be sacrificed in simulations of 
folding for the following reasons: (i) too many additional degrees of freedom; 
(ii) a really large box is necessary because of the long-range natJ,lre of the electrostatic 
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interactions; and (iii) the relaxation time of water molecules after a large conforma
tional change is prohibitively long. Concurrently, the solvation effect can be evaluated 
by continuous approximations more efficiently and, potentially, more accurately. 

4. The correct conformation and an enormous number of alternative conforma
tions of a polypeptide chain may have very close energies. A high accuracy of energy 
calculations is absolutely essential to recognize the correct answer. 

This review justifies and describes an emerging general method of biased probabil
ity global optimization of a detailed energy function in the internal coordinate space 
of arbitrarily constrained molecular models, and demonstrates that the same method 
can be applied uniformly to a wide variety of modeling problems such as peptide 
folding, homology modeling, protein design, macromolecular docking, and domain 
rearrangements. 

A better model for structure prediction 

If polypeptide models can be slightly simplified by constraining bond lengths and 
bond angles to their ideal values, without a critical loss of accuracy, then this strategy 
is strongly preferable. Not only because in an unconstrained Cartesian representation 
the number of degrees of freedom is 7 times larger, or because soft and hard modes are 
mixed in a Cartesian coordinate, but also because the local energy surface becomes 
smoother and minimization with respect to the torsion angles has a much larger 
radius of convergence [40]. 

The radius of convergence can be evaluated by generating a series of ran
domly distorted conformations and testing the ability of a minimization procedure to 
restore the initial energy-minimized conformation. Such an experiment was per
formed with a small globular protein, 29-residue trypsin inhibitor, determined by 
NMR spectroscopy [49]. To compare the radii of convergence in torsion and 
Cartesian spaces, we performed two series of energy minimizations starting from 600 
randomly distorted conformations with average torsion angle deviations up to 43° 
and Cartesian rms deviations up to 5 A. The initial undistorted conformation was 
obtained separately for each of the. two series, by regularization and minimization of 
the ECEPP/2 energy [34] with respect to torsion angles, and by molecular dynamics 
and minimization of the CHARMM energy [4] in Cartesian coordinate space, 
respectively. 

The results revealed a qualitative difference between the two representations and 
the corresponding energy landscapes. While the torsion minimization restored with 
high accuracy most of the conformations distorted up to 2 A of coordinate rms 
deviation or 12° of torsion rms deviation, and some conformations even at amplitudes 
of 33°, minimization with soft bonds and angles in Cartesian space could not fully 
restore the optimal conformation even after relatively small distortions; conforma
tional changes resulting from minimization were small, and the starting conformation 
was never reached even with 0.25 A accuracy if deviation exceeded 5° or about 1 A 
(Fig. 1). Usage of molecular dynamics in combination with local minimization did 
not change the fundamental picture. Based on this test, we may conclude that 
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Fig. 1. Relative number of randomly distorted conformations which restored the initial low-energy 
conformation with 0.25 A accuracy after energy minimization in Cartesian space (solid) and torsion 
space (open) [40]. 

unconstrained models in Cartesian space appear to be 'glassy', i.e. they always find 
a local minimum close to the start. 

Conversely, protein models with fixed covalent geometry are much more 'elastic', i.e. 
they tend to travel far to find the minimum. An important consequence of the observed 
difference between radii of convergence is that the number of energy minima in torsion 
space is an exponentially small fraction of the number of minima in Cartesian space. 
The histogram in Fig. 1 suggests that, for the considered example, the average well size 
for each dimension is about 5 times smaller. This number taken to a power of the 
number of degrees of freedom makes an astronomically large number, suggesting that 
torsion space is a better choice for problems of global minimization and refinement. 

It is tempting to declare conclusively that only fixed covalent geometry should be 
used for large-scale protein structure predictions, but we still do not know if the 
accuracy of the idealized geometry approximation is sufficient (see the discussion of 
the accuracy of energy calculations below). Deformations of bond angles even by a few 
degrees may be essential for tight, buried, or proline-containing turns. Nonetheless, 
there are several reasons, although not decisive, to believe that the accuracy of the 
torsion model may still be sufficient. First, in the ECEPP force field [33,34,36] special 
measures are taken to reduce barriers of rotation due to the fixed geometry (the 
repulsion between two atoms connected via three bonds is reduced by halt). Second, 
a distortion of the bond angle by several degrees may usually be compensated by 
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small changes in the surrounding torsion angles, although particularly difficult geo
metries do exist. Third, most of the protein structures determined by X-ray crystallo
graphy at high resolution can be represented by relaxed standard covalent geometry 
models with 0.2-0.4 A rms deviation from experimental coordinates [50]. 

Internal coordinate mechanics (ICM) 

If we do want to impose covalent geometry constraints, at least sometimes, or even 
form rigid bodies with frozen internal structure, it is important to choose a representa
tion of molecular geometry which makes these operations simple. It is certainly not 
easy in Cartesian representation, where individual atoms are not geometrically 
connected (i.e. change of one coordinate of an atom does not affect positions of other 
atoms). On the other hand, pure torsion space is incomplete and cannot become 
a universal alternative to the Cartesian representation. Fortunately, a few extensions 
make the torsion representation of molecular geometry much more versatile and 
applicable to a broader range of modeling tasks [51,52,40]. 

The ICM tree was an attempt to design a more general representation of several 
arbitrarily constrained molecules potentially containing flexible bond angles and 
bond lengths. The topological tree of an ICM model of an arbitrarily constrained 
multimolecular system (Fig. 2) grows from the origin, contains additional nodes, 
so-called virtual atoms and virtual bonds, and covers all the molecules in the system. 
The choice of internal coordinates of four kinds, viz. bond length (b), bond angle ((0), 

phase angle (<I» for a secondary branch of the tree, and torsion angle (<p) for the main 
branch, rather than that of three kinds, viz. b, (0, and an independent torsion for each 
branch of the tree (<p'), is based on the idea of separating hard (b), intermediate ((0, <1», 
and soft (<p) degrees of freedom between different independent variables. 

A wide variety of models can be constructed by an appropriate selection of 
constrained internal coordinates. For example, the idealized geometry model is 
a particular case with the following set of constraints, hi = const, (Oi = const, 
<l>i = const, <pring = const, while in a model for rigid-body docking all but six variable 
parameters specifying the position of the second molecule are fixed (see <1>11, (011, bll , 

<P12, (012, <P13 in Fig. 2). Appropriate fixation schemes can be proposed for flexible 
docking, loop modeling, side-chain placement, and other modeling tasks. 

Energy and penalty functions dependent upon interatomic distances and their 
analytical derivatives with respect to the four types of variables of the ICM tree can be 
efficiently calculated [51,52,40]. Moreover, general equations of internal coordinate 
molecular dynamics can also be derived and solved numerically [51-53,11]. Internal 
coordinate molecular dynamics allows the use of large time steps of integration [9,11] 
and higher simulation temperatures without breaking the covalent connectivity. 
Significantly, computational effort is reduced for highly constrained ICM models, i.e. 
additional constraints in the ICM representation lead to fewer calculations, while 
additional constraints in Cartesian molecular dynamics under the SHAKE algorithm 
[54,3] result in more calculations. 
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Fig. 2. The ICM topological tree is a regular connected graph growingfrom the origin. It contains 
no cycles and passes through real and virtual atoms and real and virtual bonds. Both molecular 
position and intramolecular geometry are defined uniformly by a set of free ('unfixed') bond lengths, 
bond angles, torsion angles, and phase angles. Any subset of these parameters can be fixed, thus 
leading to rigid bodies. 

Accuracy of energy evaluation is crucial 

Proteins do not live up to our dreams about them because most protein topologies 
are ill-behaved, i.e. the free energy of a certain conformation is not a monotonous 
function of structural resemblance to the native structure. Our dreams and reality are 
summarized by Table 1. 

One can propose two conciliatory remarks, but unfortunately they do not offer 
a solution to the problem. First, unrelated mess may be enriched with the correct 
elements by, say, a factor of 100 [55], but 1/100 of infinity is still infinity. Second, there 
are truly well-behaved, 'dream' topologies exhibiting unusual simplicity of sequence 
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Table 1 Dreams and reality 
Model Description 

Ml Rough simple model 
(black and white balls) 

M2 An improved model: 
detailed backbone, simple 
side chains 

M3 Further improvement: 
side chains almost complete 

M4 All-atom force field used to 
refine a 3 A model 

M5,M6 ... Solvation, electrostatics, 
entropy, polarization, ions 

Dream achievement 

5 A model, principal 
topology . 
4 A model, correct 
topology 

3 A model, almost perfect 

1 A model, 
experimental accuracy 

? 

Reality 

Unrelated mess 1 

Unrelated mess 2 

Unrelated mess 3 

3 A model becomes 
a 4 A model 

? 

and folding pattern (like ROP protein [25,56,57]), but they are the exception rather 
than the rule. For example, if we have two helices with a strong sequence signal (say, 
every seventh residue is leucine, many alanines, etc.) and the two helices are connected 
by a short linker, it is definitely a well-behaved topology, and probably even the M1 
model (see Table 1) with white and black balls for hydrophobic and hydrophilic 
residues will be sufficient. However, if the linker is longer or these two helices are 
disconnected, the situation suddenly becomes much worse since we have to decide if 
the two helices are parallel, antiparallel, staggered, crossed, etc., and an approxima
tion of a higher level than M5 may become necessary. 

A simple explanation of the described behavior which some of us discovered with 
disappointment and anger is that it is just impossible to get a correct topology as the 
best energy structure, or one of several low-energy structures, until a certain accuracy 
is reached. Paraphrasing a notorious Californian criminal law, 'three strikes and you 
are out', we might say: 'one kilocalorie per residue error and you are out of the 
business of structure prediction'. Although you may still be in the protein folding 
business, finding resemblance between your minimal energy folds and the real struc
ture in most cases will require a good deal of imagination and ingenious presentation 
skills. Why is this? Is it always true and what is the way out? 

Let us first admit that there is an astronomically large number of 'protein-like' 
arrangements available to a polypeptide chain even after the compactness require
ment and the buried charge prohibition are imposed. This number is smaller in 
a discrete conformational space, e.g. on a lattice, and larger in a continuous conforma
tional space even if only local minima are considered. Now, the question is how large 
the gap is (AE) between energies of these 'unrelated protein-like folds' and the energy 
of the correct fold, and, consequently, what is the required accuracy of the energy 
calculations. 
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The necessary model and energy accuracy should depend on the energy gap AE 
separating the correct structure from what we called 'unrelated mess' [38,58,59]. 
Namely, if our energy evaluation has an error close to AE, any of the unrelated 
conformations may become the lowest energy, while the correct fold will have energy 
in the 'messy' part of the energy spectrum. What is even worse, the number of false 
positives will grow exponentially with the error. If the error is distributed randomly 
between residues, the average acceptable error per residue can be estimated as 
AEjNl/2, where N is the number of residues and AE is the total error limit. It means 
that for a 100-residue protein the acceptable error is about 1 kcal/mol, if AE is about 
10 kcaljmol. Needless to say, the simplified approximations, both lattice and off
lattice, could hardly achieve this accuracy and will, therefore, fail for most protein 
topologies. 

Low-energy alternative fold (LEAF) hypothesis 

We picked AE = 10 kcaljmol [58] because that is a typical free energy difference 
between the native fold and the unfolded state AEF _ u or molten globule. However, 
the unfolded state (and to some extent the molten globule) is a high-entropy state of 
many random coil conformations. On this ground, Lattman and Rose [60] argued 
that sequence-fold specificity persists beyond energetic stability. This suggests that the 
energy gap is much larger if high-entropy conformational states are ignored 
(AE»AEF _ u), or, simply, that the compact unrelated mess is much further away from 
the correct fold on the energy scale. If this is true, then the low-accuracy models do 
have a chance. 

Here we argue that this relationship is probably not true for the majority of 
proteins, with the exception of well-behaved, low-complexity topologies; and there are 
indeed compact low-energy alternative folds, further referred to as LEAFs, that come 
close to the 10 kcaljmol baseline above the correct fold (Fig. 3). 

What are the reasons supporting the LEAF hypothesis other than statistical 
inevitability due to a huge number of possible conformations? First of all, residues 
usually can trade entropy for enthalpy (i.e. pack and lose freedom) with a near zero 
balance. Second, side-chain packing is not a 'jigsaw puzzle' [50] as was believed 
previously [61], it is much less specific, and protein-like packing can be achieved in 
a variety of conformations. Third, local conformational preferences of polypeptide 
chain fragments are rather weak, e.g. it was experimentally shown [62,63] that the 
same ll-residue fragment may adopt different secondary structures in different 
structural environments even within the same protein. Fourth, sometimes small 
sequence modifications can cause large structural rearrangements [64]. 

The LEAF conformations were not observed experimentally. Theoretical simula
tions could, in principle, identify such structures. They may appear as false positives in 
detailed simulations of long peptides and small proteins, provided an accurate free 
energy function is considered, conformational sampling is sufficient and convergence 
is achieved. 
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Fig. 3. Energy diagram illustrating a hypothetical distribution of different conformational states of 
a protein (LEAF hypothesis). The width illustrates the entropic component of a state. The widest 
band is the random coil state, the narrower bands are molten globules. The small squares are 
alternative compact folds. The near-native molten globule may be lower or higher than the random 
coil state, depending on the experimental conditions. Our hypothesis is that most of the protein 
topologies are ill-behaved, and a few amino acid changes can cause the transformation of one 
protein topology into a different one. 

Let us point to two implications of the LEAF hypothesis. First, if the hypothesis is 
true, a few amino acid mutations that stabilize an alternative fold, and possibly 
destabilize the original fold, might be sufficient to cause a transformation to a different 
protein topology, if we could discover what this alternative fold is. Second, the LEAF 
hypothesis predicts a relative ease of divergent evolution and transformation of 
protein architectures. Alternative conformations could probably be detected experi
mentally [65], if their free energy is really close to that of the denatured state, 
otherwise the detection is problematic. Experimental demonstration of a conforma
tional transformation of a protein into an alternative fold after several mutations is 
a realistic though challenging task since we need to know the alternative conforma
tion in order to suggest stabilizing sequence modifications. The existence of compact 
folds only 10-20 kcaljmol away from the native fold would impose very strict 
accuracy requirements on models for theoretical predictions of protein structure. This 
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energy difference and a corresponding value of 1 kcaljmoljresidue are the upper 
estimates of the average accuracy, since the error may fluctuate from fold to fold, while 
the number of alternative folds grows exponentially with energy. 

Energy function for protein structure prediction 

In searching for the global free energy minimum of a polypeptide chain, one has to 
calculate the energy of a large number of trial conformations. This imposes an 
additional practical limitation on the time of each energy calculation. Therefore, the 
evaluation of free energy for a trial conformation should be both accurate and fast 
(Fig. 4). Can the speed and the accuracy requirements both be satisfied? Where does 
the optimum lie? 

Explicit water molecules, flexible bond lengths and bond angles, and high-accuracy 
calculations of the electrostatic solvation (i.e. Refs. 6~9) are still too computation
ally expensive to be used in large-scale conformational sampling algorithms. On the 

ENERGY ENERtrY 

PROTEIN STRU~TURE PREDICTION , 
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stQtisticQI ~oTentiQ ls 

Fig. 4. A cartoon comparing the quest for the optimal approximation for protein structure predic
tion with the Greek legend about Odysseus trying to find a narrow passage between two monsters in 
a stormy sea. 
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other hand, most of the simplified and lattice representations do not reach the 
required accuracy. Inaccuracies which inevitably accompany simplification of residue 
representation are further aggravated by incorrect principles of derivation, adjust
ment and testing of the potentials. It is generally understood that the molecular 
representation and geometrical parameters (e.g. radii, lattice type and parameters) 
should be adjusted to reproduce known molecular geometries (reviewed in Ref. 70). 
However, there is no consensus on how the functional form of simplified potentials 
and energy parameters (i.e. well depths) should be derived. 

The development of new potentials for protein structure prediction involves three 
steps: (A) choice of energy terms and functional forms for each term; (B) derivation of 
parameters for the chosen functions; and (C) testing the potentials. We should clearly 
distinguish between potentials/models designed to evaluate a limited set of stereo
chemically reasonable structures as in threading (reviewed in Refs. 71 and 72), rough 
potentials/models for a qualitative understanding of the folding process but not for 
structure prediction [73,26,28], and simplified potentials/models designed to generate 
and predict protein and peptide structures [74,24,27,29,32,30]. 

After 20 years of attempts to create simplified potentials of the last type, the 
question about fruitfulness of these efforts is still open. Vue and Dill concluded the 
abstract of their recent paper [32] with the following sentence: "Thus, the lowest 
energy states of very simple energy functions may predict the native structures of 
globular proteins." Here we argue again [38] that potentials/models for structure 
generation and prediction should satisfy the strictest requirements which are outlined 
below. 

Requirementsfor step A: A set of terms and the functional forms of the terms should 
be justified by the laws of physics. Continuous dependencies should not be replaced by 
discrete two-level functions; solvation and entropic terms should be included. Extrac
tion of a functional form from the protein database statistics will lead to a wrong 
functional dependence. Example: the functional form of van der Waals distance 
dependence derived from statistics of interatomic distances in crystals will be a dis
crete set of delta functions rather than a continuous Lennard-Jones curve. If the 
functional form of a potential is wrong, no subsequent adjustment of the parameters 
(step B) to experimental data will save the potential. 

Requirements for step B: Energy parameters for physically justified functions 
should be directly adjusted to experimentally measured free energy differences for 
a variety of conformational and environmental states, e.g. transfer free energies 
[75,44], torsion barriers, energies of vaporization, stabilization energy changes due to 
mutations [76], etc. Similar energy differences must be calculated with less than 
1 kcaljmoljresidue accuracy in the course of the energy optimization procedure. 
Energy parameters should not be derived from statistics of residue contacts [70]. The 
derivation of energy parameters from a set of decoys (i.e. Ref. 55) may lead to the 
'Plato's man' effect [38]. 

Requirements for step C: Furthermore, a fixed set of decoys is not the best standard 
test for different energy functions [77] for protein folding simulations, because both 
the near-native structure in the set and so-called good decoys depend on the model and 
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the energy function. All the structures in the set should be re-optimized for each model 
(e.g. a specific lattice, united atoms, all atoms) and set of potentials being tested. 
Secondly, a set of decoys will never be large enough to compete with a set or. 
conformations generated by global optimization, especially in continuous configura
tional space. 

The test by global optimization is the following: take a known experimental struc
ture and find a 'near-native' conformation by local optimization ofthe energy function 
being tested (a broader scale optimization or dynamics simulation with native re
straints may be required instead of the local minimization). Then, run a free global 
optimization with the same energy function starting either from the near-native 
conformation or any random conformation. Stop if the energy drops below the 
'near-native energy'. This will mean that a false positive has been found, and the 
energy function has failed the test. Since false positives are different for different energy 
functions and molecular representations, it might be more efficient to generate them 
by a trial optimization. 

Historically, the first attempts to predict protein structure at the atomic level were 
performed by minimization of vacuum atom-atom potential energy [5,78]. A number 
of algorithms aimed at inclusion of solvation into simulations are based on the solvent 
accessible surface or volume for individual atoms [79-82,44]. This approach is purely 
empirical because, obviously, solvation energy of a charge is not a function of its 
accessible surface. Wesson and Eisenberg [79] derived solvation energy densities for 
five classes of atoms on the basis of 18 experimental vapor-water transfer energies for 
side-chain analogues [83]. The accuracy of the surface-based atomic solvation model 
can further be improved by separating carbons into aliphatic and aromatic classes. In 
addition, the Wolfenden et al. [83] experimental set contains only data for neutralized 
side chains of these residues, and volume corrections are not really required for this set 
of compounds [84]. The atomic surface densities for the charged groups of Lys, Arg, 
Asp, and Glu are larger and can be derived from additional experimental data for 
charged solutes [85]. The necessary improvements were implemented in our new set 
of solvation parameters (see Table 2), which were used in calculations described 
below. 

Although this type of solvation energy function is not justified by any physical 
model, the parameters of this function can be adjusted to reproduce reasonably well 
the experimentally observed differences between two extreme states: maximally ex
posed and deeply buried. However, in the intermediate burial states of atoms as well 
as in the presence of other charges nearby (e.g. Ref. 86), the error will be comparable 
with the solvation energy value. 

In an alternative, more physical approach, the electrostatic contribution to solva
tion is separated from the surface-dependent solvation contribution, and the electro
static component is evaluated by an approximate solution of the Poisson or 
Poisson-Boltzmann equation for a set of fixed charges immersed in an arbitrarily 
shaped protein [87-90,42,68]. The methods vary in accuracy and speed from the most 
accurate boundary element method [91,88,92,67,69] to one which is the least accurate 
but includes the fastest image charge approximation [93-96,42]. 
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Table 2 Solvation parameters 

10 
-9 

-163 
-280 
- 220 
-114 
-64 

- 280 
-174 
-22 
-92 

Radius (A) 

1.95 
1.8 
1.7 
1.7 
1.7 
1.6 
.1.4 
1.4 
1.4 
2.0 
1.85 

Atom type 

C aliphatic 
C aromatic 
N uncharged 
N +N~ Lys + 
N"b N,,2 in Arg + 
o hydroxyl 
o carbonyl 
0- Glu, Asp 
o in COOH 
Sin SH 
S in Met or S-S 

The surface and entropic terms should also be added to the full vacuum force field 
and electrostatic solvation in order to achieve sufficient accuracy in folding simula
tions [38,42]. Both terms can contribute up to 1-2 kcal/mol/residue to the energy 
difference between different conformations. The two terms can compensate for each 
other [38], e.g. hydrophobic free energy gained upon burial of an aliphatic side chain 
is lost in entropy. The surface term can be made proportional to the overall solvent 
accessible surface with a coefficient from 5 to 15 calIA 2 (vapor-solution transfer 
experiments) [81,97-100], or can be divided into contributions from different atom 
types to account for differences in hydrophobic effect for different groups due to 
higher order electrostatic effects [101] and specific geometry. For example, the surface 
tension for aliphatic groups is higher than for more hydrophilic aromatic groups, and 
this difference is impossible to assign to partial atomic charges. In the following 
sections, the surface term separated from electrostatic solvation is calculated as 
a product of the solvent accessible surface by 12 cal/A2. Two other terms, electro
statics and side-chain entropy, are described below in more detail. 

Affordable solvation electrostatics 

The distance-dependent dielectric constant in Coulomb's law has little relevance to 
the free energy of water molecules polarized in the electric field of a solute. If a solute 
has a single charged atom, the calculated energy will not be dependent upon the 
charge position and burial, a result which is obviously wrong. On the other hand, 
numerical solutions of the Poisson equation [102,66,103,68,90], more sophisticated 
models [104] with site-specific protein dielectric constant [105-107], or explicit 
solvation models [108] are too computationally demanding to be incorporated into 
a simulation procedure, although some of the approaches can be used for re
evaluation of the best solutions [109]. 
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An approximate solution of the Poisson equation can be obtained on the basis of 
the image charge approximation [93,95]. The MIMEL method (Modified IMage 
ELectrostatics) [42] is a sufficiently accurate and fast implementation of the image 
charge approach. It uses an analytical correction to the image charge formulae and 
a robust algorithm for calculating effective distances between protein charges and 
their effective dielectric boundaries in the case of an arbitrarily shaped protein. 

Electrostatic energy in the MIMEL approximation is represented by the following 
formula (see Fig. 5): 

EMIMEL = L Cqiqj +! L Cqiq~m _! C(q total)2(Ew - &p) 
q"qj,i <j &prij 2 q"ql;" &prik 2 R &w(ew + &p) 

(1) 

where rij is the distance between charges i and j, the image charge 

im (&w - &p) R 
qi =-(Ew+ep)~qi 

Fig. 5. Protein in water. Accessible surface A defined by the local curvatures (radius R) can be 
used to define depth d of the charge. Atom i has van der Waals radius r~w. To calculate the protein 
solvent-accessible surface, increased radii ri = rrw + rwa, •• are used. The accessible surface Ai of 
the probe sphere is used to assess the depth di. Distances di are later corrected to move the effective 
dielectric boundary from the protein solvent-accessible surface closer to the molecular surface. 
Derivation of the final set of distances di between the charge and the effective dielectric boundary in 
order to satisfy two conditions: for large positive di the distance should be decreased by br, whereas 
for negative distances the asymptotic value of di should be such that interaction with the image 
charge reproduces the Born energy of the charge of rj - br radius. Simple linear jUnctions 
satisfying the above conditions for the initial dielectric boundary (bold dotted line) and the 
corrected one (bold solid line) are shown. br = rwa, •• brings the effective dielectric boundary close 
to the molecular surface. 
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The first sum in Eq. 1 represents the Coulomb energy, the second sum contains 
contributions from interactions of charges with their own images (self-energy) as well 
as interactions of charges with other images (cross-energy), and the third term is the 
correction term depending on the net charge of all real charges in the system qtotal. 

To calculate the electrostatic free energy for a real protein, the interaction energy 
between two charges i and j and two corresponding image charges should be 
expressed in terms of two depths di and dj of the charges from the protein surface, their 
interatomic distance rij, and effective protein radius R. Distances between charges and 
their effective dielectric boundary are found via the exposed fraction of the surface of 
a large probe sphere (about 5 A) around each charge. The probe sphere algorithm 
gives a locally averaged estimate of the effective distance. Comparison of the MIMEL 
energies evaluated for a set of model objects and a series of proteins with energies 
calculated by the DelPhi program [110,87] solving the Poisson equation numerically, 
demonstrated a high accuracy of the MIMEL method. The MIMEL approximation 
was successfully used in a variety of global optimization tasks [42,111-113]. 

Entropy 

The entropic contribution to free energy differences consists of entropy changes of 
water and configurational entropy of the polypeptide chain. The solvent entropy is an 
integral part of the solvation energy and does not require special additional considera
tion. However, this is not the case with the configurational entropy of a polypeptide 
chain, which is usually ignored in evaluations of the free energy of a trial conformation 
in the COurse of conformational sampling. 

Configurational entropy includes vibrational entropy in the vicinity of a local 
minimum [114,115] and the entropy due to the presence of several alternative minima 
with close energies [116,117]. The main-chain entropy is an important factor in the 
overall ~ree energy balance between the folded and the random coil states. However, 
the main-chain entropies of compact conformational states do not differ as much as 
side-chain entropies do. The reason is that some side chains in compact conforma
tions will still be exposed and flexible, and this set of exposed side chains is fold
specific, while the backbone in both folds is restrained to one local minimum. 
Therefore, it is the relative side-chain entropy which has to be included first in the 
globally optimized free energy function. 

To calculate the side-chain entropy contribution to the free energy function, we 
need to know the entropy of an exposed side chain in a random coil, the entropy of 
a completely buried side chain, and we need an algorithm to quickly evaluate the 
entropy in intermediate cases. The entropy of the random coil state in which a side 
chain is exposed and may adopt different rotamer conformations can be calculated 
under the assumption of discrete rotamer states with the Boltzmann formula: 
Su = - R Li Pi In Pi> where Pi is a probability ofrotamer i, and R is the gas constant 
[118,38,119]. If N individual rotamers have equal probability, the expressions can be 
rewritten as S = - RLi InN [116,120,117]. A hidden assumption of the discrete 
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approximation is that the buried state, to which we assign zero entropy, can be 
considered as one of the rotamers, i.e. widths of the energy minima are the same in 
folded and unfolded states [121]. Probabilities Pi for each side-chain rotamer can be 
calculated in explicit simulation [118] or derived from the analysis of rotamer 
distributions in known protein structures, and a scale of entropies of exposed side 
chains can be compiled [119,38,42,122,123]. In the derivation of these numbers it is 
important to account for side-chain symmetry [38]. 

The question is: how may the side-chain entropy, a property of an ensemble of 
rotamers, be assigned to a single trial conformation containing buried, exposed and 
partially exposed side chains? One could explicitly calculate energies of all the possible 
rotamers given the backbone conformation, but running a 'microsimulation' nested in 
our large-scale global sampling/optimization procedure to evaluate new Pi for each 
side chain is too costly. 

The number of states available for a given side chain can be related to its solvent 
accessibility [42]. The side-chain entropy can be approximately related to solvent 
accessible area [42] in the following way: if the side chain is buried, 8 = 0; if the side 
chain is maximally exposed with area Au, 8 = 8u; and if the side chain is partially 
buried, the entropy can be approximated by a linear dependence, 8 = 8u (A/Au). This 
empirical approach is a definite improvement over a simple threshold rule (8 = 0 if 
A < Acutocc; 8 = 8u if A> Acutocc), although there is no true physical dependence of 
configurational entropy on solvent accessible surface. The approach is also conve
nient and efficient computationally since solvent accessible areas are required anyway 
to evaluate the surface (hydrophobic) energy. The side-chain entropy term of the 
free energy function was used in a number of structure prediction calculations 
[42,111,t24,113,125] and, since entropic contributions to free energy may fluctuate up 
to 2 kcaljmoljresidue, omission of the term may lead to different backbone geometries 
of peptides (see a test on a nine-residue peptide below) and protein loops. 

Global optimization 

If the first challenge of protein structure prediction is to develop an accurate and 
fast approximation of the free energy function, the second challenge is to find the 
global minimum of this function. Molecular dynamics simulations in both Cartesian 
[4] and torsion spaces [9] are capable of surpassing kT -large barriers between local 
minima and, therefore, can be used as global optimization procedures, although not 
the most efficient ones. Limitations in efficiency stem from the continuity of an MD 
trajectory. 

A number of global optimization procedures including Monte Carlo minimization 
[48] and the diffusion equation method [37] have been developed by 8cheraga and 
co-workers (reviewed in Ref. 41). The diffusion equation method (DEM) and a related, 
more general packet annealing method [126] are promising, but these methods have 
to deal with two critical issues related to the accuracy of the energy function. First, all 
the energy terms should be approximated by Gaussians, while the energy function has 

377 



R.A. Abagyan 

borderline accuracy even without this requirement. Second, in DEM the number of 
alternative pathways that one needs to store may be exceedingly large, because at each 
time point the direction of local minimization is influenced by a certain energy error 
and, potentially, excessive smoothing of the energy landscape. The first problem has 
been recently addressed [44] by the introduction of a volume-dependent solvation 
energy term in the Gaussian form. 

Running several simulation trajectories in parallel and exchanging information 
between them constitutes another idea for global optimization [127-129]. Genetic 
algorithms have been applied to optimize the energy of polypeptides in detailed atomic 
representations [39,43] (see also Ref. 129, a recent review). Similarity between global 
minima of homologous sequences can also be used as a restraint in a simulation [128]. 

The heart of the problem - frequently overlooked - is how the elementary confor
mational change is generated during sampling. It is much more important than 
whether it is a simulated annealing or a constant temperature run, or whether several 
simulations are independent or exchange information between trajectories. 

In most of the global optimization procedures, two types of conformational 
changes are generated: (i) local, quasi-continuous, within one minimum, and 
(ii) global, large-scale, between minima. Local changes may be generated in the course 
of a molecular dynamics simulation [130], a local energy minimization [131,48], or 
a local Monte Carlo procedure [132] based on the harmonic approximation of the 
energy landscape around the current minimum. Local moves are essential for finding 
the nearest local minimum or searching around the starting conformation. However, 
a powerful global sampling procedure requires an efficient algorithm to generate large 
conformational changes. 

Random global moves reported in the literature include the following: evenly 
distributed random change of one randomly chosen torsion angle and subsequent 
minimization [48]; reorientation of peptide planes according to the current local 
electrostatic field in the EDMC method [133]; discrete moves on a lattice [134]; 
random torsion by random value ('mutations') and random 'crossovers' in genetic 
algorithms [39]; and loop deformation moves [95,52,134-137]. 

A Monte Carlo step can be made much more effective if local conformational 
preferences are used [38,138,42]. The procedure requires the following steps: (i) 
identification of coupled groups of several torsion angles (say, <p, '" and Xl) of 
a residue, or all torsion angles of a side chain; (ii) derivation of a priori continuous 
probability distributions in identified subspaces; and (iii) generation of global re
arrangement by picking one or several subspaces and changing the torsions involved 
according to the derived probability distributions. The changes are performed inde
pendently on current values of coordinates in the subspace, i.e. the procedure makes 
absolute changes in local subspaces instead of the incremental changes. Detailed 
mathematical justification of such a scheme in continuous space and the first use 
of these 'probability-biased' random steps in an MC global optimization is given in 
Ref. 42. This biased probability Monte Carlo (BPMC) principle combined with energy 
minimization of the whole structure after each step clearly outperforms the Monte 
Carlo minimization procedure with the unbiased random step [48]. 

378 



Protein structure prediction 

The best random step distribution function was derived to be exactly equal to the 
expected probability distribution [42], i.e., in a discrete case, if you expect that one 
rotamer is 9 times more frequent than the other, it should be sampled 9 times more 
frequently. The best function can be derived from an analytical expression of optim
ization efficiency, further referred to as optimization efficiency functional. This func
tional depends on local expected probability distributions and a set of unknown 
random step distribution functions. Unfortunately, the optimization efficiency func
tional can only be written analytically for a very simple model of the optimization 
procedure. A different formulation of the optimization efficiency functional leads to 
a square root of the expected probability distribution for the best random step 
distribution. This means that if you expect one rotamer to be 9 times more frequent 
than the other one, the first rotamer should be sampled only 3 times more frequently 
(Zhou and Abagyan, unpublished). The derivation of an analytical functional repres
enting the efficiency of a particular global optimization procedure more accurately is 
a challenge. However, the proposed scheme is already a step forward, and all further 
recommendations for efficient random moves can always be tested empirically. 

Expected probability distributions for the backbone and side-chain torsion angles 
can be derived from protein database statistics [138,139,42], or calculated for short 
fragments with a specific amino acid sequence in a preliminary simulation. These 
random moves are suitable for side-chain rearrangements [139,111,125] and free 
backbone movements [42,125]. 

Two special types of random moves are required to dock two molecules and to 
predict loop conformations. In docking simulations, positions of one of the molecules 
can be changed with the pseudo-Brownian random move, a combination of random 
rotation and translation [40]. Simulations of protein loops require a combination of 
the BPMC moves with a loop closure algorithm to keep the loop ends unchanged 
[140,112,125]. These two types of random moves are also followed by the local energy 
minimizations. 

The general scheme of the ICM global optimization for the arbitrarily con
strained ICM model, which may include several molecules and flexible loops, 
is shown in Fig. 6. It includes the following procedures. First, a group of coupled 
variables is randomly selected. Second, a random move appropriate for these vari
ables is performed: (i) if precalculated local probability distributions are assigned, the 
biased probability move is performed; (ii) if these variables determine the position of 
the whole molecule, the pseudo-Brownian move is performed; (iii) if the variables 
belong to the backbone of a flexible loop, a loop closure algorithm is additionally 
applied; (iv) otherwise a conventional random move is performed. Third, a local 
energy minimization with respect to all free variables of the model is performed. To 
take computationally expensive or nondifferentiable energy terms (such as solvation 
electrostatics and side-chain entropy) into consideration, these terms are added to the 
total energy at the end of minimization (the 'double-energy' scheme). Fourth, the 
Metropolis criterion [141] is applied according to the total energy resulting from the 
previous step. The accepted conformation is compared to the current conformational 
stack. 
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global BPMC move 
pseudo-Brownian move 

Fig. 6. Schematic representation of the [CM global energy optimization procedure. A hypothetical 
multidimensional energy landscape is shown. Three different types of random moves are possible. 
Biased probability moves are being performed according to torsion energy distribution derived 
from a set of known three-dimensional protein structures. Pseudo-Brownian moves are used to 
position randomly molecules with respect to each other according to a Gaussian distribution of 
translational and rotational degrees of freedom. Local deformations and loop closure algorithms 
are used to perform loop deformation moves to satisfy boundary conditions (unchanged positions 
of a loop's ends). Solvation and side-chain entropy energy terms are evaluated during the Monte 
Carlo step of the protocol, and omitted during the local minimization step (double-energy scheme, 
see text). 

Conformational stack is a representative collection of low-energy conformations 
visited during the global optimization search. Each time a new conformation is 
accepted, it is quantitatively compared to all those already residing in the stack. 
Conformations are considered similar if their structural difference does not exceed 
a certain similarity threshold specified by either coordinate or angular rms difference. 
If a new conformation is not similar to all those already accumulated in the stack (or 
the stack is empty at the beginning of the search), a new slot is created where the new 
conformation is placed. If the new conformation is within the value of the similarity 
threshold of any conformation already in the stack, it substitutes for the last one if its 
energy is lower, and is disregarded otherwise. The size of the conformational stack 
defines the maximal number of conformations simultaneously residing in the stack, 
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and should be specified before the calculations. If the stack is full, but the search is 
continuing and the accepted conformation differs from all those already in the stack, 
the new conformation replaces that with the highest energy. 

The three parts of the ICM molecular modeling engine, viz. (i) molecular repre
sentation and an arbitrary set of constraints, (ii) energy function, and (iii) a set of 
efficient conformational rearrangements, allow one to address a wide variety of 
large-scale structure prediction problems, such as peptide folding [42], loop predic
tion and protein design [140,124], modeling by homology [112], soft protein-protein 
docking [111,113], and domain rearrangements [125]. 

Ab initio peptide structure prediction 

Development of the ICM optimization procedure using global probability-biased 
random steps allowed identification of the global minimum of a detailed energy 
function, including MIMEL solvation electrostatics, surface and entropy terms, from 
any random starting conformation for large peptides. In the first series of test 
calculations, 12- and 16-residue peptides converged to the same set of lowest energy 
conformations (helical in both cases) in a free BPMC simulation from several random 
starting conformations [42]. Convergence for the 16-residue peptide was achieved 
after several hours of BPMC simulation at 600 K on an SGI workstation. It became 
clear that the optimal structure is sensitive to the amino acid sequence and to the set of 
energy terms added to the vacuum force field. Omission of the additional energy terms. 
led to deformed helices and nonhelical conformations, and a sequence modification 
disrupting the helix was suggested based on BPMC simulations. 

Finding a protein-like peptide adopting a nonhelical conformation in solution to 
test a global optimization procedure has always been a problem. Fragments of 
complete proteins can be used with caveats [43]. We were fortunate to find two 
examples of short nonhelical peptides with an experimentally characterized structure 
in solution, a nine-residue peptide and a 23-residue peptide [142,143]. 

A linear nine-residue peptide (YQNPDGSQA) was shown by NMR to form a ~
hairpin in aqueous solution [142]. We performed a series of BPMC simulations from 
different random starting conformations with the same energy terms (including 
MIMEL solvation electrostatics, surface and entropic terms) and a BPMC setup as for 
the helix-forming 12-residue and 16-residue peptides simulated previously [42]. The 
BPMC simulations at 600 K converged in about 1 h. The lowest energy structure was 
the experimentally found ~-hairpin (Fig. 7a). Conformations with higher energy which 
were accumulated in a conformational stack [144] retained some ~-hairpin features in 
at least a 4 kca1jmol energy range. We also performed the same simulation without the 
entropy term to analyze its importance. The lowest energy structure generated without 
the side-chain entropy was different (Fig. 7b) and less similar to the experimental 
structure. This illustrates the importance of the entropic term even for a small peptide. 

A substantially longer 23-residue peptide was designed to adopt a ~-~-(l architec
ture in aqueous solution without bound metal ions or disulfide bridges [143]. The 
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(b) 

GS 

Fig. 7. The lowest energy conformation of the nine-residue peptide fJ42}. (a) The energy fUnction 
includes the side-chain entropy term; the best conformation is very similar to the experimental 
structure fJ42}. (b) Exclusion of the side-chain entropy term from the energy function leads to 
a different minimum. 

designed topology was confirmed by NMR. Several BPMC simulations at 600 K 
converged after about 10 million energy evaluations. To reduce the number of 
variables, all the peptide ro angles were fixed at 180°. Simulations were performed with 
solvation energy represented by the MIMEL energy and the surface term, as well as 
with the atomic surface based solvation term described above. The stack of low
energy conformations within 6 kcal/mol from the lowest energy conformation was 
generated as described in Ref. 144 with the atomic solvation term and with a 15° 
torsion rms deviation similarity threshold, and is shown in Fig. 8a. All of the stack 
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Fig. 8. Conformations of the 23-residue peptide predicted by the ICM global energy optimization. 
The energy function includes side-chain entropy and solvation terms. (a) All conformations from the 
stack within 6 kcal/mol from the lowest energy; the solvation term is calculated via accessible 
surfaces and atomic solvation energy densities. (b) The third energy structure from a set shown in 
(a). (c) The lowest energy conformation; the solvation term is calculated as the MIMEL energy plus 
constant surface energy term. 

conformations have an et-helix formed at the C-terminus, and almost all of them have 
the helix interrupted in the same position. All stack conformations also had a ~
hairpin formed at the N-terminus, but the orientation of the hairpin varied. The third 
lowest energy conformation having the characteristic ~-~-et architecture is shown in 
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Fig. 8b. A similar architecture, but a different packing of the ~-hairpin against the 
(X-helix, was found in the lowest energy conformation in the simulation MIMEL and 
constant surface tension (Fig. 8c). 

We conclude that even for a molecule with over 100 free torsion angles and 400 
atoms, the essential topological features can be predicted in a true ab initio simulation 
without any experimental restraints and convergence can be achieved. Local struc
tural features such as an (X-helix starting from a certain residue and a ~-hairpin at the 
N-terminus can be predicted with higher reliability than the exact packing of these 
two elements. This computational experiment implies that, even though the general 
topology can be successfully predicted and corresponds to the lowest energy confor
mation, the accuracy of the model and the energy function is dangerously close to its 
limit, and the accuracy should be further improved in order to predict the three
dimensional structure of larger peptides and proteins. 

Domain rearrangements 

ICM was applied to the prediction of large-scale movements of protein domains 
from a single three-dimensional structure. Multidomain proteins often exist in differ
ent conformational forms, depending on crystal packing, bound ligands, etc. The 
prediction of protein domain motions at atomic resolution is a serious theoretical and 
computational problem due to the large time scale of these motions and the large size 
of multidomain proteins. Both obstacles make the problem barely tractable by 
traditional computational methods. The ICM approach relies on the observation that 
only a relatively small portion of a protein including interdomain linker and side 
chains at the domain interface undergoes conformational changes upon domain 
rearrangements. An interdomain linker is automatically identified, and torsion angles 
belonging to the linker and side chains at the potential domain interface are set free. 
These torsions are sampled in a large-scale global search for low-energy conforma
tions. A special procedure has been developed to generate deformations of the 
double-stranded interdomain linker preserving the chain continuity. 

Domain motion modeling was performed for two-domain structures of Bence
Jones protein (with a single-stranded interdomain linker) and lysine/arginine/ 
ornithine-binding (LAO) protein (with a double-stranded linker). For each protein, 
two sets of low-energy conformations were generated starting from the crystallog
raphically determined 'closed' and 'open' forms. Two sets of Bence-Jones protein 
conformations substantially overlapped and revealed a high diversity of possible 
relative domain positions. In the case of LAO protein, the concerted changes in the 
double-stranded linker were observed, and the two sets of the generated conforma
tions overlapped (Fig. 9). Interestingly, for the LAO protein one of the low-energy 
conformations generated from the closed form was only 2.2 A apart from the open 
structure. The obtained results indicate that the method can generate a series of 
low-energy conformations representing possible domain arrangements within a rea
sonable computer time. This may be helpful for predicting the scope of possible 

384 



Protein structure prediction 

(a) 

Fig. 9. Backbone display of different domain arrangements in the low-energy conformations of the 
LAO protein generated starting from the closed form (PDB code llst) (a) and from the open form 
(2Iao) (b). The conformations of the larger domain are superimposed. 

domain rearrangements of a multidomain protein on the basis of only one known 
conformation. 

Docking 

The prediction of association of two large molecules requires a scoring function to 
evaluate a trial configuration of the two molecules and the algorithm searching for the 
global minimum of this function, and a number of procedures were developed over the 
years [145-159,40,111] (see also Ref. 160, an excellent recent review). The ideal 
docking algorithm has to deal with the flexibility of both receptor and ligand. 
However, in many protein-protein docking problems simple energy/scoring functions 
and rigid models are sufficient and successful, as opposed to problems of peptide 
folding. The reason of larger tolerance of the docking procedures to simplifications 
of shape and energy is a smaller dimensionality of the problem (the ligand position 
with respect to a receptor is described by only six variables), which significantly 
reduces the total number of configurations and, accordingly, the number of potential 
false positives. 

ICM can be easily configured for either rigid or soft docking because of its ability to 
consider arbitrarily constrained multimolecular trees [40] (Fig. 2) and search the 
global minimum of a detailed energy function including solvation and side-chain 
entropy with respect to the set· of free variables. Soft docking of a protein or a flexible 
ligand to a receptor, or global refinement of initial docking solutions generated by 
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T ranslalion=Dp .- .... 

~a ····· 
.... ... . -

Fig. 10. Schematic diagram of random moves in the lCM docking procedure. In a pseudo-Brownian 
move. D is the move amplitude (2.4). p is a random number between 0 and 1. and R is the radius of 
inertia. Side-chain torsion angles are modified according to the rotamer probability distributions. 

another method [111], usually requires a detailed atomic model, while the initial 
rigid-body docking may benefit from a more simplified molecular model. A set of 
variables in the ICM tree for flexible docking includes six positional variables to allow 
free movements of the ligand molecule and a set of side-chain torsion angles at the 
protein surface. The pseudo-Brownian random moves and probability-biased moves 
are applied to the positional variables and side-chain torsion angles, respectively 
(Fig. 10). Each random step is combined with local minimization. The globally 
optimized function includes ECEPP/3 energy plus electrostatic solvation, surface 
energy and side-chain entropies. 

First, the ICM docking technique with flexible side chains was tested on the 
ab initio prediction of association of two GCN4 helices [40]. It was shown that 
sampling is sufficient and all possible arrangements are found, and the correct parallel 
arrangement of two helices has the lowest energy, which is 5 kcal/mol lower than 
crossed, staggered and anti parallel arrangements. The second test was flexible dock
ing of the uncomplexed lysozyme [161] and the HyHel5 antibody [162] in a detailed 
simulation [111]. ICM global optimization was performed from 120 starting confor
mations. The best 30 conformations were refined by the global BPMC optimization of 
all the surface side chains. It turned out that such a global refinement of the interface 
both improved the geometrical accuracy of the prediction (the rms difference with the 
X-ray structure was reduced from 5.46 to 1.57 A) and, more importantly, increased the 
energy gap between the correct solution and the first false solution from 4.3 to 
19 kcal/mol, thus making the prediction more significant and reliable. 
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The last example is the successful blind prediction of association of ~-lactamase and 
its protein inhibitor [160,113]. Similar to the lysozyme-antibody docking, it was 
effected by the pseudo-Brownian Monte Carlo procedure [40] from multiple starting 
conformations of the inhibitor. Simplified description of two molecules was used for 
the initial docking. A stack of about 30 best conformations was then refined in full 
atomic detail by the biased probability Monte Carlo simulation [111] which globally 
optimizes molecular positions and conformations of the interfacial residues. Three 
lowest energy structures with association energies of- 29.3, -11.2, and - 6.8 
kcaljmol were submitted (Fig. 11). All the other solutions had energies higher than 
+ 5 kcaljmol. As in the lysozyme-antibody case, the refinement increased the gap 

between the near-native and the false solutions. The lowest energy structure turned 
out to be 1.9 A backbone rms from the correct solution [160]. 

(a) 

(b) 

(c) 

E=-29.3 kcaVmole 
Correct 

Fig. 11. Stereo diagrams of the three lowest energy conformations of p-Iactamase and its inhibitor 
after the global positional and side-chain refinement [113}. 
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Loop modeling and design 

To predict conformations of protein loops by the ICM method, we need the 
following global optimization setup: (i) only torsion angles of the loop residues and 
side chains in the loop vicinity are free, the rest are fixed; (ii) a random move 
deforming the loop without moving its ends is applied along with the BPMC moves 
for the surrounding side chains; and (iii) all the energy terms and the optimization 
procedure are the same as in a peptide folding simulation. 

The ICM method was applied to redesign a IS-residue loop-3 of trypanosomal 
triosephosphate isomerase (TIM) dimer [140,124,164]. The purpose of the design was 
conversion of the dimer into a monomer (Fig. 12a). Several polypeptide chain 
fragments of different amino acid sequence and length were tried and the ICM global 

(a) 

Fig. 12. Loop designfor trypanosomal triose phosphate isomerase. (a) Sixteen-residue 100p-3 of the 
original structure (PDB code 5tim) (dotted line) was replaced by an eight-residue fragment (solid 
line). Its amino acid sequence was designed and modeled by the BPMC procedure to guarantee 
a conformation free of energy strain. (b) The protein with the proposed sequence was synthesized, 
and its three-dimensional structure was determined by X-ray crystallography. Modeled (solid line) 
and experimental (dotted line) conformations were very similar, with the rms deviation equal to 
0.4.4. 
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energy optimization was performed for each of them. An eight-residue connection 
with sequence GNADALAS replacing the native sequence IAKSGAFTGEVSLPI 
between positions 68 and 82 was predicted to fold into a strainless loop with an 
additional helical turn at the N-terminus of helix 3. 

The modified polypeptide was synthesized and the first suggested variant was 
experimentally proven to form a stable, monomeric structure with TIM activity [124]. 
Subsequent crystallographic studies of the redesigned protein, referred to as mono
TIM, demonstrated that the protein retains the characteristic TIM-barrel fold and 
that the new loop was correctly predicted with a main-chain atom rms difference of 
0.4 A for the loop residues [140J (Fig. 12b). 

Interestingly, two other loops of the original dimer interface, loop-l and 100p-4, 
were found to change their conformational state [163]. Loop-l became disordered, 
which in turn influenced the ability of an active site residue Lys13 to reach the 
substrate. This inspired another design project in which loop-l was rigidified [164]. 
This loop design was the second blind test of the ICM loop prediction algorithm. 
A design scheme similar to the scheme used previously for 100p-3 was employed. 
A series of ICM simulations suggested shortening of the eight-residue loop by one 
residue as well as some modifications of the sequence. The predicted structure was 
deposited in PDB and the crystallographic structure was determined. The experi
mental structure confirmed that the loop became rigid and was predicted correctly. 
The direct superposition of the lowest energy structure of the proposed loop 
KSGSPDS to the crystallographic structure results in an rms difference of 0.5 A for 
the 28 main-chain atoms. 

In summary, two (out of two) blind predictions aimed at designing loop-l (eight 
residues) and 100p-3 (seven residues) in triosephosphate isomerase were successful 
examples of the ICM ab initio loop prediction technique. Let us note, however, that 
these were not single loop predictions, but rather a series of iterative sequence 
modifications followed by structure predictions. In this setup, even slightly wrong 
initial predictions can be stabilized by further sequence modifications. Loop predic
tions in modeling by homology are much more challenging because a sequence cannot 
be adjusted and, more importantly, because the structural environment (loop ends 
and surrounding residues) of the loop on a homologous template may be strongly 
distorted with respect to the true environment [112J. 

Conclusions 

1. Constraining covalent geometry results in a drastic increase in smoothness of the 
energy landscape. Consequently, the radius of convergence and efficiency of local 
minimization are increased. Peptide folding, loop prediction, and flexible docking can 
be efficiently formulated as a global energy optimization problem in a subset of 
internal coordinates. 

2. Many compact nonnative conformations of proteins with energies higher than, 
but close to, the energy of the high-entropy unfolded state may exist (the LEAF 
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hypothesis). These structures can be stabilized by even a small number of mutations 
and these transformations may playa role in the evolution of protein topologies. 

3. The existence of LEAF conformations would impose a limit of about 
1 kcal/mol/residue on the accuracy of energy evaluations in the course of global energy 
optimization. Theoretical simulations of peptides with experimentally known confor
mations confirm this accuracy limit. 

4. Electrostatic solvation energy, surface energy and the side-chain entropy term 
must be included in the optimized energy function. Omission of any of these terms 
may lead to an impermissible level of energy error. Algorithms for the fast evaluation 
of these terms have been developed. 

5. A number of peptides up to 23 residues long having different experimentally 
characterized topologies (~-hairpin, (X-helix, ~~-fold) can be predicted ab initio in 
a detailed full-atom ICM global optimization of the same energy function, including 
solvation and entropy terms. Exclusion of the entropic term led to significant defor
mations of the ~-hairpin. 

6. Although the essential features of the ~~-fold were reproduced, the accuracy 
was insufficient to predict the packing of two secondary structure elements unambigu
ously. This implies that even better accuracy -is necessary for larger molecules. 

7. Large-scale domain rearrangements can be simulated with limited success from 
a single starting conformation by the ICM global energy optimization of the interdo
main linker and the interfacial side-chain torsion angles. The correct identification of 
the essential degrees of freedom, their number, and the validity of the underlying 
assumptions (no changes of the intradomain structure) are critical. 

8. The association of two protein molecules can be predicted ab initio by the 
pseudo-Brownian Monte Carlo minimization procedure. The refinement of potential 
docking solutions by global energy optimization of the interfacial side chains results 
in a more reliable discrimination between correct and incorrect solutions. 

9. Loop prediction and design: in two out of two cases of blind prediction in the 
course of loop design by the ICM method, the lowest energy conformations were 
practically identical to the conformations determined later by X-ray crystallography. 
Reliable loop prediction in models by homology is a much more difficult problem. 
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Introduction 

The general solution to the protein folding problem demands that two very difficult 
problems be concomitantly solved [1]. An energy function whose global minimum is 
in the native conformation of the protein must be developed [2]. Simultaneously, an 
efficient strategy to search through the myriad of local energy minima for the desired 
global minimum must be formulated [3]. One way to attack both problems is to 
reduce the complexity ofthe model being considered [4]. Rather than treat the model 
at the level of atomic detail, the representation of the protein can be simplified. 
Various extents of this simplification have been explored. They range from highly 
simplified models that treat the native conformation of proteins as points on a small 
cube to high coordination lattice models that describe the native conformation of 
proteins with high geometric fidelity [5-14]. While highly idealized models have been 
useful in providing a number of qualitative insights into some general features of 
protein folding [10,15,16], they cannot be used to fold a real protein. This chapter 
focuses on results from high coordination lattice models of proteins that have been 
developed over the past several years and which are complementary to the simplified 
model studies [17-31]. These high coordination models not only provide insights into 
the thermodynamics of the protein folding process [25], but in a number of cases can 
predict the native conformation of a number of proteins at the level of 2-4 A 
root-mean-square deviation (rms) from native [20,21]. 

The outline of this chapter is as follows. We begin with a discussion of the geometric 
model of a protein and the interaction scheme. In particular, we focus on the reasons 
why the various contributions to the potential are included and describe what 
happens if the individual terms are considered in isolation. We then describe the two 
types of Monte Carlo sampling schemes that have been employed, namely classical 
Metropolis Monte Carlo (MMC) [32] and the novel entropy sampling Monte Carlo 
technique (ESMC) due to Hao and Scheraga [33-35]. Next, results from the folding of 
some idealized protein sequences are presented [18,23,25]. These studies enable an 
exploration of the possible origins of the cooperativity of the protein folding process. 
We then summarize results on the folding of a number of small globular proteins 
[20,36], as well as some predictions for protein redesign [29,30]. Subsequently, 
a novel algorithm for the prediction of the locations where the protein chain reverses 
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global direction, i.e. 'U'-turns and the dominant secondary structure found in the 
regions between the U-turns, is described [27]. This is followed by a review offolding 
results when a relatively small number of tertiary constraints (which may come from 
NMR experiments) are provided to the model [26]. Then, results from the de novo 
folding of the GCN4leucine zipper, which adopts a dimeric coiled coil in solution, are 
summarized [21]. Next, an overview of the general formalism designed to predict the 
state of association of coiled coils [22,31], and comparison with experimental data on 
a variety of sequences, are presented [37,38]. We conclude with a discussion of the 
weaknesses of the present generation of lattice models and a perspective on the 
outlook for future progress. 

Lattice models of proteins 

As indicated in Fig. 1, the CO! coordinates of the protein backbone are confined to 
a set of lattice points which reside 011 an underlying cubic lattice, whose lattice spacing 
a = 1.22 A [19]. Successive CO! atoms are connected by virtual bond vectors a· v, with 
{v} = {(± 3, ± 1, ± 1), ... , (± 3, ± 1,0), ... , (± 3,0,0), ... , (± 2, ± 2, ± 1), ... , 
(± 2, ± 2,0), ... }. On considering all possible permutations of the coordinates, {v} 
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Fig. 1. Schematic representation of the geometry of the protein model. The C' vertices are confined 
to high coordination lattice points. The side-chain centers of mass are located off-lattice. Ala, Pro, 
and Gly have a single rotamer for a given backbone virtual bond angle. All the other residues have 
multiple rotamers. 
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contains 90 basis vectors; thus, we refer to it as the 90-neighbor lattice. However, when 
the virtual bond angles are restricted to realistic values, the number of possible 
continuations of the Ca trace, given a pair of preceding Ca's, is about 30. Thus, the. 
intrinsic conformational entropy of the backbone is comparable to real proteins. The 
geometric accuracy of the Ca representation is in the range of 0.6-0.7 A rms with 
respect to high-resolution PDB structures [39]. This is true regardless of protein size 
and orientation of the protein on the lattice. The fact that space is essentially isotropic 
and that all structures can be represented at comparable geometric resolution is the 
reason why this high coordination lattice is used. 

Side chains are represented as a set of pseudoatoms located at the side-chain center 
of mass. For all amino acids except Gly, Pro and Ala, there are multiple rotamers. 
These rotamers are chosen so that the center of mass of a side chain in real proteins 
will be no farther than 1 A from another member of the rotamer library. The 
side-chain rotamers are not confined to lattice points; however, the Ca backbone 
defines the reference frame for the rotamer coordinates. In a similar fashion, it is 
possible to rapidly and quite accurately reconstruct the peptide backbone and Cll 
atoms given a set of three virtual backbone bond vectors; the former can be used in an 
explicit atom hydrogen bond scheme [28,40]. More generally, many geometric and 
energetic quantities can be rapidly accessed from the set of virtual backbone vectors 
that define the instantaneous conformation of the chain. Thus, many quantities can be 
precalculated in advance. This allows for a two-order-of-magnitude speed-up over the 
corresponding model described in a continuous space representation [41]. The 
possibility of such a speed-up is absolutely essential to be able to adequately explore 
conformational space and is the principal reason why lattice models are used. 

Interaction scheme 

The key aspect of any successful model for protein folding is the nature of the terms 
that define the potential. Recently, it has once again become very popular to consider 
a very simple interaction set [42,43]; for example, all hydrophobic residues are treated 
as having the same interactions. While this simplicity is appealing, it belies the fact 
that such an approach generates many essentially isoenergetic chain conformations, 
many of which are geometrically unlike folded proteins. Typically, such an approach 
results in native-like states being in the best several hundred structures as ranked 
according to their energy [43]. While this selection may be somewhat better than 
random, in practice, there are far too many conformations to be of practical use. If, for 
example, one could predict a handful of different topologies, then such topologies 
might be differentiated experimentally. However, when there are several hundred 
possible answers, it is very unlikely that the correct fold can be fished out from the 
myriad of possibilities. 

There is another reason why such a simplistic approach will not work. Consider the 
recent studies of Harbury et al. [37] on GCN4 leucine zippers and a number of 
mutants. They mutated the residues in the core to various combinations of Val, Leu, 
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and lIe. Depending on the identity and location in the sequence of the hydrophobic 
residues, the equilibrium shifted from dimers to trimers and then to tetramers. 
Since for these sequences the residues in the core are always hydrophobic, an 
interaction scheme based on just two types of residues, hydrophobic and hydrophilic, 
could not possibly predict the state of association. More generally, it is possible 
to build structures of different topologies that have the same pair interaction as 
assessed by the number of interacting hydrophils and hydrophobes. While complexity 
for complexity's sake is to be avoided, it is precisely to reduce the number of possible 
low-energy topologies that more complicated interaction schemes have been developed. 

Contributions to the potential 

In what follows, we describe the qualitative features of the interaction scheme which 
we have developed. The origin of these models goes back to very simple HP-type 
models where there are only two kinds of residues, polar and nonpolar 
[4,6-8,14,44-50], but additional complexity has been added to reproduce essential 
features of the physics which would be absent if such terms were excluded 
[18,19,21,23,36]. We wish however to emphasize that the force field is constantly 
being improved and modified in order to enable us to fold a broader class of proteins; 
it reflects the ongoing process of our increased understanding of interactions in 
proteins. Each time the potential changes, we go back and repeat the folding simula
tions on those proteins already folded so as to ensure that the 'improvements' permit 
an ever-increasing set of proteins to be folded. 

The potential must be designed so as to capture both generic and sequence-specific 
features of proteins. The nature of the individual contributions is listed below. 

Hydrogen bonds 

The most important generic term involves hydrogen bonds. Whether the relative 
intraprotein hydrogen bond free energy is less favorable or more favorable than that 
of hydrogen bonds to water is not the crux of the effect. What is most salient is that the 
presence of unsatisfied hydrogen bonds within a protein is energetically very unfavor
able. Since hydrogen bonds are both distance- and orientation-dependent, they are an 
extremely important structural regularizing term. They serve to greatly restrict the 
manifold of accessible compact conformations. 

Two versions of hydrogen bonds have been implemented. One is C"-based [19] and 
the other uses an explicit backbone amide hydrogen and carbonyl oxygen representa
tion [28]. Both reproduce about 90% of the hydrogen bonds as assigned by Kabsch 
and Sander [51]. The former is very much in the spirit of Levitt and Greer [52], 
whereas the latter was introduced to improve the hydrogen bonding in ~-structures. 
In the absence of other contributions to the potential, at low temperature, they tend to 
generate helices punctuated by breaks where the prolines are located [53]. The choice 
of helices over ~-states is due to entropic reasons. 
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Intrinsic secondary preferences 

Next, there are amino acid pair-specific contributions that reflect the statistical 
preference of individual amino acids to adopt a given type of secondary structure. 
Both cooperative and noncooperative versions of this potential have been used. 
Basically, similar behavior is observed, but the former version yields a better defined 
interface between secondary structural elements [19,21,23,24,29,30,36]. This contribu
tion to the energy of the folded state is typically about 20-25% of the total. When used 
alone, this term produces fragments of secondary structure, with a very diffuse and 
continuous conformational transition. When combined with terms that account for 
the generic stiffness of polypeptide backbones, the accuracy of secondary structure 
prediction is comparable to more standard methods, i.e., depending on the sequence, 
between 50 and 70% of the residues are correctly assigned [24]. Finally, by providing 
for a small, but nonnegligible, amount of secondary structure in the denatured 
state, these terms assist in the early states of folding and also act to reduce 
the configurational entropy of compact states. On average, they determine which type 
of secondary structure a protein adopts, but they can be overridden by tertiary 
interactions [20]. 

Burial as a one-body term 

The next class of terms reflects the individual preference of a given residue to be 
buried or exposed. One-body burial terms serve to generate compact structures where 
on average the hydrophobic residues are in the interior and the hydrophilic residues 
are exposed. But, they generate nonspecific side-chain packing arrangements, and 
multiple topologies can have an essentially identical burial energy. In the absence 
of other terms in the interaction scheme, when reasonable coordination number 
lattices are used and compact structures at protein-like densities are generated, 
contrary to the hypothesis of Dill and co-workers [20], secondary structure is not 
enhanced on compaction [17,53-56]. Many of these random conformations would in 
reality have very high energies because these conformations would not be hydrogen 
bonded. 

For single-domain globular proteins, a centro symmetric potential that describes 
the tendency for an amino acid side-chain side to be located at a given relative 
distance from the center of mass of the protein has been used [19,57]. This formula
tion offers the advantage that it can accommodate the fact that residues such as 
tyrosine prefer to be located near the protein surface. However, it suffers from the 
disadvantages that there may be problems if the protein is very asymmetric, it has 
trouble differentiating edge from interior strands in ~-structures, and it cannot be 
applied to multimeric or multidomain proteins. To address these concerns, a potential 
based on the number of side-chain contacts has also been introduced [21]. Whenever 
the environment of a residue exceeds the contact threshold, it is counted as buried. 
A possible problem with this approach is that the situation can arise where a substan
tial amount of the surface is actually exposed, but where the contacts are clustered 
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over a relatively small portion of the surface. Improvement in the formulation of the 
burial potential is clearly necessary. 

Pair potentials 

These potentials of mean force help to select out the preferred topology and are 
operative in the molten globule and the native state. However, they do not provide 
a sufficient energetic separation between the native conformation and alternative 
higher energy structures, many of which have the native fold but different side-chain 
packing arrangements. Thus, they do not yield a unique native state with long-lived 
side-chain contacts. The best pair potentials of mean force have attractive or neutral 
interactions between hydrophils and attractive interactions between hydrophobes 
[23]; obviously, it is essential that hydrophilic and hydrophobic residues experience 
net repulsive interactions. When a pair interaction scale in which hydrophilic residues 
are repulsive is applied to a ~-protein, then highly curved ~-sheets are generated so as 
to minimize the number of hydrophilic-hydrophilic contacts. At a bare minimum, in 
order for twisted, quasiplanar ~-sheets to be stable, the hydrophilic pair interaction 
should be no worse than neutral. However, in those scales where pairs of hydrophilic 
residues are attractive as are pairs of hydrophobic residues, then this contribution by 
itself cannot create the phase segregation where hydrophobic residues are on average 
found in the protein interior. 

Many investigators, ourselves included, have developed statistical potentials of 
mean force between pairs of residues i and j obtained from expressions of the type 
[19,23,58,59]: 

(1) 

with nobs(i, j) the observed number of contacts between pairs of amino acids i and j. k is 
Boltzmann's constant and T is the absolute temperature. This quantity is directly 
obtained from a set of Protein Data Bank protein structures [60]. Here, nexp(i, j) is the 
expected number of contacts if interactions between i and j are random. It is in this 
term that the difference between all statistical contact potentials resides [59]. 

To date, the most sensitive residue-based pair potentials have been derived assum
ing that the quasichemical approximation holds for groups of heavy atoms; then, the 
average residue interaction based on the interaction between such groups is calculated 
[23]. The problem with the quasichemical approximation is that it ignores chain 
connectivity and the presence of regular secondary structure. Recently, a more general 
approach which includes these effects has been developed. Even at the level of 
interacting residues, it is the best inverse folding pair potential derived to date by our 
group [61]. 

Effective multibody interactions 

If one defines a contact as occurring when any pair of heavy atoms is less than 4.2 A 
apart, then interacting supersecondary structural elements in globular proteins exhibit 
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well-defined side-chain contact patterns [18,19,62]. Typical helix-to-helix and beta
to-beta packing patterns are shown in Figs. 2A and B, respectively. Furthermore, it 
is possible to define a set of side-chain center of mass contact distance thresholds so 
that 82% of the heavy-atom contacts are recovered with a Matthews coefficient of 
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Fig. 2. Representative side-chain packing contact maps for an interacting pair of (A) anti parallel 
helices and (B) fJ-strands. 
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0.85 [61]. Thus, contact maps in the single ball side-chain description can essentially 
recover the heavy-atom contact description. In the absence of higher order multibody 
terms beyond pair contributions, we find that the predicted packing patterns of the 
resulting ensemble of structures exhibit essentially random overlap with the native 
state. However, the overlap with native contacts of the lowest energy structures is 
substantial [25]. Unfortunately, these very low energy states are rarely populated, and 
the folding transition is only very weakly cooperative. Furthermore, the models have 
much in common with the molten globule state of proteins [63-66]. They have 
substantial native-state secondary structure, but there is no fixation of tertiary 
contacts, and the manifold of structures tend to be swollen relative to the native state 
[18,25]. This can be rationalized as follows. Both one-body and pair interaction terms 
lack sufficient specificity to produce a native conformation that has a substantial 
energy gap with respect to other relatively nearby conformations. This results in an 
almost continuous transition from the unfolded state. 

The higher order multi body component of the potential is only important when one 
has dense compact states; it permits, but does not require, side-chain fixation. 
Furthermore, without such terms, micro phase separation of the side chains results, 
with an unphysical number and pattern of side-chain contacts. However, a key 
question is whether such potentials are physical or arise simply because reduced 
models are considered. The presence of reduced models certainly suggests that to 
some extent one must modify the interactions to reproduce the finer details of 
side-chain packing. However, even in molecular dynamics simulations of full-atom 
protein models, on starting from the crystal structure, the simulations tend to diffuse 
native side-chain packing towards a more liquid state [67]. Thus, the problem with 
extant potentials may be much deeper. Finally, we note that the potentials we are 
using are potentials of mean force. It is a well-known result from the statistical 
mechanics of small-molecule liquids that higher order correlation functions (for 
example, the three-body radial distribution function) are not simply factorizable into 
lower order distribution functions (this approximation is the Kirkwood superposition 
approximation), even if the naked potential is pairwise additive [68]. 

In order to introduce the possibility of side-chain fixation, Kolinski et al. 
[18,25,29,30,53,62] examined two classes of multi body terms. The first is of the form 

(2) 

with Ikl = Inl. Cij = 1 when side groups i andj are in contact; otherwise Cij = O. Bi,j is 
the pair potential between amino acids i and j. We have considered models with n = 3 
and 4. As indicated in Figs. 2A and B, such patterns are typical of both helix-to-helix 
and beta-to-beta side-chain packing patterns. We have also included n = 1 terms 
which are typical of beta-to-beta contacts. A second implementation of the multibody 
potential involves the use of a neural network to recognize whether or not 7-residue 
by 7-residue subfragments of dense regions of contact maps are native-like [62]. Such 
a formulation can in many cases recognize misfolded proteins based on contact maps 
alone. It offers the advantage that many more kinds of contact patterns are considered 
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than are possible based on Eq. 2. On the other hand, the neural network does not 
consider the identity of participating amino acids. Although it was later modified to 
include the average pair potential of such interacting subfragments [29], it ignores the 
effect of side-chain size and may result in nonphysical packing arrangements. 

Synergism of the contributions to the potential 

Based on a large variety of simulations, we conclude that there is no single 
dominant interaction responsible for protein folding. In agreement with Hao and 
Scheraga [33-35], we conclude that the contribution to the stability of a protein due 
to interactions reflecting intrinsic secondary structure propensities (local hydrogen 
bonding plus local conformational preferences) is roughly equal to that of tertiary 
interactions [18,23,53]. Hydrogen bonding acts to restrict the manifold of compact 
states to those which are almost maximally hydrogen bonded, thereby reducing the 
conformational entropy of compact states. Similarly, intrinsic secondary structural 
preferences, although inherently weak, bias the system towards the secondary struc
ture found in the native state. Of course, these can be overridden by tertiary inter
actions. Hydrophobic interactions create the average phase segregation of the amino 
acids. That is, in a typical protein roughly 75% of all hydrophobic residues are buried. 
However, since all hydrophobic residues are not buried, this argues that there are 
interactions (e.g. the resulting compact structure might not be hydrogen bonded) that 
oppose the burial of all hydrophobic residues. Pair interactions help reduce the 
configurational entropy of compact states by acting to break the degeneracy of 
compact structures and may serve to destabilize alternative conformations as well as 
to stabilize the native fold. Finally, higher order packing interactions might be 
responsible for the fixation of structure on passage from the molten globule to the 
native state [25]. 

Our simulations argue that a protein is a system under tension in the sense that 
while the system is in a global free-energy minimum, this minimum arises as a compro
mise between all the above terms [53]. The native conformation lies in that portion of 
conformational space consistent with the interplay of the interactions that comprise 
a globular protein. By eliminating any given class of terms, an important physical 
feature of a protein is removed. Thus, in these models, there is no single dominant 
term driving protein folding; rather the stability of the native state arises from the 
consensus and interplay of a number of terms representing different physical effects. 

Monte Carlo sampling schemes 

The well-known Metropolis Monte Carlo (MMC) procedure randomly samples 
conformational space according to the Boltzmann distribution of (distinguishable) 
conformations [32]: 

(3) 
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In order to generate this distribution, the transition probability Pi,j from an 'old' 
conformation i to a 'new' conformationj (for the asymmetric scheme) is controlled by 
the energy difference .:\Eij = Ej - Ei via 

Pi,j = min{l, exp( - .:\Eij/kT)} (4) 

Obviously, this technique is very sensitive to the presence of energy barriers. To 
ensure adequate sampling, typically a collection of elemental backbone moves involv
ing end moves, and collective motions of two to four bonds are randomly performed. 
In addition, small-distance motions of a large, randomly selected part of the chain are 
employed. Side chains can also independently move. The key to a successful dynamic 
Monte Carlo protocol is to include a sufficiently large move set so that no element of 
structure is artificially frozen in space. 

To enhance the sampling efficiency, Hao and Scheraga [33-35] have employed the 
entropy sampling Monte Carlo method (ESMC) in their study of simplified protein 
models. ESMC was originally proposed by Lee [69] in the context of a simple Ising 
model and is closely related to the multicanonical MC technique of Berg and Neuhaus 
[70]. Since the formulation of Hao and Scheraga is the most straightforward and has 
been applied to both simplified and higher resolution models, we briefly review their 
approach. 

Unlike MMC, ESMC generates an artificial distribution of states that is controlled 
by the conformational entropy as a function of the energy of a particular conforma
tion Ei: 

PrSMC = exp( - S(Ei)/k) (5) 

The transition probability can be formally written as 

P!3~MC = min{l exp(- .:\S· ./k) 
I,J ' 1,1 (6) 

with .:\Si,j being the entropy difference between energy levels i and j, respectively. 
At the beginning of the simulation, the entropy is not known. However, from 

a density-of-states energy histogram, H(E), an estimate, J(E), for the entropy S(E) can 
be iteratively generated. The kth iteration consists of an ESMC simulation run with 
S(E) approximated by Jk - 1(E). Here, 

(7) 

After a sufficient number of runs, all the states are sampled with the same frequency. 
Then, the histogram of H(E) becomes flat, and the curve of J(E) + constant ap
proaches the true S(E) curve. 

Folding protocol 

For each sequence considered, starting from arbitrary random conformations, 
a series of independent simulated annealing experiments are performed. In many 
cases, at least 10, and more recently at least 20, independent simulations are 
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performed, and the resulting minimum-energy structures are clustered according to 
global topology. If the dispersion in topologies is large, then the sequence is viewed as 
being nonfoldable using that generation of the model and its associated potentials. 
For those sequences that produce a handful (less than four topologies), then each of 
the topologies is subjected to an isothermal stability run. In a number of cases, the 
topologies which result are the native fold and its topological mirror image. For 
example, as shown in Fig. 3, there are left- and right-turning four-helix bundles. In 
both cases, the helices are right-handed, but the chirality of the topology is reversed. 
The structure with the lowest average and minimum energy is assigned to be the 
predicted native state. The resulting lattice model with side chains is then pulled 
off-lattice, and the backbone and side chains are reconstructed using the procedure 
described in Ref. 21. To date, the reduced and full atom models are completely 
compatible [21,29,30,36]. 

(A). LEFT TURNING BUNDLE 

N C 

(B). RIGHT TURNING BUNDLE 

C N 

Fig. 3. Schematic illustration of (AJ left- and (BJ right-turning four-helix bundles. 
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Folding of exaggerated helical protein sequences 

Using a lower coordination lattice, an early set of de novo simulations [18] (i.e. 
folding without any encoded knowledge of the native conformation) was performed 
on two 73-residue sequences designed by DeGrado and co-workers [71,72]. The first 
sequence contained an all-leucine core. In excellent agreement with experiment, this 
sequence is predicted to form a thermodynamically very stable four-helix bundle, but 
one with nonunique side-chain packing. The simulated sequence had many of the 
properties of a molten globule state. It had substantial secondary structure, and its 
average mean-square radius of gyration was about 15% larger than that found in the 
native state of a redesigned sequence (see below). Moreover, the simulations predicted 
that the right- and left-handed four-helix bundles should be isoenergetic. This predic
tion was subsequently confirmed by experiment [73]. Finally, within each topology, 
the molecule migrates among a few distinct families of structures which share the same 
global topology, but which differ in the identity of the residues which stabilize them. 

A second sequence designed by DeGrado had 14 amino acid substitutions in the 
hydrophobic core [72]. In contrast to the first sequence, due to sequence heterogene
ity in the hydrophobic core, differential pair interactions break the degeneracy of the 
various structures, and this molecule is predicted to prefer the right-turning, four-helix 
bundle topology. Following rapid assembly using standard MMC to a four-helix 
bundle topology, the molecule slowly relaxed to a more compact structure which is 
unique at the level of resolution of this class of models. Moreover, since the energy 
monotonically decayed as a function of time during the relaxation process, this 
implied the existence of entropic barriers between the compact molten globule-like 
state and the predicted native conformation. Fixation of the side chains was observed 
to occur when higher order multi body terms of the type given by Eq. 2 are included in 
the model, but it does not happen if such terms are deleted. These simulations pointed 
out the importance of including a cooperative protein-like interaction scheme into the 
potential used in folding. 

Factors responsible for the uniqueness of the native structure 

The full lattice model described above was used to explore the requirements for the 
de novo folding from an arbitrary random conformation of idealized sequences of 
four- and six-stranded B-barrels [23,25]. Of particular interest is the design of 
a putative 45-residue, six-stranded B-barrel which adopts the schematic topology 
shown in Fig. 4A. Simulations using MMC were used to test various possible 
conjectures about the factors responsible for the structural uniqueness of the native 
state [23]. Among these were the relative importance of generic hydrophilicjhydro
phobic amino acid patterns, and the possible role of polar amino acids in destabilizing 
misfolded conformations [37]. 

A simple alternating pattern of valines and serines in the putative B-strand 
regions, when punctuated by appropriate turn-forming residues, is found to produce 
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(A) (B) 

(C) 

Fig. 4. Schematic illustration of (A) the desired six-stranded fJ-barrel and (B) the mirror image barrel. 
The predicted C' trace of the native structure of the designed sequence betamod is shown in (C). 

a manifold of six-stranded ~-barrels having different topologies. This implies that 
a simple HP (nonpolar/polar) model is not sufficient to yield a structurally unique 
native state when systems having conformational entropy on the order of that of real 
proteins are considered. Furthermore, the packing of the resulting hydrophobic core 
is very diffuse. Thus, to enhance the stability of the hydrophobic core and to partially 
break the degeneracy of the various topologies, four Phe residues were introduced 
into the sequence. This reduced the number of observed topologies; however, the 
topology was not uniquely defined. Substitution of Asp for Ser residues was done at 
positions designed to destabilize incorrect topologies. The resulting sequence adopted 
the desired as well as the mirror image topology shown in Fig. 4B. Analysis of the 
energetic contributions indicated that the packing interactions favored the desired 
fold, but that the residues introduced in the turns favored the mirror image topology. 
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Substitution with Gly linkers resulted in the desired native fold becoming the most 
stable topology. The resulting designed sequence, called betamod, is given by 

GVDVDV-GGG-VDVDV-GGG-FRFRV-GGG-VRFRF-GG-VDVDV

GGG-VDVDV 

The residues in bold indicate the location of the putative ~-strands. Strands 1, 4, and 
5 form the first ~-sheet, while strands 2, 3, and 6 form the second sheet. The loop/turn 
regions are composed of flexible Gly connectors. A representative conformation 
obtained from the simulations is shown in Fig. 4C. 

A question remains as to whether this sequence would in reality adopt a unique 
native conformation, a molten globule state or would not fold at all. Thus, experi
mental examination of this sequence is currently underway in the laboratory of 
Dr. Derek Woolfson [74]. In the interim, the results of these simulations suggest that 
these models might prove to be useful tools in protein design. 

Origin of the cooperativity of protein folding 

A very important question is whether simplified models can reproduce the 
thermodynamic behavior of proteins. Experimentally, in a number of proteins, the 
cooperativity in protein folding arises on passage from the molten globule state to the 
native conformation [63,64,75]. Such molten globules or compact intermediates have 
a volume which is about 50% larger than native, a substantial amount of native 
secondary structure, but diffuse tertiary contacts. These observations suggest that the 
fixation of side chains accompanying the transition to the native conformation is 
involved in the cooperativity of protein folding. 

To investigate the possibility of a first-order transition in protein folding, Hao and 
Scheraga [33] employed the ESMC method to examine the folding thermodynamics 
of a 38-residue protein confined to the 210-lattice introduced by Kolinski et al. [14] 
and Skolnick and Kolinski [76]. Subsequently, they examined the sequence require
ments for an all or none transition [34,35]. They conclude that designed or optimized 
sequences exhibit a cooperative folding transition which is long-range (i.e. involves 
tertiary interactions), whereas random sequences fold to compact states by what is an 
essentially continuous transition. These are very important studies, because they show 
for the first time in a nontrivial model that adoption of a unique low-energy state 
depends on the interplay of long- and short-range interactions. These model proteins 
included a local conformational bias for native-like secondary structure and a single 
side-chain rotamer for each residue. 

Subsequently, Kolinski et al. [25] employed the ESMC method to investigate the 
folding thermodynamics of betamod. These studies build on the Hao-Scheraga work 
in the following ways. Now, a much higher coordination lattice is used, there is no 
target bias for the native state's secondary structure, and multiple side-chain rotamers 
are present so that the possibility of side-chain fixation exists. These three differences 
result in a model which has a considerably higher entropy in the compact state. 
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Fig. 5. Plots of the free energy, FITc, versus energy, E,for models I-III at the transition midpoint 
temperature, Tc. 
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Three distinct versions of tertiary interactions were considered. In the first, model I, 
only pair potentials are used. Model II also includes n = 3 and n = 4 type terms given 
by Eq. 2. Model III extends model II to include beta-type n = 1 terms. The scale 
factors for the pair and multibody interactions have been adjusted so that the tertiary 
interaction energy in the putative native fold of all three models is essentially the same. 

As shown in Fig. 5, where the reduced free energy, F lTc, versus energy, E, is plotted 
at the folding transition temperature, Te> qualitatively different behavior is seen on 
passage from model I to model III. Model I, lacking high-order multibody interac
tions, essentially has a continuous thermodynamic transition. With the inclusion of 
higher order multibody packing interactions, the conformational transition becomes 
all or none. Interestingly, the lowest energy states in all three models correspond to 
the same manifold of structures (i.e. structures which are unique at the level of 
resolution of the lattice models) and correspond to the native fold shown in Fig. 4C. 
What differs in the three models is the separation of the low-energy native-like state 
from the manifold of other conformations that contribute to the partition function. 

Nature of the transition state 

The nature of the conformations located at the free energy versus energy maximum, 
viz. the transition state, was examined. In models II and III, which exhibit two-state 

Fig. 6. Predicted native state and corresponding mirror image topology of the B domain of 
protein A shown in green and magenta, respectively. 
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Fig. 7. Predicted backbone trace of protein A in magenta, superimposed on the experimental NMR 
solution structure in green. 

thermodynamics, the transition state is comprised of structures having about 60% of 
the native state's secondary structure, about 50% of the side-chain contacts which are 
native, and a volume which is about 50% larger than native. This description of the 
transition state supports Kuwajima's [63] critical substructure model, where the ac
tivated state has a partial amount of native secondary structure, there are a subset of 
native contacts and the molecule is swollen relative to the native conformation. Such 
a range of physical properties has also been experimentally observed in a number of 
systems including (X-lactalbumin and calcium-binding parvalbumin [77]. These simula
tions suggest that cooperative many-body interactions involving protein side-chains are 
the dominant factor responsible for the cooperativity of protein folding in models where 
the side-chains have internal degrees of freedom and perhaps in real proteins as well. 

Folding of domains of protein A 

In solution, the B domain of protein A is a 55-residue protein in which residues 
10-55 adopt a three-helix bundle geometry [78]. Because of its structural simplicity 
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and small size, this protein is a natural testing ground for de novo prediction methods, 
and a variety of generations of the model have been applied to this molecule 
[20,29,36]. Initially, folding of this molecule was attempted on a coarser lattice, 
followed by refinement on the 90-neighbor (finer) lattice described above [20,36]. 
Based on both the average and minimum energy, the correct topology is chosen over 
the mirror image, both of which are depicted in Fig. 6 in green and magenta, 
respectively. For this sequence, all contributions to the energy favor the native state. 
The resulting structures have an rms from native for residues 13-55 of 3.3 A. A typical 
predicted conformation superimposed on the solution NMR structure of Gouda et al. 
[7S] is shown in Fig. 7. Subsequent refinement of the model showed that the folding 
on a coarser lattice followed by refinement on the finer lattice (which permits better 
helix-to-helix packing) is unnecessary; rather, direct folding on the finer lattice is 
a more straightforward and simpler procedure [20,29,36]. 

In the original simulations, folding tended to occur by the preferential formation of 
the N-terminal hairpin, followed by assembly of the final helix [20]. Subsequent 
simulations on a more refined model suggest that the C-terminal hairpin assembly is 
more likely. There is also an indication that the C-terminal helix of the B domain of 
protein A may be stable in solution. There is some experimental indication that this 
might be the case [79]. In agreement with experiment, the simulations predict that the 
folded state is native-like with very long-lived side-chain contacts. 

The B domain is but one of five highly homologous, extracellular domains of 
protein A designated as E, D, A, B, and C, respectively. These five domains all 
bind to immunoglobulin. Thus, it is a reasonable conjecture that all have the same 
solution structure. In addition, Montelione and co-workers have determined the 
NMR solution structure of the Z domain of protein A, which differs from the 
B domain by the single-point mutation G30A [SO,S1]. They find that it has a very 
similar fold to that of the B domain. In order to investigate the ability of the folding 
algorithm to fold homologous sequences, the folding of all five wild-type domains and 
the Z domain was successfully undertaken. In all cases, the native topology is 
energetically favored over the mirror image topology, with the C domain exhibiting 
the smallest energetic preference for the native over the mirror image fold. For all six 
sequences, the final structures are within 3.5 A rms of the predicted B domain 
conformation. 

Redesign of protein A to adopt the mirror image topology 

A key question in understanding the principles of protein folding is the origin of the 
preference for a given topology as opposed to the topological mirror image. Two 
viewpoints have emerged: in one, the topology is dictated by the packing interactions 
in the hydrophobic core [S2,S3], and in the other the turns playa role in dictating the 
preferred topology [S4,S5]. To examine these questions, we attempted to redesign the 
sequences of the B and A domains of protein A so that they adopt the mirror topology 
shown in Fig. 6 in magenta. Both multiple mutations in the hydrophobic core and in 
the turn regions between helices I and II were made. To scan a large number of 
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mutations to search for sequences that favor the mirror image over the native fold, 
a sieve method was developed. Modifications in the hydrophobic core were made in 
three groups, each involving point mutations at six sites. At each site, the native 
residue was replaced by Ala, Val, Ile, Leu and Phe. Thus, 15625 mutations were 
examined for each group of mutation sites. For those sequences which survived the 
sieve procedure, none was found to prefer the mirror image over the native fold. 
Therefore, these results are consistent with the idea that the fine details of hydropho
bic packing do not constitute the sole driving force for the folding process, but may 
stabilize an already acquired motif [86]. 

Next, two-point mutations in the turn connecting helices I and II were examined. 
With the exception of glycine, proline and cysteine, all possible mutations of Asn22 

and Asn24 were allowed. Again applying the sieve procedure, most mutations in the 
turn regions do not disrupt the preference for the native fold. This is qualitatively 
consistent with experiments which indicate that, in general, turns can be modified 
without qualitatively changing the global fold [87,88]. However, about 11 of the 289 
mutants, i.e. about 4%, resulted in sequences having varying degrees of preference for 
the mirror image topology. 

The most promising N22R and N24M double mutant was subject to further 
evaluation. While the probability of finding an Arg in the i + 2 position of the turn is 
relatively high, Met is rarely seen in the N-caps of helices [89]. To confirm that the 
RM mutant is foldable (at least in computro), a series of 10 independent MMC folding 
simulations were undertaken. In 6 of 10 simulations, the mirror image topology is 
obtained, with the remainder adopting the native fold. The RM mutation modifies the 
intrinsic secondary structure preferences so that in contrast to the wild-type they now 
favor the mirror image turn. This tendency is further augmented by the burial of M in 
the mirror image, but not in the native fold. This produces a net favorable pair 
interaction for the mirror image topology. In other words, the predicted preference for 
the image topology arises from the favorable juxtaposition of intrinsic secondary 
preferences and tertiary interactions [85]. These models indicate that such a juxtapo
sition is what is responsible for the adoption of a particular fold. To ensure that the 
predicted lattice models are consistent with atomic resolution models, all-atom 
models were constructed and were found to be in complete qualitative agreement. The 
experimental test of this prediction is now underway in Dr. Peter Wright's [79] 
laboratory here at Scripps. Finally, to examine the robustness of the RM mutation, it 
was applied to the A domain of protein A. The simulations predict that this sequence 
should also be a likely candidate for adopting the mirror image topology. 

Effect of amino acid order on folding 

By reading the sequence of a naturally occurring protein backwards, i.e. generating 
a retroprotein, a sequence of the same composition and hydrophobicity as the 
wild-type protein results [90]. However, proteins are chiral systems, and there have 
been a number of conjectures as to whether retroproteins will fold, and, if so, what 
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topology will they adopt. Some authors have gone so far as to suggest that a retro
protein might adopt the mirror image structure, including left-handed helices [91]. 
While this conjecture is unlikely, there are a number of consequences accompanying 
the retroinversion of a sequence. All prediction methods based on composition will 
predict the same structural class for the wild type and retroprotein [92]. However, if 
the positions of the helices and turns remain the same as in the wild type, then in 
general the locations ofthe capping [93,94] and turn residues will not be optimal [89]. 
At a minimum, one might expect some rearrangement of the secondary structural 
elements. If side-chain packing and/or the distribution of nonpolar side chains is 
a dominant factor in determining the global fold, then one might expect the retro
protein to adopt the same topology as that of the native protein. There is always the 
possibility that an entirely different fold might be adopted or the retroprotein might 
not fold at all. 

Because of the robustness of the lattice folding algorithm as applied to protein A, 
the retrosequence of the B domain was generated and subjected to a series of 15 
folding experiments [30]. The results strongly suggest that the predicted native state 
of retroprotein A, shown in Fig. 8, is a three-helix bundle of the same topology as the 
wild-type sequence. It is important to emphasize here that the prediction that the 
retrosequence adopts the same topology as the wild-type sequence may be due to 

Fig. 8. Predicted all-atom model of the retrosequence of the B domain of protein A. The ribbon tube 
depicts the position of the backbone atoms , and clearly indicates a three-helix bundle topology. 
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Fig. 9. Predicted C' trace of the native conformation of cram bin, in magenta, superimposed on the 
crystal structure, in green. 

the high symmetry of the three-helix bundle fold, and it is very likely that this result 
is not true in general. 

To accommodate the local secondary structural propensities, the secondary struc
tural elements shift their positions with respect to the B domain. Among the most 
salient changes is the shift in the location of the C-terminal turn. This adjustment in 
position allows for the third helix to have N-cap residues that are favored. Further
more, the predicted structure retains many of the hydrophobic core contacts as in the 
B domain. This suggests that hydrophobic interactions exert an important influence 
on driving the system to adopt a three-helix bundle topology. However, pair interac
tions alone are isoenergetic in the native and mirror image fold. What drives the 
system to favor the native fold is the difference in burial energies of the two topologies. 
This implies that in this case burial preferences select out the native over the mirror 
image topology. 

Subsequently, atomic models were built from the lattice structures. In all cases, the 
hydrophobic core is well packed. Depending on the starting structure, the N- and 
C-terminal ends of the helices vary by about one residue. Overall, the lattice and 
all-atom models are consistent. Encouraged by these results, the structure of this 
sequence is now being determined by Dr. Chi-Huey Wong's group [95] at the Scripps 
Research Institute. 
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Folding of ROP monomer 

The native structure of wild-type ROP is a dimer consisting of two antiparallel 
helical hairpins arranged in a coiled-coil geometry [96]. Sander and co-workers have 
redesigned this molecule to form a 120-residue, monomeric, left-turning, four-helix 
bundle [97]. Subsequently, Regan et al. have also redesigned the dimer to form 
a monomer using glycine linkers of various lengths [88]. In simulations done to date, 
the original Sander sequence has been used; work is in progress to fold those 
sequences designed by Regan et al. In the earlier simulations, folding commenced on 
a coarser lattice from random geometries [19,20]. A very strong preference for the 
designed, left-turning bundle was indicated. As in the case of protein A, the resulting 
low-energy structures were then projected onto the 90-neighbor lattice and refined. 
The predicted structures have a C" rms ranging from 2.6 to 4.2 A with respect to the set 
of equivalent residues in the ROP dimer crystal structure. What is striking is that the 
simulations predict that the molecule has less supertwist than is found in the ROP 
dimer structure. Whether these predictions are true or not awaits the experimental 
determination of the ROP crystal structure. 

The folding simulations predict the existence of late, presumably molten globule, 
folding intermediates that are present prior to the formation of the native state. These 
metastable intermediates have the same global fold as native, but their radius of 
gyration is about 5% larger. Similar chain expansions have been observed in an 
apomyoglobin folding intermediate [98]. The secondary structure is essentially identi
cal to native but there are much larger fluctuations in the turn regions and at the chain 
ends. In the molten globule, none of the side-chain contacts survives for the entire 
simulation run, while in the native state there are many such long-lived contacts. 
Furthermore, in the molten globule, the side-chain contact patterns are more diffuse, 
which is consistent with the observation that the helices are sloshing back and forth 
against each other. Detailed analysis of the dynamics of the molten globule state 
indicated that it is very liquid-like, and has much in common with the dynamics of 
a gel. In contrast, the native conformation is much less mobile, with the displacements 
(apart from global diffusion) limited to relatively small-scale motions. 

Folding of crambin and the use of predicted secondary bias to enhance folding efficiency 

To address the concern of whether the model can predict the tertiary structure of 
cx/~ proteins, the folding of crambin was undertaken [19,20]. This 46-residue protein 
has a native state comprising a helical hairpin and a three-stranded antiparallel 
~-sheet. It also contains three disulfide cross-links [99]. The simulations do not 
assume anything about a specific cross-link pattern, but rather that cystines of some 
sort are present. When straightforward folding from the random state was under
taken, the correct topology and disulfide pattern is always recovered, but in most 
cases the secondary structure, especially in the putative helical regions, is highly 
distorted. 
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To alleviate this problem, higher temperature simulations were undertaken where 
the S-S bond dissociation rate is sufficiently high. Then, statistics about secondary 
structure preferences (helix/turn or extendedfloop) are collected. This pre
screening predicts the location of the N-terminal helix with a shift of two to 
three residues towards the amino terminus, but the prediction for the second helix 
is more accurate. This stands in contrast to most standard secondary structure 
prediction methods which mostly predict ~-strands in these regions [100,101]. 
With an approximate prediction of the helical regions in hand, a small energetic 
bias (proportional to the helicity of a given residue at the higher temperature) 
is added to the model. In about 50% of the folding simulations, low-energy 
conformations having a helical hairpin whose CO< rms from native is about 4 A 
are predicted. The other conformations preserve the global topology of the native 
fold, but are 20% higher in energy. Subsequent refinement at low temperature 
produces structures whose average CO< rms is below 4 A. For residues 3-42, the 
average coordinate rms is 3.6 A, with a distance rms of 2.6 A. As is evident from Fig. 9, 
which shows the predicted structure in magenta superimposed on the backbone of the 
crystal structure, in green, while the global fold is well reproduced, there are slight 
shifts in the position of one of the helices and the conformation of residues 43-46 is 
incorrect. 

This protocol has also been applied to the folding of protein A, with comparable 
results obtained as when the predicted secondary structure bias is not incorporated 
into the folding algorithm. In addition, the protocol has been employed to predict the 
tertiary structure of the V-3 loop of gp-120 [102]. The resulting conformation is 
suggested to consist of three ~-strands and a small C-terminal helix. The results of 
these simulations suggest that either experimental or predicted secondary structural 
constraints can be incorporated into the folding algorithm. Such predicted biases 
can greatly speed up the folding process. However, care has to be taken to 
ensure that if the prediction is uncertain, it can be overridden by other inter
actions. 

Method for the prediction of surface V-turns and transglobular connections in small 
proteins 

A knowledge of the locations where the chain changes its global direction, i.e. the 
V-turns, and of the dominant secondary structure of the intervening transglobular 
regions, i.e. the blocks, represents very useful information for a folding algorithm [27]. 
Thus, a simple method for predicting these building blocks in small single-domain 
proteins has been developed. Such an approach is complementary to more standard 
secondary structure prediction schemes [103]. Here, global rather than local informa
tion is desired; the structural assignments depend on the conformation of the entire 
chain. For example, if a given region favors helix, this tendency can be overridden 
because another part of the chain has a lower energy if it is helical and the first helical 
region is shifted to form a turn. 
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Table 1 Summary of prediction statistics for the blocks and U-turns algorithm 

Protein Surface Errors of Secondary Comments on 
name" U-turn U-turn structure wrong assignment 

prediction 10cationsC block 
accuracyb prediction 

accuracyd 

19b1 4/4 0-2/2# -3-0 5/5 

proA 2/2 2-3 3/3 

Has 5/5 2-1-0-2-0 5/5 Terminal coiled 
assigned ~, 
inserted ~ 
without a turn 

lpou 3/3 4-3-2-0 4/4 Extended coil 
lover inserted 

ltlk 7/7 5-3-2/1-1-2-4-7 7/8 Turn inserted into 
the C-terminal ~-strand 

iris 5/5 3-5-6-3/4-4 5/6 Second ~-strand 
predicted helical 

lIpt 4/4 0-5-2-0 4/4 Shifted turns, 
hairpin-like 
C-terminus 
predicted as ~ 

lten 6/7 1/1-3-0-3-2-2/1 7/8 Shifted turns, 
one ~-strand missed 

lmjc 5/5 1-2-0-2-0 6/6 Long central coil 
added as ~ 

41/42 = 98% 46/49 = 94% Including overpredicted 
lover turn in ltlk 

" PDB descriptor. 
b The ratio of the correctly predicted number of surface U-turns to the actual number in the 

protein. A turn is said to be correctly predicted ifits boundaries at least partially overlap with 
the actual turn location. 'Over' indicates that an additional U-turn(s) is predicted which does 
not occur in the protein structure. 

C i/j means that i residues of the preceding block andj residues of the following block have been 
incorrectly assigned as a part of the surface loop/turn. Otherwise, the number of overassigned 
residues of one of the transglobular blocks is given. 

d The ratio of the correctly predicted number of secondary structure blocks to the actual 
number of surface turns in the protein. The secondary structure of a given block is said to be 
correctly predicted when the secondary structure of the three central residues agrees with the 
experimental structure. 
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The method consists of five basic steps: 
(1) Estimate the radius of gyration of the protein. This imposes restrictions on the 

maximum and minimum length of the extended and helical fragments that can 
fit into the globule. 

(2) The locations of the V-turns are randomly chosen and hairpins appropriate to 
the chain division are pulled from a database of protein structures. While 
a lattice realization of the structures is used for computational convenience, in 
principle, the approach is completely general. 

(3) The energy, consisting oflocal secondary preferences, a centrosymmetric burial 
term, and a term which reflects the orientation of the hydrophobic face with 
respect to the core, is calculated. 

(4) The division process is repeated many times. 
(5) At the end of the selection process, the statistics on the set of lowest energy 

structures are performed. The location of the predicted V-turns is established, 
and the dominant secondary structure in the three central residues between 
V-turns is used to assign the secondary structure of the entire block. 

Application has been made to a set of test proteins, and part of the results are 
summarized in Table 1. At least for the testing set, the method is quite accurate, with 
over 90% of the V-turns and blocks correctly predicted. In six of the nine test 
sequences, the number of V-turns and the secondary structure of the blocks are 
correctly predicted. These encouraging results suggest that the blocks and V-turns 
algorithm holds considerable promise in providing important information for three
dimensional modeling procedures. When successful, it provides sufficient information 
to propose a relatively small number of low-resolution alternative folds. Furthermore, 
it can be used as a filter or constraint in inverse folding algorithms either to predict the 
global topology or, in a potentially more powerful application, to predict the confor
mation of hairpin fragments. At present, when inverse folding algorithms are used to 
predict the structure of 15-20-residue pieces of a protein, mixed in with the correct, 
low-energy structures are a variety of comparable energy false positives. The blocks 
and V-turns algorithm can be used to filter out such false positives. Preliminary 
application of this combined approach has yielded promising results. 

Folding with a small number of long-range restraints 

A number of investigators have examined the problem of determining a low to 
moderate resolution protein structure given a relatively small number of distance 
restraints and some knowledge of the secondary structure [26]. The ability to predict 
such structures would aid in the early stages of NMR structural refinement when 
secondary structure information and a limited number of distance restraints are 
known. In contrast, when a large number of restraints are available, then the use of 
distance geometry or distance geometry supplemented by molecular dynamics are the 
methods of choice [104]. Here, we describe results when the lattice model of protein 
folding is supplemented by a rough knowledge of secondary structure and some 
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tertiary constraint information. Such an investigation can also clarify whether the 
present realization of the model is basically correct, but is simply in need of further 
refinement, or more substantial problems with the model exist which would require its 
fundamental reformulation. 

From random extended states, the folding of L 7/L12 ribosomal protein, 1ctf, 
protein G, 19b1, and thioredoxin, 2trx, all of which are Q(/~ proteins, plastocyanin, 
1pcy, which is an all-beta protein, and the helical protein, sperm whale myoglobin, 
1mba, were undertaken [60]. After a simulated annealing run, the resulting final 
conformation is subject to isothermal refinement. At least five, and in many cases 20, 
independent folding/refinement runs were performed. For the sake of brevity, the 
simulation results for the run having the lowest average energy are presented in 
Table 2. 

For the three Q(/~ proteins considered, it is apparent that reasonable structures are 
obtained when there is on the order of one long-range constraint every seven residues. 
Similar results are found for helical proteins. Reflecting inherent problems in the 
model, this class of models requires a greater number of restraints for ~-proteins. For 
the ~-protein plastocyanin, one tertiary constraint every four residues is required. 

These results should be compared to those of Smith-Brown et al. [105]. To obtain 
results of comparable accuracy to plastocyanin folded with 46 restraints, they re
quired 90 restraints to fold a variable light domain of human immunoglobulin, 3Fab 
[60]. Similarly, Smith-Brown et al. require 147 constraints to obtain a structure that is 
3.18 A rms from the native conformation of flavodoxin [60]. In contrast, preliminary 
results on the folding of flavodoxin with 35 tertiary restraints indicate that structures 
on the level of 4 A rms are obtained. 

Aszodi and co-workers [106] have applied a distance geometry protocol where the 
secondary structure is known and where correct constraints are supplemented by 
predicted interresidue distances based on multiple sequence alignments. They refold 
thioredoxin with about 48 restraints to structures whose rms is about 5.0 A. However, 
for a smaller number of restraints, the structures are almost random, having an rms 
from native on the order of 10 A. In contrast, with just 15 restraints, structures on the 

Table 2 Results from NMR docking simulations with a limited number of tertiary restraints 

Protein Number of Number of Average Average 
residues tertiary coordinate distance 

restraints rms' rms' 

19b1 56 8 3.81 2.72 
1ctf 68 8 4.27 3.13 
2trx 108 15 6.60 4.77 
1pcy 99 46 3.32 2.46 
1pcy 99 25 6.22 3.93 
1mba 146 20 5.52 3.85 

• Root-mean-square deviation of the Ca coordinates in A. 
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level of 6.6 A rms are obtained here. Moreover, in the case of helical proteins such as 
1mba, the docking algorithms can assemble the approximate topology. This suggests 
that the present lattice-based approach could be used to generate low to moderate 
resolution structures from a rather small number of restraints. However, the present 
realization needs improvement. Short-range restraints are incorporated as a very soft 
energetic bias to helix, turn or extended conformations, as appropriate. Tertiary 
restraints are also very loosely defined as operating on the level of side-chain contacts. 
Better restraints that actually include the information contained in 2D and 3D NMR 
experiments should be implemented. Similarly, disulfide bond restraints, which have 
a very specific geometry, could also be included. Thus, the results from this very simple 
realization of tertiary restraints could possibly be improved by better use of experi
mental data. 

Folding of the GCN4 leucine zipper 

Because of their sequential and structural simplicity and biological importance, 
coiled coils are natural test systems for protein folding and multimer assembly 
algorithms. The simplest realization of the coiled-coil motif consists of two ct-helices 
wrapped around each other with a left-handed supertwist. Furthermore, coiled-coil 
sequences are characterized by a quasirepeating heptad of residues designated by the 
letters a-g, where positions a and d occur in the coiled-coil interface [107]. A partic
ularly well characterized coiled coil is the leucine zipper of the transcriptional 
activator, GCN4 [108,109]. Each protein chain contains 33 residues, and it has 
a high-resolution crystal structure. To predict the GCN4 quaternary structure, Nilges 
and Brunger [110,111] assumed an initial conformation consisting of an idealized, 
parallel coiled coil. They were able to refine the structure from an initial 3.1 A rms on 
the backbone atoms to a level of 1.26 A rms for the backbone atoms and 1.75 A for all 
heavy atoms in the dimerization interface. To accomplish this refinement, they used 
molecular dynamics supplemented by imposed helical backbone hydrogen bond 
restraints and a number of distance restraints. 

Vieth and co-workers [21] have employed a hierarchical approach to fold the 
GCN4 leucine zipper from two chains that were initially in random conformations. 
No information about the global fold is assumed other than that there are two chains 
in a box. Thus, the possibility of higher order multimer formation was not considered 
there. First, a high-resolution lattice model is employed to assemble the topology. The 
lowest energy lattice structures have an rms from the C" trace of the crystal structure 
ranging from 2.3 to 3.7 A. Then, using these structures, detailed atomic models were 
built and relaxed using CHARMM all-atom building and MD-based simulated 
annealing in explicit water [112]. The average structure built from the entire family of 
five independently refined conformations has an rms deviation of 0.8 A for the 
backbone atoms, 1.31 A for the heavy atoms in the dimerization interface, and 2.29 A 
for all heavy atoms. Figure 10 shows tube diagrams of the backbones of the five 
refined structures along with the crystal structure, which is shown in magenta. The 
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A 

B 

Fig. 10. Side and top views of the tube diagrams offive refined, predicted structures of the GCN4 
leucine zipper, shown in red, yellow, green, cyan and white, along with the crystal structure, shown 
in magenta. Basically, there is one fused, six-color tube. 

predicted positions of the side chains in the dimerization interface are essentially 
unique, but much greater variation is found in the positions of the surface residues. 

These simulations also suggested a possible mechanism of the GCN41eucine zipper 
coiled-coil assembly. Folding commences from the collision of two short helical 
stretches, generally located at the ends of the chain. These interacting helical stretches 
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then propagate along the molecule. After small adjustments in registration by an inch 
worm type mechanism, the final, parallel in register coiled-coil dimer forms. Among 
the last regions to lock into place are the Asn16 residues which are located in the 
dimerization interface and which are regions of predicted low intrinsic stability. 
Although a detailed study has not yet been performed, there is some indication that 
assembly from the N-termini is preferred. 

Method for predicting the state of association of proteins 

A limitation of the above calculation is the assumption that the oligomerization 
state has no higher order dimers. However, coiled coils can associate to tetramers or 
even higher order aggregates [37,113,114]. Due to computer time limitations, the 
straightforward simulation of multimer equilibria is far beyond contemporary com
puter resources. Furthermore, if MMC is used, then the folding process must be 
repeated tens, if not hundreds, of times to be statistically significant. Thus, to predict 
the state of association, we developed a methodology that estimates the equilibrium 
constants among a spectrum of assumed parallel and antiparallel oligomers [22,115]. 
Subsequently, a more refined, lattice-based method was developed that also permits 
the monomeric state to be included [31]. Since the second method gives essentially the 
same results as the original technique in the regime where the two approaches overlap, 
we summarize the results from this more general approach. 

In order to calculate the equilibrium constant [116], the internal partition func
tion, Zinb is required. For the denatured state, to estimate Zinb we developed 
a transfer matrix treatment that includes all interactions within five-residue fragments 
[31,76]. The disadvantage of this approach is that it ignores longer range interactions. 
Dimers and higher order multimers are treated somewhat differently. First, we note 
that, in general, P(E), the probability of being in an energy level E, is related to 
Zint by 

Zint = N (E)exp( - ~E)/P(E) (8) 

Here, N(E) is the degeneracy of energy level E and ~ = 1jkT. Since E and P(E) are 
readily obtained from an MMC simulation, the remaining problem is to determine 
N(E). It may be estimated to within a constant by ESMC [33,34]; however, here we 
use a quasianalytic method. The basic idea is to focus on the most probable energy 
state. The Monte Carlo simulation provides the set of three consecutive C" virtual 
bonds that are sampled by the ensemble of structures having the most probable 
energy, E. N(E) is obtained as the transfer matrix product of all such sets of three-bond 
vectors that are appropriately combined. 

Initially, this approach was applied to calculate the monomer-dimer equilibrium in 
the GCN4leucine zipper [108] and its fragments [117]. The results of the calculations 
and the comparison with experiment for the predicted dominant species are shown in 
Table 3. For the three cases for which experimental data are available, the prediction 
agrees with experiment. Examination ofthe stability of the GCN4 fragments indicates 
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Table 3 Comparison with experiment of the predicted dominant species for the GCN4 leucine 
zipper 

Protein 

GCN4 wild-type 
GCN48-30 
GCN411-33 
GCN 4-26 

Predicted dominant 
species 

2 
2 
1 
2 

Experimental 
dominant species 

2 
2 
1 

Not yet measured 

that the stability of a given fragment cannot be estimated from the stability of the 
parent molecule. A similar situation is obtained for other coiled coils such as 
tropomyosin. The origin of the lack of stability of the 11-33 fragment arises from the 
difficulty in burying Asn16 in a helical conformation in the core. In the 11-33 
fragment, there would be a single helical turn at the N-terminus before the Asn. 
Since it is not stable enough to force the hydrophilic Asn to be helical, the 
entire fragment becomes disordered. This effect is due to loop entropy, which in coiled 
coils acts to prohibit random coiled conformations between interacting helical 
stretches [118]. In this and in all the systems studied, the simulations suggest that 
coiled coils are highly cooperative with many of the observed phenomena caused by 
nonadditive effects. 

Next, we examined the stability of Fos and Jun coiled coils. In partial agreement 
with experiment, Fos without a GCG linker is predicted to be monomeric, whereas at 
high concentration both monomer and dimers are present [38]. In an equimolar 
mixture of cross-linked Fos and Jun homodimers, as in the experimental system, the 
simulation predicts that Fos heterodimers should preferentially form. The calcu
lations suggest that the presence of Thr and Lys in the interfacial region of Fos 
homodimers gives rise to the relative instability of Fos homodimers. When an 
equimolar system of Fos and Jun are present, the system can lower its overall free 
energy by forming Fos-Jun heterodimers. 

Coiled coils can also provide insights into the factors driving the formation of 
quaternary structure. In an elegant study, Harbury et al. [37] simultaneously replaced 
all four a and d residues of the GCN4leucine zipper by Leu, Val, and He. In Table 4, 
the theory is compared with experiment. In five of eight cases, the simulations and 
experiment are in agreement over the entire concentration range, and, in another case, 
agreement is found over a portion of the experimental range. These calculations 
suggest that intrinsic secondary structural preferences and configurational entropy 
favor lower order species, while quaternary interactions favor higher order species. 
This conjectured origin of multimer stability is inconsistent with the suggestion of 
Harburyet al. [37] that the selection of a given species is due to the requirement that 
the lowest energy side-chain rotamer selects the particular interchain packing ge
ometry. Such a level of detail is beyond the lattice models where the side chains are 
represented by soft core balls. 
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Table 4 Comparison o/the predicted and experimentally measured dominant species o/GCN4 and 
seven mutants 

Residues at positions Dominant species Dominant species 

d from experiment from simulation a 

GCN4 wild-type 2 2 
I L 2 3 
I I 3 3 
L I 4 4 
V I ? 3 
L V 3 3 
V L 2,3 2 
L L 3 3 

Weaknesses of the lattice models 

While this chapter has presented a number of examples where folding of a pro
tein from sequence alone has been achieved, the full solution of the protein 
folding problem is not in hand. There still remain problems with the potentia1. 
While the current generation can differentiate grossly incorrect folds from native, 
in many cases it is very difficult to differentiate topologies having substantial 
similarity to the native fold. These close topological cousins have essentially 
the same burial energy as native and differ by a relatively small number of 
side-chain contacts and differences in secondary structure. To some extent, this 
is a physical effect. Even if two topologies differ on average by lOkT in energy but 
have comparable configurational entropy, then the lower energy fold will be ther
modynamically very favored [22,115]. However, the accurate portrayal of this 
difference is nontrivia1. Furthermore, due to the representation of side chains as 
soft balls with a single interaction center and a relatively wide interaction basin, 
the high coordination lattice models overestimate the protein's entropy. Such 
an excess entropy also results in an increase in the backbone's flexibility. This 
is probably a major cause of the difficulty the models have with the folding of 
naturally occurring ~-proteins. Part of this effect is inevitable in any reduced 
protein mode1. Clearly, improved side-chain representations are necessary. Another 
problem concerns adequate conformational sampling. Given that close topologies 
have overlapping energy spectra, a sufficient number of simulations must be done to 
ensure that the predicted low-energy structure is well characterized. At present, 
this is possible only for simple folds lacking reversals in chain direction. ESMC 
may be helpful in this regard, but such calculations can also be very expensive 
[25,33-35]. Thus, the model representation, potential and sampling protocols all 
require improvement. 
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Conclusions 

In this chapter we have described the folding of protein A and seven homologous 
sequences, the putative retrosequence of protein A, two sequences designed by 
peGrado, a putative ROP monomer, crambin, the V-3 loop of gp-120, and the 
GCN4leucine zipper. For many of these sequences, structures which are in reasonable 
agreement with experiment have been predicted, and the remainder stand as predic
tions to be tested by experiment. Furthermore, assuming that the native state is 
located in a collection of parallel and antiparallel dimers, trimers and tetramers, the 
quaternary structure of GCN4, two of its fragments, five of eight wild-type mutants, 
Fos, Jun, and Fos-Jun heterodimers have been successfully predicted. In addition, the 
4-26 fragment of GCN4 is predicted to be dimeric. The simulations argue that the 
native structure is a compromise among numerous contributions to the potential. The 
different terms such as hydrophobic interactions, hydrogen bonding and cooperative 
side-chain packing interactions give rise to different aspects of protein-like behavior. 
The results to date suggest that progress is being made in the de novo prediction of 
protein structure. Future advances are likely to result from better, more specific 
energy functions, better model realizations, and combined approaches such as the use 
of inverse folding to predict the structure of fragments followed by their assembly 
using reduced models such as have been discussed here. Overall, the prospect for 
future progress in the protein folding problem remains bright. 
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1. Introduction 

The drug discovery and design process is an awkward mixture of chance and skill; 
hence, any technique that improves the odds or simplifies the procedure is rapidly 
exploited and developed by the medicinal chemistry community. A range of computa
tional techniques including molecular modelling have been widely applied, resulting in 
structure-based drug design. This design process is reliant on structural information on 
either the receptor of the biological target or from a series of ligands known to bind at 
the receptor. It has been highly successful and leads to the generation of highly potent 
inhibitors for a range of biological targets including HIV-l protease [1-11], 
thymidylate synthase [12-19], carbonic anhydrase [6,20,21], matrix metalloproteinase 
[22-24], FKBP12 [25-28], thrombin [29-36] and influenza-virus sialidase [37,38]. 

Once our biological target has been selected, the design strategy can be divided into 
three stages: 

1. Analysis of the structural information of the receptor (derived via X-ray crystal
lography, NMR or homology) or the pharmacophore (derived from a series of ligands 
known to bind at the specified receptor). This yields our active site model. 

2. Satisfaction of some or all of the binding requirements of the active site by 
placing appropriate chemical functionality (hydrogen bond donors, hydrogen bond 
acceptors, hydrophobic groups, charged species) in the required locations and con
structing a molecular scaffold to hold them in place. 

3. Sorting and selecting the designed molecules by estimation of their chemical and 
biological properties. 

This document will review the various computational procedures developed to 
address these design stages. 

2. Generating the active site model 

2.1. Known receptor structure 

The advances in molecular biology, protein crystallography and NMR have led to 
the solution of protein structures at an ever-increasing rate ( > 4600 protein structures 
in the Brookhaven Protein Databank (PDB) [39] at the time of writing). If we 
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are fortunate enough to capture a ligand binding to our receptor at the time of 
structural analysis, we can easily identify the active site and the interacting residues. 
Otherwise, we can use experimental data (site-directed mutagenesis, spectroscopic 
analysis, evolutionary considerations) to track down the active site. If neither piece of 
information is available, simple visual inspection via molecular graphics may focus 
our attention to a suitable pocket, cleft, or depression on the protein surface. 

2.1.1. Locating the active site 
Peters et al. [40] have recently described an automated procedure based purely on 

computational geometry. The method generates two molecular envelopes: one preserv
ing the global shape of the protein, and the other at a higher resolution describing the 
molecular detail. By analysing the differences between these two envelopes, they were 
able to cluster sets of neighbouring atoms to various pockets on the protein surface. 
They claim a 95% success rate for locating binding sites in 75 different families of 
proteins. Bayada and Johnson [41] have developed a method (CANGAROO, part of 
the SPROUT system) based on the local curvature of the solvent-accessible surface to 
locate large inward facing regions (clefts) as potential binding sites. 

2.1.2. Characterising the binding requirements 
Once we have located our potential active site, we can now analyse it further to 

deduce the particular types of interactions (hydrogen bond donation and acceptance, 
hydrophobics and charge/charge) required for successful binding. Goodford [42] has 
developed a force field to explore these nonbonded interactions - GRID uses probe 
atoms of varying functionality (amino, carbonyl oxygen, carboxyl oxygen, hydroxyl, 
methyl, water) which are placed at positions on a regular lattice within the active site. 
The interaction energy between the probe and the protein residues is then computed. 
Contouring and visualisation of this potential yields areas of favoured/disfavoured 
probe interaction. The force field has been extended from a simple Lennard-Jones plus 
Coulombic potential to include a hydrogen bonding term [43] and to account for the 
probe forming multiple hydrogen bonds [44,45]. Tomioka and Itai [46] also advocate 
the use of a grid-based potential in their GREEN program package. Precalculated 
data from a series of molecular probes are used to represent the binding-site environ
ment and facilitate the realtime evaluation of the protein-ligand interaction energy to 
permit interactive docking. A similar grid has also been used by Gehlhaar et al. with 
MCDNLG [47] and by Rotstein and Murcko in their GenStar [48] and GroupBuild 
[49] methods, respectively. 

Miranker and Karplus's [50] procedure (MCSS) locates the interaction sites by 
flooding the active site with many thousands of copies of randomly orientated 
functional groups (acetate, methanol, methane, methyl ammonium and water) which 
are subjected to simultaneous energy minimisation and/or molecular dynamics (MD). 
The local minima are further explored, to account for the flexibility of the receptor, via 
grid-searching or constrained minimisation. A flood-fill of atoms followed by MD or 
Monte Carlo has been applied by Pearlman and Murcko [51] (CONCEPTS) and 
Bohacek and McMartin [52], respectively. Recently, Pearlman and Murcko [53] 
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have discarded the solely atom-based approach in favour of a mixture of single atoms 
with molecular fragments. 

Alternative to the potential-based methods are those which are based on a set of 
rules. Danziger and Dean's [54] HSITE program generates a set of hydrogen bond 
donor/acceptor points based on rules derived from published hydrogen bond surveys. 
B6hm's [55,56] LUDI program also contains such rules to generate sets of vectors 
around a donor or acceptor atom of an interacting residue. The orientation of the 
vectors reflects the directional nature of the potential hydrogen bonds at his site. 
Hydrophobic aromatic and aliphatic interaction sites are also located, but represent
ed as single points. Clark et al.'s [57] PRO_LIGAND approach also uses such 
vector-based interaction sites. The HIPPO module of the SPROUT program of Gillet 
et al. [58] is also rule-based, but with an improved representation of the interaction 
sites. Rather than the simple point or vector, hemispherical volumes in which the 
appropriate atoms can be placed are used (Fig. 1). These permit a wider range of 
bonding situations as multicentred and/or bifurcated sites can be identified at regions 
of intersection. Covalently bonding and metal ion target sites, along with hydrogen 
bond donors/acceptors, are also identified by HIPPO. 

The simple rules used in the above approaches are derived from statistical analyses 
of crystallographic databases. These data have been applied more directly by B6hm 
[55,56], who derived possible interaction sites from distributions of nonbonded 
contacts contained in the Cambridge Structural Database (CSD) [59]. Klebe [60] has 
also used the CSD to construct composite crystal-field environments for many 
different functional groups. In the X-SITE method of Laskowski et al. [61], favour
able interaction regions are derived from an analysis of the spatial distributions of 
atomic contact preferences of a data set of 83 nonhomologous high-resolution protein 
structures taken from the PDB [39]. Contact preferences for a variety of atom types 
are obtained relative to a coordinate reference frame defined by a triplet of bonded 
atoms. Given our active site, the bonding triplets are found and the appropriate 
distribution is transformed to this location. By combining each distribution for every 
triplet, favourable interaction regions can be identified. 

2.2. Pharmacophores 

If we have no accurate structural information regarding our receptor, we can 
attempt to create a picture (the pharmacophore) of the receptor binding requirements 
from an analysis of molecules which are known to bind. In attempting such an 
analysis, we are confronted with two major problems: 

1. What are the bound conformations of our possibly highly flexible molecules? 
2. How do we overlay the molecules in the series? 

Once these are solved, we can then explore the aligned molecular family to generate the 
target interaction sites from the pharmacophoric elements common to all molecules. 

2.2.1 Alignment 
Marshall's active analog approach (AAA) [62-64] is a conformational searching 

protocol for generating the pharmacophoric alignment. Pharmacophoric elements 
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Fig. 1. Target sites in SPROUT: (a) thrombin and inhibitor NAPAP (J ets.pdb); (b) boundary surface 
of the receptor colour coded by hydrophobicity (green), hydrogen bond acceptance (blue) and 
donation by the receptor (red), and mixed classification (white) ; (c) acceptor atom target sites (red); 
(d) donor atom target sites, white hemispheres are for hydrogens and blue are for parent atoms; 
(e) acceptor and donor sites which protrude beyond the boundary surface; and (f) a selection of 
sites chosen as the design query, three donor sites (two of these complement with the amidine jUnction 
of NAPAP) and two spherical sites (green) located in the hydrophobic regions. 
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(hydrogen bond acceptors/donors, metal binding functionality, etc.) common to every 
molecule are first selected and a conformational search is carried out on the least 
flexible molecule. For every valid conformation, the distance between each of the 
pharmacophoric elements is stored. These distances are then used to constrain the 
conformational space searched of the next molecule in the series. Distance sets that 
produce valid conformations are retained and the process is repeated for every 
molecule. Hopefully, only a small number of distance sets will remain corresponding 
to the bound conformers of all the molecules. 

Alternatively, a variant of distance geometry can be applied to derive sets of 
conformations from a defined set of pharmacophoric elements [65]. Ensemble distance 
geometry is essentially the same as standard distance geometry, but with all the 
molecules under consideration at once. This is achieved by using much larger distance 
matrices to capture all atoms in all molecules. The bounds matrices are then defined 
thus: for atoms in the same molecule, the upper and lower bounds are defined in the 
usual way; the lower bounds for atoms in different molecules are set to zero to permit 
molecular overlay; the upper bounds for atoms in different molecules are set to a large 
value except for those atoms which define a pharmacophoric point, then they are 
given a small tolerance value to force superposition. Consensus molecular dynamics 
has also been used to elucidate pharmacophores by applying distance constraints 
between pharmacophoric points of different molecules [66]. 

The need for preselection of pharmacophoric elements in the above approaches is 
a great handicap, especially if we do not know which ones are responsible for binding. 
One solution offered by Martin et al. is the DISCO method [3,67]. All potential 
pharmacophoric elements are located in every molecule and pairs of distance between 
elements are matched using clique detection. Flexibility is accounted for to some 
degree by using a representative class of low-energy conformations of each molecule. 
Jones et al. [68] have explored the use of a genetic algorithm to encode both the 
mapping between elements in pairs of molecules and to drive the torsional angles of 
the flexible bonds. 

Molecular features other than the pharmacophoric elements can also be used. 
Dean's group has demonstrated the use of simulated annealing and cluster analysis to 
align flexible molecules via their atomic coordinates [69] and molecular surfaces [70]. 

3. Obtaining structures 

Once the model of the active site has been generated, molecules that match it can be 
found either by scanning a database for ones that fit or suitable structures can be 
generated de novo. 

3.1. Database searching 

The techniques ofthree-dimensional database searching using queries based on sets 
of interatomic distances and atom typing are well established and described in earlier 
literature [71,72]. Recent developments in the field have included the ability to 
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explore fully the molecular flexibility. Storing a small set of conformations for each 
structure does not address all of conformational space adequately. Hurst's [73] 
directed tweak technique quickly drives, via minimisation, the torsions of flexible 
molecules in the database toward the query. Clark et al. [74] also reported a similar 
tweaking technique of comparable speed based on genetic algorithms. 

Other techniques have been developed which focus on the directionality of bonds 
rather than atomic location. Bartlett et al.'s [75,76] CAVEAT method attempts to 
find molecular frameworks and was designed to retrieve, from a database, molecules 
with specific bonds which match a· bond vector defined in the query. In Ho and 
Marshall's [77] searching algorithm, FOUNDATION, queries may contain bond 
direction information, atom type designation, volume specifications, etc. As this 
method uses clique detection, partial solutions can also be obtained. In the CLIX 
algorithm of Lawrence and Davis [78], GRID [42] is first used to locate the target 
sites for a variety of chemical probes. Molecules from the CSD are then exhaustively 
docked in an attempt to find a coincidence between pairs of functional groups of the 
molecule and interaction sites in the protein. 

3.2. De novo structure generation 

Structure generation methods can be broadly divided into two categories: those 
which follow a deterministic course and those which are stochastic in nature. 

3.2.1. Deterministic methods 
Moon and Howe's [79] GROW was the first published method for structure 

generation. Initially, it was developed for the design of peptides using amino acid 
building blocks. Starting with an acetyl group as seed (placed within the active site via 
docking or from a known ligand), the structures are built up stepwise via the amide 
bond. The fragment library consists of natural and unnatural amino acids in many 
hundreds of their low-energy conformations. Structures are scored at each step of the 
build-up process (i.e. monopeptide, dipeptide, tripeptide, etc.) via an energy evaluation 
using a modified form of the AMBER potential with softened van der Waals penetra
tions. A number (default 10) of the highest scoring structures are retained and used in 
the next step. Build-up is stopped once the desired length of peptide is obtained. 

The LEGEND program [80,81] grows molecules by adding atoms one at a time up 
to a given molecular size under the influence of the MM2 force field and an 
electrostatic potential grid. A seed atom is first generated (either automatically or 
user-defined) at a point where it is capable of forming a hydrogen bond with the 
receptor. A suitable atom type is then assigned to this point. All subsequent atoms are 
all assigned at random accordingly: 

1. Choose root atom. 
2. Select atom and bond type. 
3. Generate new atom at appropriate distance from root. 
4. Reject if intermolecular energy unfavourable. 
5. Mutate carbon to heteroatom if in region of high electrostatic potential. 
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A range of small fragments (e.g. carbonyl groups, aromatic rings and amides) can 
also be used. Once a predefined atom limit has been reached, atom growing is 
terminated and the structure is completed by the addition of extra carbons to make 
aromatic rings where possible. Hydrogens are added finally and the structure is 
optimised. Structure generation is repeated until a user-defined number of molecules 
has been reached. 

An early contribution of Rotstein and Murcko [48] describes GenStar, another 
atomistic structure generation method. Rather than a range of atom types, GenStar 
uses only Sp3 carbons to propose molecules. After calculating an interaction grid to 
represent the active site (atoms are not restricted to grid points, the grid is used as 
a fast means of representing the local environment), seed points are generated 
proximal to certain enzyme atoms. From each seed, a spherical shell of points is 
generated with minimum and maximum radii of 3 A and 5 A, respectively. This shell 
has ~ 400 possible points for locating the first atom of the de novo molecule. Points 
are retained at each step based on a scoring procedure detailed in the next paragraph. 
The second set of possible atom positions is created in a similar manner to the first,but 
with the shell radii set to the upper and lower bond length bounds. Bond length and 
angle constraints now apply to the third and a torus-like region of points defines 
those. All additionally generated atoms are restricted by torsion angle as well; hence, 
the region of points constructed is a form of notched torus. 

After each point generation phase, the majority are eliminated based on inter
molecular contact with the enzyme, boundary violation or intramolecular bumping 
(exceptions are made for ring closure). The remaining points are then scored via their 
eight neighbouring grid points which describe proximal enzyme atoms. The top 20% 
of scoring points are found and a final single point, chosen from these at random, is 
retained (randomness is introduced to overcome the crudity of scoring and to 
maintain diversity). Occasionally, good scores will arise for points in two different 
conformational regions. If so, branching may occur from the parent point. Structure 
generation returns to its parent point if a dead-end is found and branches off if 
possible. Finally, using the electrostatic potential as a guide, the carbon framework is 
modified by placing heteroatoms where the opportunity exists for favourable electro
static interaction, i.e. where there is a potential hydrogen bond. 

GroupBuild was the next development of Rotstein and Murcko [49]. This frag
ment-based approach starts from a core fragment, either user-defined, automatically 
suggested or derived from a portion of a known inhibitor. Each of the hydrogens 
of the core is replaced in turn with a randomly selected fragment from a pre
defined library (a variety of atom types are now permitted). If the new fragment is 
chemically acceptable (defined by a set of bonding rules), the torsion of the new bond 
is varied through 10 increments and scored. Scoring is similar to GenStar using 
a predefined grid, but solvation effects can also be included. Once all rotamers have 
been scored, one from the best 25% is randomly selected, the structure is briefly 
minimised and generation continues with the enlarged core until the termination 
conditions are met (e.g. molecular weight, number of atoms, number of fragments, 
active site full). 
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In the LUDI package of B6hm [55,56] the interaction sites are defined as men
tioned earlier or via GRID located regions. Fragments are taken from a library (600 
entries, 5-30 atoms) and fitted in these sites via root-mean-square (rms) superposition. 
A second library of bridging fragments (1100 entries), with links explicitly defined, is 
then used to link the fitted fragments in a single step. Only those fragments with 
a tolerable rms deviation of fit to the interaction sites and those which do not bump 
into the protein are retained. An electrostatic repulsion check is also made: if 
heteroatoms of the same polarity are present in both the protein and the fragment, 
within a certain distance of each other, the fragment is rejected. Retained structures 
are ranked according to a score based on the number and quality of hydrogen bonds, 
and the hydrophobic contact surface area, between ligand and receptor. 

Using a vector-based representation of the interaction sites, PRO_LIGAND [57] 
has four phases of structure generation, each with their own fragment library. The 
first, placement stage tries to place a fragment that satisfies an interaction site. Next, 
the place-joining phase attempts to attach a new fragment to both a target site and 
also one already located at another target site. In a third phase, place-bridging, 
fragments which satisfy a target interaction and can be connected to two previously 
placed fragments are fitted. Finally, bridging can take place where fragments are 
added simply to join other fragments together. At each stage, fragments are selected 
randomly from the appropriate database with a random conformation (if flexible) and 
a random set of fragment linking points (if multiple choices exist) is selected. If the 
fragment fits, it is docked and clashes are resolved if possible via bond formation. If 
the fragment forms an unacceptable bond pair (e.g. 0-0, N-N) or clashes with the 
receptor, the fragment is rejected. As new bond growth may have modified the 
geometry somewhat, the newly joined fragment is then refitted to its interaction sites 
(rejection for failure). Structure generation may then be repeated to build up a ligand 
in a depth-first strategy until various criteria are met (i.e. number of interaction sites 
satisfied, number of atoms in ligand). 

Tschinke and Cohen's [82] NEWLEAD program also attempts to connect interac
tion site vectors. These sites must already have the appropriate functionality placed by 
the user; NEWLEAD will then attempt to connect pairs of sites (starting with the 
closest) using spacers in a manner similar to CAVEAT [76]. If suitable spacers cannot 
be found, single atoms are added or a ring-fusing operation is carried out to extend the 
fragments. The process is repeated until a single molecule is created from the 
fragments and spacers. Fragments are rejected on the basis of van der Waals collision. 

To exploit the results of a FOUNDATION search [77], Ho and Marshall de
veloped the SPLICE program [83]. This assembles and prunes partial queries, which 
match different pharmacophoric elements and have overlapping bonds, into novel 
ligands. HOOK, a procedure developed by Eisen et al. [84], finds molecular frame
works, defined in a database, which can form sensible bonds to the functional 
fragments that result from the application of MCSS. 

SPROUT [58,85-87] is tailored to use the interaction volumes generated as a result 
of a HIPPO analysis on the active site [58]. Initially, a set of starting templates is 
docked into the user-selected target volumes (Fig. 2). These are then connected 
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a b 

Fig. 2. Fragments docked into SPROUT target sites. 

together via one or more spacer templates defined in a library. The templates used 
represent generalised atoms and chemical bonds, i.e. hybridisation is defined (as this 
determines the orientation of any new bonds formed to the template) but not atom 
type. The range of substructures used as templates include acyclic fragments with one 
to four atoms and three- to seven-membered rings. Commonly occurring conforma
tions of each substructure are also described. 

In SPROUT, a highly efficient bidirectional growth procedure is used to connect 
pairs of target sites. Once partial molecular skeletons that are grown inwards from 
each of the starting templates are sufficiently large, they are checked for overlapping 
templates common to both. The partial skeletons are then merged and redocked into 
the target sites. The skeleton can then be further enlarged via bidirectional growth 
toward the other starting templates located in their respective interaction volumes. 
Once a collection of satisfactory molecular skeletons is generated, the generalised 
atoms are mutated via a rule-based atom substitution procedure in an attempt 
to complement the electrostatic characteristics of the active site. Such an atom 

441 



S.M. Green and A.P. Johnson 

assignment approach has also been extensively explored by Dean and co-workers 
[88-93], where they use simulated annealing to optimise the atom types of the ligand 
to parallel the electrostatic, hydrophobic and hydrogen bonding requirements of the 
active site. 

Starting with a pair of fragments in the active site that are to be joined, BUILDER 
[94,95] finds paths through a previously generated random lattice of atoms to connect 
the two sites. The elemental type is ignored at this stage with only hybridisation 
considered. A variety of chemical rules are applied to first exclude undesirable 
combinations of hybridisation and, secondly, to change the generic atoms of the path 
to a specific type. The SHAKE [96] algorithm is then applied to adjust bond lengths 
and angles. Finally, extra atoms are added to form rings along the atomic path or to 
create extra functionality, i.e. oxygens to carbonyl carbons. The process is then 
repeated to connect the new linker fragment with others. 

3.2.2. Stochastic methods 
Pearlman and Murcko's [51] CONCEPTS method is a dynamic algorithm for 

drug suggestion. A location is picked within the active site and a spherical region 
centred about this point is uniformly filled with 'particles'. Each particle is 
randomly offset from its original point and randomly assigned an atom type 
describing its bonding and electronic characteristics. Holding the protein fixed, 
the particles are subjected to MD equilibration. The energy function used (a modified 
form of the AMBER potential) in this simulation includes terms for particle
protein, particle- particle non bonded and bonded particle interaction. A particle 
is chosen at random and its type changed according to a predefined probability 
schedule. Any previously defined connections to this particle are destroyed and 
new ones are chosen to neighbouring particles based on a probability function 
dependent on their type, distance and angle. After a number of steps of particle 
mutation and connection, all unfilled valences are satisfied by selecting unsatis
fied particles at random and reapplying the connection scheme but without destroy
ing the current bonds. The system is then relaxed via MD with a penalty function to 
bias the acceptance procedure away from isolated particles with unfilled valences. 
A Metropolis Monte Carlo (MC) procedure is then used to assess whether the 
particular particle mutation is accepted. The process from the mutation step is 
repeated until a specified number of changes have been made or many consecutive 
rejections occur. 

The ideas established in CONCEPTS have been further developed by Pearlman 
and Murcko into the CONCERTS [53] method. Rather than single atom 'particles', 
molecular fragments are used. The fragments are randomly oriented within the active 
site and subjected to consensus minimisation (the fragments are unaware of each other 
as in the MCSS procedure [50]). Consensus MD is applied and, at given intervals, 
attempts are made to join fragments that are suitably oriented along specific bonds to 
hydrogen. If a connection is made, a new macrofragment is formed and the simulation 
continues. This connection is not static and may be broken and reformed as the 
molecules evolve during the course of the simulation. 
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Bohacek and McMartin's [52] approach starts with a precomputed grid map that 
classifies the binding zones within the active site. A root atom is chosen and new 
atoms and fragments are grown from this. Growth points are determined and one is 
randomly selected to form a connection with another randomly chosen atom or 
functional group (Sp3 C, 0, N, 0-, H, CO, NH, benzene and five-membered un
saturated rings). The new atom or group is placed and a complementarity score is 
evaluated from the binding zone classification. Subject to van der Waals clashes with 
the protein, an MC sampling criterion is used to decide whether this atom or group is 
to be accepted using the complementarity score for the whole molecule as an energy 
term. If accepted, new growth points are determined and structure generation is 
repeated from anyone of the potential growth points of the molecule. If a distance and 
bond angle of the growing structure are appropriate, the MC procedure can also 
spontaneously perform ring closure. 

As an alternative to the HOOK method [84] oflinking MCSS [50] fragments into 
larger molecules, Miranker and Karplus [97] describe an automated method for 
dynamic ligand design, DLD. The active site containing the MCSS fragments is 
saturated with Sp3 carbons. These form bonds with the fragments and each other 
under the influence of a generalised potential function. This potential is designed such 
that bonded systems with the correct geometry have lower energies than discrete 
species. It has a continuous first derivative permitting optimisation and sampling via 
a range of techniques. The use of MC sampling and optimisation via simulated 
annealing is demonstrated. 

Gehlhaar et al. [47] propose a Monte Carlo de novo ligand generator, MCDNLG. 
A random collection of atoms is densely packed into the active site. Bonding between 
atoms occurs when any two atoms are closer than 2.1 A: This leads to atoms which far 
exceed their traditional valence. To evolve a ligand from this supermolecule, MC 
sampling coupled with simulated annealing is applied. At each step a random 
modification is picked from either change atom occupancy (atoms can be made to 
disappear and reappear, when disappeared all bonds are lost and take no part in any 
intramolecular energy evaluation), change atom position, change atom type, change 
bond type, translate fragment, rotate fragment, rotate a torsion. This modification is 
applied to a randomly selected atom, bond or fragment, respectively. The energy is 
evaluated intra- and intermolecularly via a force field. Also added are some heuristic 
energy terms which encourage the generation of chemically sensible structures. This 
energy is then used by the MC technique to decide whether the modification is 
accepted. A gradual temperature decrease, with a steep temperature burst at step 
200000, was used over the 300000 steps of the annealing protocol to yield low-energy 
structures. 

4. Sorting and selecting 

Many of the structure generation programs have the ability to generate many 
thousands of different molecules that 'fit' the model of the active site. This arises from 
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the combinatorial explosion due to the array of choices offered at each stage of 
the structure generation process, i.e. choice of building block (fragment and/or 
atom) to connect from and to, bond type, conformation of new bond and fragment. 
To reduce the search space down to a more manageable size, it is tempting to prune 
on the basis of an estimate of the binding energy of a partially grown ligand. How
ever, such an approach is dangerous due to the crudity of such functions and as it 
may exclude ligands which may bind much better once other structural features are 
added. 

Reducing the number of building blocks is another option - using fragments rather 
than atoms reduces the number of joining operations needed to build the scaffold used 
to hold the binding functionality. Also, such fragments tend to be chemically sensible; 
hence, the structures made from them tend to be chemically reasonable. SPROUT 
[58] and Builder [95] exploit the molecular skeleton approach favoured by Dean and 
co-workers [88-93] where element types are assigned only after the complete struc
ture has been generated. Similarly, GenStar [48] restricts itself to single carbon atoms 
during structure generation. 

Even after we have attempted to prune the combinatorial tree, it is still likely that 
hundreds of structures will remain, still far too many to synthesise. A variety of 
postprocessing procedures can be applied. Molecules can be simply ranked according 
to molecular weight, number of atoms, number of hydrogen bondsjlipophilic contacts 
made with the active site, number of rings, log P, molecular volume, rotatable bonds, 
etc. SPROUT [98] and PRO_LIGAND [99] both provide clustering tools based on 
2D fragment descriptors. 

Other means of prioritising ligands involve formulating a score based on a number 
of features. In PRO_LIGAND [57] a structure's score is evaluated as follows: 

score = Nacceptor + Ndonor + 0.25 Naliphatic + 0.25 Naromatic 

- 0.1 Nrotatable - 0.1 Nasymmetric - 2.0NCragments 

where N is the number of hydrogen bond acceptors and donors satisfied, aliphatic and 
aromatic lipophilic sites exploited, rotatable bonds, asymmetric carbons and uncon
nected fragments, respectively. The weights quoted are the default values and may be 
altered to suit the given drug design problem. 

We can also attempt to predict the binding affinity via simulation (Ajay and 
Murcko [100] have recently reviewed this field). Free energy perturbation (FEP) 
methods have shown great promise, but their application is problematic - we need 
a starting molecule with measured binding affinity and its structure may only be 
perturbed by a small amount (i.e. a side chain). This cuts against the grain of our drug 
design goal as we wish to create novel, patentable molecular entities. FEP methods 
also warrant a high computational burden - something you do not want to attempt 
on hundreds of structures. 

If there are enough data on other compounds which bind to our target receptor, we 
can try and form a quantitative structure-activity relationship (QSAR) correlating 
molecule features to the binding affinity. A currently popular technique is 3D QSAR 
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[101] using the CoMFA method [102], but this is reliant on the alignment of all 
structures in the molecular series. 

Bohacek and McMartin [52] have estimated the potency of some designed ther
molysin inhibitors. They formulated a QSAR from nine known inhibitors based on 
the number of hydrophobic contacts and the number of hydrogen bonds they made 
with the receptor: 

log Ki = 3.16 - 0.42 NhydrophobiC - 0.39 Nhbond 

The estimation of potency was found to be greatly improved upon minimisation of the 
generated structures. Rather than derive a relationship for a specific protein and its 
ligands, B6hm [103] has developed a scoring function that takes into account various 
interactions and is derived from a linear regression analysis of 45 protein-ligand 
complexes containing 24 different protein families: 

AGbind = 5.4 - 4.7 L f(r, 9) - 8.3 L g(r, 9) - 0.17 Alipophilic + 1.4Nrotatabie 
hbonds ionic 

where AGbind , the free energy of binding (in kJ mol-i), is a weighted sum of the 
number of hydrogen bonds between ligand and receptor (Nhbond) (where the function 
f( ) accounts for hydrogen bonding geometry), the number of ionic interactions 
(Nionic) (with function g( ) accounting for geometry), the lipophilic contact surface 
area (Alipophilic) and the number of rotatable bonds (Nrotatable). A similar approach used 
in SPROUT has resulted in the following equation [104]: 

log Ki = - 0.096 L f (r, 9) - 0.015 Aphob-phob 
hbonds 

+ 0.008 Aphob-phil - 0.002 Evdw + 0.136 Nrotatable 

where Ki is the binding affinity, an alternative weighted sum describes the effect of 
hydrogen bonding, Aphob-phob is the contact surface area between hydrophobic regions 
of both the protein and ligand, AphOb-phil is the contact surface area between hydropho
bic regions of the protein and hydrophilic regions of the ligand, and vice versa; Evdw is 
a term to assess van der Waals interactions and Nrotatable is the number of rotatable 
bonds. Despite the absence of an electrostatic term in the current version, the 
predictivity is at least as good as the B6hm function. 

VALIDATE [105] is a hybrid strategy where the ligand interaction energy (steric, 
electrostatic and induction) is computed via molecular mechanics. These energy terms 
were combined with a range of descriptors (rotatable bonds, calculated log P, steric 
fit, measures of complementary/uncomplementary contact between lipophilic/ 
hydrophilic surfaces), and via partial least squares or neural network analysis, a rela
tionship was obtained for a diverse training set of 51 ligand-receptor complexes. The 
predictivity ofthe model was established with three different test sets: 14 complexes of 
protein classes not in the training set, 13 HIV protease inhibitors docked to the HIV-1 
protease crystal structure, and 11 thermolysin inhibitors docked to the thermolysin 
structure. 
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Jain [106] has also developed an empirically derived scoring function based 
on 34 diverse protein-ligand complexes. The primary terms of the function arise for 
hydrophobic and polar complementarity, with additional factors for entropic and 
solvation effects. From this, Jain has constructed a sufficiently fast continuously 
differentiable nonlinear function, such that optimisation of alignment/conformation 
of the ligand within the receptor, based on the predicted affinity, may be readily 
achieved. 

All these empirical scoring functions seem to be reasonably accurate when applied 
to protein-ligand complexes where an X-ray structure of the complex is available. The 
fact that the protein-ligand complex is sufficiently stable that it can be isolated 
probably indicates that there are no strongly unfavourable interactions. Hence, it may 
prove to be the case that current scoring functions are underestimating the magnitude 
of certain types of unfavourable interactions and some caution should be exercised in 
using them as a pruning mechanism in the course of structure generation. 

By their very nature, structure generation programs can produce molecules which 
are new to chemistry. We can reduce the likelihood of creating synthetically trouble
some molecules by including rules during the structure generation to exclude or limit 
the number of spiro joins or the formation of small rings, etc. Even so, the program 
may produce many hundreds of molecules which need to be prioritised on both their 
functional and synthetic merits. CAESA [58] is an automated method for estimating 
the synthetic accessibility of a given molecule. It attempts exhaustive retrosynthetic 
analysis to take the target structure back to starting materials contained within either 
an in-house or a chemical supplier's database. This expert system assesses the 
molecular complexity (based on the stereochemistry, functional groups and topology) 
of those portions of the target molecule which are not readily derived from a known 
starting material. A causal network is used to combine the various factors to yield an 
overall measure of the synthetic ease. 

5. Conclusions 

Every method described carries its own particular strengths and weaknesses. 
However, there is one oversimplification that is applied to all methods. In all 
techniques, we assume there are no conformational changes of the receptor on 
binding. Our understanding of intermolecular interactions is still too primitive to gain 
an accurate energetic picture of the binding event. Also, such complex simulations 
would require far larger computational resources than currently available for routine 
application. Currently, conformational changes can be monitored by iterating 
through the drug design cycle: generating structures, synthesis, and testing followed 
by structural analysis via NMR or X-ray. Our model can then be refined at each step 
and reapplied to generate new structures. 

Structure-based design techniques by their very nature are highly focused toward 
the receptor structure or pharmacophore and neglect other factors important to the 
design of bioactive compounds, e.g. transport properties, toxicity and stability. Hence, 
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these techniques must generate as many suggestions as possible and methods need to 
be developed to analyse these large sets in order to rule out those with unsuitable 
molecular properties. 

Combinatorial chemistry coupled with high-throughput screening has already had 
a huge influence on the drug discovery process. Coupling this essentially irrational 
procedure to the elegance of structure-based design could further enhance the lead 
discovery and optimisation process. Fragment-based methods for de novo structure 
generation could be modified to create molecules that were readily synthesised 
combinatorially to yield a focused library. Scoring becomes less essential as all 
molecules can be readily prepared via automated synthesis. 
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The molecular docking problem: Thermodynamic and kinetic aspects 

A number of challenging computational problems arise in the field of structure
based drug design, including the estimation of ligand binding affinity and the 
de novo design of novel ligands. An important step toward solutions of these problems 
is the consistent and rapid prediction of the thermodynamically most favorable 
structure of a ligand-protein complex from the three-dimensional structures of its 
unbound ligand and protein components. This fundamental problem in molecular 
recognition is commonly known as the docking problem [1-3]. To solve this problem, 
two distinct conditions must be satisfied. The first is a thermodynamic requirement: 
the energy function used to describe ligand-protein binding must have the crystal 
structure of ligand-protein complexes as its global energy minimum. The second is 
a kinetic requirement: it must be possible to locate consistently and rapidly the global 
energy minimum on the ligand-protein binding energy landscape. While the first 
condition is necessary for successful structure prediction, it is by no means sufficient. 
Without kinetic accessibility, the global minimum cannot be reached during docking 
simulations, and computational structure prediction will fail. Here we review ap
proaches to address both the kinetic and thermodynamic aspects of the docking 
problem. 

Most docking algorithms fall into two general categories: surface complementarity 
methods [4-15] that match specific ligand-protein interactions and sample a relative
ly limited number of relevant conformational states, and more detailed methods that 
couple atomic representations of the intermolecular interactions with stochastic 
searching techniques designed to explore significant portions of the available config
urational space [16-23]. Surface complementarity has been shown to be an important 
component of molecular recognition functions, but it alone does not make possible 
identification of the correct structure when alternative ligand-protein complexes have 
energies similar to those of native complexes [3,4,9-11]. Such ambiguous structural 
predictions may result from an incomplete description of the energy function, al
though simple hydrophobic energy functions often perform as well as more detailed 
representations of ligand-protein interactions [15]. 
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The problem of docking flexible ligands, even with a protein held fixed in its bound 
conformation, requires determination of the global energy minimum from an enor
mous number of available conformations. This problem belongs to the class of 
nondeterministic polynomial time (NP)-hard tasks [24], and represents another 
manifestation of the famous Levinthal paradox also encountered in protein folding 
[25]. Analyses of the energy landscapes of protein folding [26-34] have revealed that 
uniqueness, stability and kinetic accessibility of proteins depend critically on the 
extent of complexity and frustration in the energy landscape. These studies demon
strate that proteins with robust folding kinetics and thermodynamic stability must 
obey the principle of minimum frustration [26,27,33]. 

The inherent complexity of a force field that can completely describe the binding 
process results in a frustrated energy landscape with many energetically similar, yet 
structurally different, local minima that are separated by large energy barriers. A bind
ing energy landscape characterized by both of these features is defined to be frustrated. 
This frustration may result, first, from the inability to satisfy simultaneously both 
intermolecular ligand-protein interactions and intramolecular ligand constraints, and, 
second, when misdocked structures are not connected to the global energy minimum by 
broad networks of configurations with low barriers [30,34]. Energy barriers arise 
primarily from steric constraints, and also when attractive but nonnative ligand-protein 
contacts are made during the docking process. If the global energy minimum is not 
kinetically accessible, the docking process can be trapped in local minima even when the 
native complex is thermodynamically favorable. Hence, even if an accurate energy 
function suitable for rigorous predictions of binding affinity were available, it would not 
necessarily resolve the kinetic bottleneck of the docking problem. 

The quality of a molecular recognition energy function is generally evaluated on its 
thermodynamic properties, i.e. the location of the global energy minimum and its 
energy relative to the energies of alternative binding modes [3-9], whereas efforts to 
satisfy the kinetic criteria for rapid structure prediction have concentrated on develop
ing search algorithms [16-23]. An alternative approach to satisfy the kinetic criteria 
for robust structure prediction is to modify the shape of the energy landscape so as to 
reduce the complexity of the search problem. Such landscapes, which have a reduced 
level of frustration, are characterized by 'funnels' that connect conformational states 
to the global energy minimum [31-33]. We have investigated both approaches, and 
here review the application of two search techniques based on the concept of natural 
selection to docking simulations, genetic algorithms and evolutionary programming, 
and then discuss efforts to develop molecular recognition energy functions with 
reduced frustration. 

Search techniques 

A variety of stochastic optimization techniques have been used in docking simula
tions including Monte Carlo methods [16-20], molecular dynamics [21,22], and 
dead-end elimination [23]. These studies focused primarily on the flexible docking of 
ligands into proteins held in their bound conformation, in which the internal degrees 
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of freedom of the ligand and its rigid-body variables are optimized. Genetic algo
rithms [35] have been used to solve a variety of optimization tasks, including 
molecular docking [36--41], conformational search of small molecules [42,43], and 
protein folding [44--47]. Recently, evolutionary programming [48] has emerged as 
another promising search technique for protein folding [49] and molecular docking 
applications [50--52]. 

Genetic algorithms 

In the application of genetic algorithms to ligand-protein docking [41], each 
chromosome represents a member in a population of ligand conformations, and is 
encoded as a vector comprised of the six rigid-body orientational and positional 
coordinates along with the dihedral angles of all rotatable bonds. Initial ligand 
conformations are generated by randomizing the encoded vector while requiring that 
the center of mass of the ligand reside within the rectangular parallelepiped defining 
the binding site. During the search, the fitness of each chromosome in the population 
is evaluated and the chromosomes are ranked. An elitist mechanism, whereby survival 
of the most fit member is guaranteed, preserves the quality of the genetic material. 
Replication of all the other members is done by a selection process based on a 'roulette 
wheel' mechanism whereby the probability of selecting a particular chromosome for 
mating is proportional to its fitness. The selected chromosomes are duplicated in the 
next generation. They are then replicated, subject to mutation and crossover, to 
obtain a population of a defined size. The mutation operator, in which each bit of the 
chromosome is subject to a defined flip probability, imparts diversity to the popula
tion, while the crossover procedure exchanges pieces of the parents' chromosomes at 
randomly selected crossover points. 

Evolutionary programming 

Evolutionary programming is another stochastic search technique based on the ideas 
of natural selection. During the course of the simulated evolution, a population of 
candidate ligand conformers competes for survival against a fixed number of opponents 
randomly selected from the remainder of the population (Fig. 1). A win is assigned to the 
member of this set with the lowest energy, and the number of competitions a member 
wins determines its survival into the next generation [51]. All surviving members 
produce offspring by Gaussian mutation so as to maintain a constant population size. 
In the population of ligand conformers, each member represents an encoded vector 
comprised of its six rigid-body coordinates and the dihedral angles about its rotatable 
bonds. The initial ligand conformations are generated by randomizing the encoded 
vector, given that the ligand center of mass must lie within the rectangular parallel
epiped that defines the active site. Rigid rotation and rotatable dihedral angles are 
uniformly randomized between 0° and 360°. 

In the studies reviewed here, the evolutionary search was performed for a total of 
120 generations with a population size of 1200. In order to maintain a diverse 
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Fig. 1. Flow chart for the evolutionary programming strategy protocol. 
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population, each member competes against only three opponents at each generation 
[51,52]. The size of the standard deviation of the Gaussian mutation that generates 
offspring from a parent must be determined with care. If the mutations are too small, 
the system does not explore the search space efficiently, while if they are too large, 
offspring bear little or no resemblance to the parent, and the search becomes undirec
ted. Consequently, in a process resembling simulated annealing, large mutations are 
allowed early in the simulation to facilitate rapid searching, analogous to high 
temperature, while small mutations are made late in the simulation to refine solutions 
near the global optimum, analogous to low temperature. Because it is difficult to 
predict the most appropriate scaling scheme for the mutations, the standard deviation 
of the Gaussian mutation is varied adaptively throughout the simulation by using 
selection pressure [53,54]. The member of the final generation with the lowest energy 
is minimized [55]. 

Low-resolution molecular recognition energy models 

While studies have shown that simple energy functions are robust in protein 
structure prediction [56], sophisticated search procedures outperform standard 
techniques only when the underlying energy surface is relatively unfrustrated [57]. 
We recently evaluated a family of simple molecular recognition energy functions 
for use in docking simulations and analyzed the ability of the energy function 
itself to reduce frustration in the binding energy landscape [41]. We found that the 
'hardness' of the ligand-protein interaction energy was critical for satisfying both the 
thermodynamic and kinetic requirements for docking, and there is an optimal range 
of values for the repulsive hardness of the ligand-protein interaction. If the repulsion 
is too soft, the crystal structure is no longer the global energy minimum, while if it is 
too hard, the crystal structure is not kinetically accessible during the docking 
simulation. 

The molecular recognition model used for the ligand-protein interaction energy 
includes steric and hydrogen bond contributions calculated from a piecewise linear 
potential together with a simple angular dependence for the hydrogen bond interac
tion (Fig. 2). This model is not intended to be a complete description ofligand-protein 
interactions, but rather attempts to capture the minimal requirements of the energy 
function that are necessary for robust structural assessments during docking simula
tions [41,51,52]. The parameters of the pairwise potential depend only on four 
different atom types: hydrogen-bond donor, hydrogen-bond acceptor, both donor 
and acceptor, and nonpolar. Primary and secondary amines are defined to be donors 
while oxygen and nitrogen atoms with no bound hydrogens are defined to be 
acceptors. Crystallographic water molecules and hydroxyl groups are defined to be 
both donor and acceptor. Carbon atoms are defined to be nonpolar. 

The intermolecular interactions between ligand and protein atoms are represented 
by steric and hydrogen-bond-like potentials (Table 1), both of which have the same 
functional form. The parameters (Table 2) were extracted from a potential used for the 
de novo design of enzyme inhibitors [58], and subsequently refined to yield the 
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Fig. 2. (a) The potential energy function used to compute the pairwise ligand-protein interaction 
energy. Hydrogen atoms are not included in the calculation. The parameter values are given in 
Table 2, where the units of energy are arbitrary. (b) The hydrogen bond interaction energy is 
multiplied by the hydrogen bond strength term, which is a jUnction of the angle () determined by the 
relative orientation of the protein and ligand atoms. The angle () is shown in panels (c)-(e). (c) A 
protein donor atom D bound to one hydrogen atom H makes an angle () with the ligand atom L. 
(d) A protein donor atom D bound to two hydrogen atoms H makes an angle () with the ligand atom 
L. (e) A protein acceptor atom A makes an angle () with the ligand atom L. In all cases, the range of 
the angle () is between 00 and 1800 • 

experimental crystallographic structure of a set of ligand-protein complexes as the 
global energy minimum [51]. They assume that a single hydrogen bond has more 
interaction energy than a single steric interaction [59]. An advantage of this repre
sentation is that the ligand-protein interaction function is well behaved even when 

Table 1 Pairwise atomic interaction types for the molecular recognition model 

Ligand atom 
type 

Donor 
Acceptor 
Both 
Nonpolar 
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Donor 

Steric 
Hydrogen bond 
Hydrogen bond 
Steric 

Protein atom type 

Acceptor Both 

Hydrogen bond Hydrogen bond 
Steric Hydrogen bond 
Hydrogen bond Hydrogen bond 
Steric Steric 

Nonpolar 

Steric 
Steric 
Steric 
Steric 
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Table 2 Parameters of the atomic pairwise ligand-protein potentials' 

Interaction type A B C D E F 

Steric 3.4 3.6 4.5 5.5 - 0.4 20.0 
Hydrogen bond 2.3 2.6 3.1 3.4 - 2.0 20.0 

• A, B, C, and D are in A. E and F are in arbitrary energy units. 

there are severe close contacts between protein and ligand atoms, which occur during 
the initial stages of the docking simulation when the ligand conformations are largely 
in random orientations or when the crystal structure itself has close contacts. To 
permit the ligands to penetrate the protein core during these early stages, the repulsive 
parameter of the intermolecular ligand-protein interaction potential is linearly scaled 
from zero to its final value throughout the simulation. 

The intramolecular potential also contributes to the conformations adopted by the 
ligand in the protein active site. These ligand conformations may differ substantially 
from the conformation of the same ligand in the gas phase or in aqueous solution. 
A natural question then arises: is the conformation adopted by the ligand dominated 
by the interaction with the protein or by its internal constraints? In the course of 
developing potential energy functions for use in docking simulations, additional 
questions arise: what is the appropriate level of detail to use for a ligand intramolecu
lar potential, and what effect does this have on the thermodynamic and kinetic 
requirements for docking? In the next section, we present new results for three 
different levels of approximation for the ligand intramolecular potential: one with no 
intramolecular potential, one with a simple hard-sphere interaction for atoms connec
ted by at least three intervening atoms, where every atom has a radius of 2.35 A and 
a repulsive barrier height of 2000.0, and one with a complete force field model [60]. In 
all three cases, a limited number of bonds are allowed to rotate, namely bonds linking 
Sp3 atoms to either Sp3 or Sp2 atoms, as well as nonconjugated single bonds linking 
two Sp2 atoms. The ligand bond distances and bond angles, as well as the torsional 
angles of nonrotatable bonds, were obtained from the crystal structure of the bound 
ligand-protein complex and were held fixed during the docking simulations. No 
a priori assumptions regarding either favorable ligand conformations or any specific 
ligand-protein interactions are made. The ligand conformations and orientations are 
searched in a rectangular box that encompasses the binding site obtained from the 
structure of the crystallographic ligand-protein complex with a 2 A cushion added to 
every side of this box, and the intermolecular potential is precalculated on a 0.2 A grid 
that covers the protein binding site. A constant energy penalty of 200.0 is added to 
every ligand atom outside the box. All crystallographic water molecules are included 
in the simulations as part of the protein structure. 

Conformationally flexible docking of HIV-l protease complexes 

HIV-l protease is a symmetric homodimer, although the symmetry may be broken 
upon ligand binding, resulting in two, nearly degenerate binding modes. The presence 
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of these two symmetry-related binding modes complicates the docking even of 
a completely rigid ligand into the bound conformer of the protease. For flexible 
ligands, the number of possible alternative solutions increases dramatically, and 
consequently an accurate molecular recognition model must be able to distinguish 
between these modes. An additional problem is that the binding site is highly 
constrained because of the protease 'flaps' that enclose the bound ligand. This 
confined site leads to large energy barriers that separate the alternative binding 
modes. The combination of these factors makes the docking of ligands into HIV-1 
protease a particularly demanding problem. 

A set of 25 HIV-1 protease complexes [61] was obtained from the Brookhaven 
Protein Data Bank (Table 3). These structures were supplemented by an additional 36 
HIV-1 protease complexes that were solved at Agouron Pharmaceuticals [62,63]. No 
energy minimization or additional processing of either the ligand or the protein 
structures was performed. These structures represent a rather diverse set of ligands 
that bind to HIV-1 protease, containing from 31 to 61 heavy atoms, and between 
6 and 29 rotatable bonds. For each ligand-protein complex, 100 docking simulations 
have been performed with both rigid and conformationally flexible ligands, and the 
structure with the lowest energy is taken to be the computational prediction of the 
ligand-protein complex. 

First, a set of docking simulations was performed while keeping the conformation 
of the ligand rigidly fixed in its bound state. Two binding modes were predicted, 
corresponding to the observed crystallographic mode and a symmetry-related mode 
(Fig. 3). For all the ligands studied, the energy of the symmetry-related mode was 
correctly predicted to be higher than the energy of the crystallographic mode, except 
in those cases where the bound conformation of the HIV -1 protease retains its twofold 
symmetry and both conformations are isoenergetic. 

Table 3 HIV-l protease complexes obtained from the Brookhaven Protein Data Bank 

Complex Ligand PDB entry Complex Ligand PDB entry 

1 aaq 14 A78791 Ihvj 
2 8B203238 Ihbv 15 A76928 Ihvk 
3 8KF108738 Ihef 16 A76889 Ihvl 
4 8KFI07457 Iheg 17 XK263 Ihvr 
5 CPG53820 Ihih 18 A77003 Ihvs 
6 V75875 Ihiv 19 8B203386 Isbg 
7 8B204144 Ihos 20 MVT-101 4hvp 
8 8B206343 Ihps 21 L-700,417 4phv 
9 VX478 Ihpv 22 Acetylpepstatin 5hvp 

10 GR123976 Ihte 23 JG-365 7hvp 
11 GR126045 Ihtf 24 V-85548E 8hvp 
12 GR137615 Ihtg 25 A-74704 9hvp 
13 A77003 Ihvi 
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Fig. 3. Root-mean-square (rms) deviation of the lowest energy structure relative to the crystallo
graphic conformation obtained from JOO individual rigid docking simulations for each of 61 
different HIV-1 protease-ligand complexes. The structure with the lowest energy is the computa
tional prediction for each ligand-protein complex. The first 25 complexes correspond to those listed 
in Table 3. The remaining complexes were solved by Agouron Pharmaceuticals [62]. 

Consistent structural prediction of the crystallographic conformation of the protein
ligand complex requires that the crystallographic conformation be the global 
energy minimum of the binding energy landscape and that this conformation be 
kinetically accessible. Energy landscapes that satisfy the principle of minimum frustra
tion [26] have a relatively large separation in energy between the crystallographic 
conformation and other misdocked conformations. Such landscapes may also in
crease the kinetic accessibility of the crystallographic conformation [29], and there
fore satisfy both the thermodynamic and kinetic requirements for robust docking. 
Consistent with this principle, the probability of successfully predicting the crystallo
graphic conformation for XK263 (lhvr, Table 3) and AG-1343 [51], with eight and 
nine rotatable bonds, respectively, increases dramatically for the hard sphere or 
complete force field models compared to using no internal interactions at all (Fig. 4). 
The success rate of predicting the crystallographic conformation improves because 
when no internal potential is used there are many incorrectly positioned structures, 
whereas there are fewer incorrect structures for either the hard-sphere internal energy 
or the complete ligand intramolecular potential. Associated with this increase in the 
probability of successful structure prediction is an increase in the stability gap [27,33], 
the energy difference between the lowest energy structure and the energies of mis
docked structures [52]. The presence of internal energy increases the magnitude of 
this stability gap by destabilizing incorrectly docked ligands, thereby increasing the 
probability of predicting the crystal structure in the course of a docking simulation 
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Fig. 4. Rms deviation relative to the crystallographic conformation versus energy for 100 indi
vidual docking simulations (open diamonds) for XK263, which contains eight rotatable bonds. The 
structure with the lowest energy is the prediction of the simulation: (a) no internal energy; (b) hard 
sphere; and (c) Dreiding intramolecular potential. The results for AG-J343, which contains nine 
rotatable bonds: (d) no internal energy; (e) hard sphere; and (f) Dreiding intramolecular poten
tial. The structure obtained by minimization of the crystallographic conformation is represented by 
a filled diamond. 

(Fig. 4). For these ligands, the more detailed ligand intramolecular energy models 
provide the best discrimination between the crystallographic structure and alternative 
binding modes. Interestingly, the hard-sphere internal potential is sufficient to in
crease the stability gap and promote kinetic accessibility for these ligands with 
a moderate number of rotatable bonds. 

Computational structure prediction clearly becomes more difficult as the number of 
degrees of freedom increases. We found that the bound structures for the inhibitors 
AG-lOO2 [62] and JG-365 [64], which contain 25 rotatable bonds, were correctly 
predicted (Fig. 5) only when using the complete ligand intramolecular force field. 
Compared to using no internal potential, the hard sphere potential does destabilize 
some of the misdocked structures (Fig. 5), although it is not sufficient to make the 
crystallographic structure both thermodynamically stable and kinetically accessible 
during the docking simulation. Using the complete ligand intramolecular energy 
function, the crystal structures of complexes for a majority of conformationally 
flexible ligands have been assessed correctly (Fig. 6a). Due to symmetry, there is 
a second binding mode that is nearly isoenergetic with the crystallographic structure, 
and most of the misdocked structures represent these symmetry-related binding 
modes (Fig. 6b). 
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Fig. 5. Rms deviation relative to the crystallographic conformation versus energy for 100 indi
vidual docking simulations (open diamonds) for JG-365, which contains 25 rotatable bonds during 
the docking simulation. The structure with the lowest energy is the prediction of the simulation: 
(a) no internal energy; (b) hard sphere; and (c) Dreiding intramolecular potential. The results for 
AG-I002, which contains 25 rotatable bonds, during the docking simulation: (d) no internal 
energy; (e) hard sphere; and (f) Dreiding intramolecular potential. The structure obtained by 
minimization of the crystallographic conformation is represented by a filled diamond. 

Discussion and Conclusions 

A model of molecular recognition that combines a simple description of 
ligand-protein steric interactions and ligand-protein hydrogen bonding with a com
plete ligand intramolecular potential has been shown to be suitable for the structure 
prediction of HIV -1 protease complexes across a diverse set of ligands with a large 
number of degrees offreedom. While a far more detailed model that includes solvation 
and entropic effects is required to predict binding affinity, a model that produces 
a simple and relatively smooth energy landscape with few local minima is preferable 
for structure prediction, given that the global energy minimum is retained at the 
crystallographic conformation of the complex. In this way, both the thermodynamic 
stability and the kinetic accessibility of the ligand-protein complex are realized while 
the minimum frustration principle is satisfied. 

Conventionally, scoring functions that are too simple to account rigorously for the 
binding affinity of enzyme-ligand complexes are believed to represent a stumbling 
block in achieving more accurate structure predictions in docking simulations. How
ever, misdocked low-energy structures of ligand-protein complexes are caused by the 
rugged energy landscape of molecular recognition, which is an inherent feature of 
current models used to represent ligand-protein interactions. Consequently, the most 
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Fig. 6. (a) Rms deviation of the lowest energy structure relative to the crystallographic conforma
tion obtained from 100 individual flexible docking simulations for each of 61 different H1V-1 
protease-ligand complexes, using the Dreiding intramolecular force field. (b) The predicted 
structure is compared both to the correct binding mode and the symmetry-related binding mode, and 
the lowest rms difference is shown. 

appropriate energy function for the computational structure prediction of ligand
protein complexes may differ from standard molecular mechanics force fields. 

The results reported here show that a complete description of the ligand intra
molecular interaction improves both the thermodynamic and kinetic requirements for 
robust structure prediction. Although the ligand intramolecular energy landscape also 
has large energy barriers, which arise from the steric interactions, these barriers 
appear not to be a source of additional frustration. The kinetics of the docking 
simulation is apparently dominated by intermolecular interactions, which favor 
relatively extended conformations of the HIV -1 protease ligands, thereby reducing the 
formation of strong nonnative intramolecular contacts that otherwise may have led to 
additional kinetic bottlenecks. Although a hard-sphere potential is adequate for 
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ligands with a modest number of rotatable bonds, a more complete internal potential 
is necessary for ligands with a large number of rotatable bonds. These more complete 
internal potentials increase the stability gap between the crystal structure and mis
docked structures, which increases the probability of predicting the crystal structure. 
Hence, complete force fields may be suitable for describing the ligand intramolecular 
interactions during docking simulations, while simplified representations of the inter
molecular interactions may be necessary to satisfy kinetic requirements. For robust 
ligand-protein docking, then, the binding energy landscape must be smooth to 
minimize the likelihood of the simulation becoming trapped in local minima, and the 
landscape must have funnels leading to the global free-energy minimum that corres
ponds to the crystallographic conformation of the ligand-protein complex. The 
precise choice of force field may not be critical provided that the resulting energy 
landscape has reduced frustration. 
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Estimation of binding affinity in structure-based design 

Dave Timms and Anthony J. Wilkinson 
Zeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire SK10 4TG, u.K. 

1. Introduction 

With the increasing availability of protein structures, the potential for their use in 
the design of novel, pharmaceutically relevant inhibitors becomes an increasing 
reality. Over the last few years a number of programs have become available which 
aim to enable inhibitors to be designed de novo against specific protein active sites. 
Verlinde and HoI [1] classified these methods into three types: docking, linking and 
growing. The first of these encompasses database searching methods like DOCK [2]. 
The second includes vector database methods such as CAVEAT [3], EMPTOR [4] 
and other approaches including BOOM [5], HOOK [6] and CCLD [7] and car
bocyclic linker methods such as SPROUT [8]. The final group includes LUDI [9], 
GROWMOL [10J and GROW [11]. These have been used with varying degrees of 
success in model systems and in 'real' applications, for inhibitor design. 

All of these methods produce large numbers of potential inhibitors of interest. 
These hit lists need to be filtered and ranked in some way. Clearly, some filtering can 
be achieved by discarding chemically unattractive molecules and those that clash with 
the protein or which can only bind in energetically unfavourable conformations. 
However, all these design methods need to make some quantitative or semiquan
titative assessment as to the quality of the binding interaction between putative 
inhibitor and protein. Some approaches may be more dependent on the accuracy of 
the binding affinity prediction than others. For instance, those methods which involve 
growing the ligand in the active site are usually dependent on some fitness function to 
guide the progress of the evolving design. If the approach attempts to be discriminating 
during this process of ligand growth, then the fitness function needs to provide a 
reasonable reflection of the strength of the protein-ligand interaction, otherwise 'good' 
molecules will not be designed. Other methods will usually employ a less discriminating 
function in the design stage and so all molecules designed are 'seen' by the user. 

A range of methods have been explored in the literature in recent years to estimate 
binding affinity. These range from the computationally intensive free energy perturba
tion (FEP) methodology to empirical methods based, for example, on the number of 
hydrogen bonds and the degree of hydrophobic surface area that is buried. In this paper 
we review critically a selection of the methods that have been explored and consider 
their applicability in inhibitor design problems, their accuracy and their limitations. We 
report work carried out in our own laboratory and consider it alongside work carried 
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out elsewhere. We make no attempt to comprehensively review the area. An excellent 
review on this topic has been published by Ajay and Murcko [12] and readers are 
directed to this as a complementary reading to this paper. 

2. The problem 

Figure 1 captures the problem schematically. We are interested in the bound and 
the unbound states of the protein and ligand and the differences in energy between 
these. It is essential to remember that in both states the protein and ligand are 
interacting with their water environment and that this changes between the two 
states. In analysing these states we build upon the work of Vajda et al. [13] and 
use their terminology where appropriate. The energy of the free state can be defined 
by 

Er = E} + Er + Ef' + E}-w + Er-w (1) 

where superscripts i, e and w refer to inhibitor, enzyme and water, respectively. The 
third term refers to the self-energy of water and the last two terms refer to the energy of 
interaction between the water environment and the inhibitor and enzyme, respective
ly. The energy of the bound state can be similarly defined as 

(2) 

where the fourth term represents the interaction between enzyme and inhibitor and 
the last term represents the interaction between the enzyme- inhibitor complex and 

Water 
(£,.) 

Free State 

~."" 
• 

Water 
(£,.) 

Bound State 

Inhibitor 

Fig. 1. Schematic representation of enzyme-inhibitor binding in an aqueous environment. Cs and 
Cw represent the dielectric of the solute and water respectively. 
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Table 1 Values for the cratic (dilutional) term plus the loss in rigid-body translational and 
rotational entropy on complexation (-T LJ Srigid) 

Authors - TL\Srigid Reference 
(kcal mol- 1) 

Andrews et al. 14.0 [67] 
Williams et al. 13-18 [70] 
(also gives the enthalpy term) ( - 1.7) 
Krystek et al. 11.0 [42] 
Vajda et al. 9.0 [13] 
B5hm 1.3 [68] 
Bohacek and McMartin 4.4 [10] 
Wallqvist et al. 2.4 [73] 

Consensus 12.0 

the water environment. Thus, the difference in potential energy between the states can 
be defined as 

(3) 

where the last term represents the difference in the interaction of the water environ
ment with the different enzyme and inhibitor species. In rigid systems the conforma
tional strain terms, LlEi and LlE", disappear. 

Although this analysis assumes a single configuration for each of the three species, 
each term should in fact involve a Boltzmann ensemble. Allowing for this the potential 
energy terms described above can be equated to the enthalpic contribution to binding. 

To obtain free energies of binding, we need to supplement the above with entropic 
contributions. The primary en tropic contributions associated with binding are usually 
partitioned into (i) the loss of cratic (dilutional), translational and rotational entropy, 
LlSrigid, (ii) the change in vibrational entropy, LlSvib, (iii) the loss of conformational 
entropy, LlSconf, and (iv) the change in entropy associated with solvation; LlSsolv• 

There are wide variations for LlSrigid used in various applications in the literature 
and a number are given in Table 1. It is likely that in many instances the change in 
vibrational entropy compensates for the loss of rotational and translational entropy 
and thus figures at the upper end of this range are likely to be an overestimate of the 
combined effect. In any case, in structure-based design applications one is almost 
always interested in relative ranking of a number of ligands against a single protein 
target. In this instance the differences in LlSrigid and LlSvib between different ligands are 
likely to be small and so this term is often ignored. 

Contributions to LlSconf potentially arise from both the ligand and the receptor. 
This term is often ignored or confined solely to the ligand. This may be a justifiable 
approach in some instances or when one is evaluating relatively similar molecules and 
binding modes, but as has been shown by Vadja et al. [13] this term can contribute 
significantly to differences in binding between ligands. 
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Possibly the most difficult component to quantify rigorously is .::\Ssolv, or more 
generally .::\Gso1v' The latter comprises a number of factors including the changes in 
self-energy of the solvent ('::\EW), the changes in the energy of interaction between 
solute and solvent (.::\E(ei.e-i).w) and the work required to create a cavity in solution. 
Almost all treatments involve some measure of molecular or accessible surface area or 
volume. How these are used depends on whether some aspects of the solute-solvent 
interaction have been catered for elsewhere in the method and this has led to some 
confusion between different authors as to what their 'solvation' term actually repre
sents. This will be discussed in more detail later . 
. Thus when pulling together the components of relative binding energies, for which 

.::\Srigid and .::\Svib are ignored, we obtain: 

.::\.::\Gbinding = .::\.::\Estrain + .::\.::\Eint + .::\.::\Gso1v - T .::\.::\Sconf 

where 

.::\Estrain = '::\Ei + .::\Ee 

.::\Gso1v = .::\E(ei.e.i)-w + .::\EW - T .::\Ssolv 

(4) 

(5) 

(6) 

Thus, Eq. 4 represents a version of what Ajay and Murcko [12] referred to as the 
'master equation'. As they point out there is no rigorous partitioning and the one 
shown above is just one version which we have found useful in our thinking. As 
indicated earlier, all the terms in the equations above refer to ensemble averages. For 
example, the solvation energy for a flexible ligand should be derived from an ensemble 
of conformations rather than a single low-energy conformation. In practice, this is 
often ignored despite work that has shown its importance in certain cases [13]. 

3. Approaches 

In this section we examine a range of approaches to tackle the problem outlined 
above. These range from explicit simulations which are time-consuming and impracti
cal for large numbers of diverse compounds, through to methods which partition the 
free energy as described above and then attempt to estimate each component using 
theoretically based methods. At the other end of the spectrum are regression or 
statistically based models of binding affinity which are extremely fast and which can 
handle a very large number of molecules. The approach adopted will depend on the 
nature of the problem, the accuracy required and the number of molecules which need 
assessing. A summary of the range of methods used is given in Tables 2 and 3. The 
classification of methods into explicit, partitioning and statistical/regression-based is 
somewhat arbitrary, but is useful for reviewing the different approaches. 

3.1. Explicit simulation methods 

These are nonpartitioning methods that do not use Eq. 4 explicitly and that rely on 
molecular dynamics or Monte Carlo methodology to generate a thermodynamic 
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ensemble from which relative free energies of binding can be derived. The two most 
frequently used methods are free energy perturbation (FEP) and thermodynamic 
integration (TI). In both these approaches, a series of nonphysical perturbations to the 
free and bound inhibitor are carried out and relative free energies are obtained using 
the relevant thermodynamic cycle. These approaches have attracted considerable 
attention over recent years and have achieved some success both in predicting relative 
binding energies and in providing insight into the nature of molecular recognition 
[14,15]. However, the methodology has a number of limitations which restrict their 
value in structure-based design [16]. In particular, to achieve convergence in the 
simulations, only relatively small differences between ligands can be investigated and, 
even in these cases, they are extremely computer intensive. Although computers will 
get faster and the methodology continues to improve, it is difficult to believe that these 
methods will be of central value to the structure-based design process where one 
usually needs to investigate the potential of a wide variety of ligands and where one is 
looking for the results from calculations to be obtained at least 1-2 orders of 
magnitude faster than the compound can be synthesised. 

Two approaches that attempt to overcome the limitations of FEP(f1 approaches 
are worthy of mention. Van Gunsteren and co-workers [17-19] have explored the 
possibility of predicting free energy differences between a manifold of molecular states 
from a single simulation representing one reference state using extrapolation methods. 
Acqvist and co-workers [20-23] have used a linear approximation procedure (LIE) to 
estimate absolute binding free energies from two aqueous simulations - one involving 
the inhibitor alone and the other involving the protein-inhibitor complex. 

The underlying principle of extrapolation methods is that the effect of a range of 
changes to a reference ligand can be estimated from a single simulation of that 
reference ligand. Van Gunsteren and co-workers [17-19] have carried out some key 
studies to understand and extend the applicability of this approach. In their most 
recent paper in this area, they showed that, using the free energy perturbation formula 
together with an appropriate reference state, it was possible to reproduce, with 
a reasonable degree of accuracy, the 'exact' free energies calculated using normal 
thermodynamic integration methodology. Where changes in the ligands involved the 
deletion or creation of atoms, it was necessary to employ a biased, nonphysical reference 
state generated using a reference ligand which included soft core dummy interaction 
sites. Although no data have yet been published on protein-ligand applications using 
this latest variation of the methodology, the approach holds some promise. 

In the LIE procedure, the binding energy is evaluated from the difference in 
ligand--environment interaction energy (both electrostatic and van der Waals energy) 
in the bound and free states. The environment in the simulation of the enzyme
inhibitor complex includes the protein as well as the solvent. The absolute free energy 
of binding is given by 

L\Gbind = 1/2 «Vb~und > - < Vr: •• » + ex( < V);::"d > - < V;:.v: » (7) 

where ex is an empirical constant, the optimal value of which has been determined by 
Aquist to be 0.161. It is not clear why the procedure should be able to give absolute 
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binding energies as claimed by the authors, when the interactions of the free protein 
and solvent are ignored, or why ex appears to be transferable to different proteins. One 
could classify this method as a partitioning approach (vide infra). The value of ex would 
then equate to the scaling factor used in other methods which correlates the surface 
area or volume to the dispersion-repulsion and cavity terms. Acqvist has reported 
a number of protein systems where reliable estimates of binding energies have been 
obtained, including calculations on HIV protease [20], glucose/galactose binding 
protein [21], endothiapepsin [22] and trypsin [23]. This method does have the 
advantage of working from an ensemble of molecular conformations and thus mo
lecular flexibility can be properly accounted for. In addition, it appears applicable to 
a wide range of inhibitors for any given protein. More recently, Paulsen and Ornstein 
have applied the method with some success to P450cam. In this work the optimal 
value of ex was 1.043 [24]. It is not clear at this stage whether this difference reflects the 
different force fields used by the two groups or the nature of the protein-ligand 
complexes investigated. Jorgensen has applied the method to the estimation of 
solvation free energies and found the optimal value of ex to range from 0.3-0.6 [25]. 
Despite the reservations about the transferability of ex, the method holds promise and 
deserves further investigation. 

3.2. Partitioning approaches 

There has been much discussion in the literature about the validity of partitioning 
the free energy calculated by FEP JTI methods [26,27]. The argument is that, although 
free energy is a state function and therefore the pathway one chooses to calculate it is 
irrelevant, this does not apply to the components of the free energy as these are not 
state functions. The same arguments can be made against the 'partitioning' approach 
to free energy calculation. This is implicit in the acceptance of the arbitrary nature of 
the 'master equation'. However, analysis of binding free energy in this way provides 
valuable insight into the principles of the binding process and the limitations and 
applicability of the method. So although the approach may not be rigorous, it has 
proven of enormous utility. 

In this section we consider some of the key contributors to binding free energy 
which were captured in Eq. 4. In particular, we consider the polar and nonpolar 
contributions to the changes in solvation energy and in the conformational entropy 
on binding. Some of the applications of partitioning methods are summarised in 
Table 2. 

3.2.1. Nonpolar contributions to binding 
There has been considerable discussion in the literature as to the most appropriate 

method of calculating the nonpolar contribution to binding. Most methods use 
relationships derived using solvent accessible surface area (SAS), although Jackson 
and Sternberg [28] and Pitarch et al. [29] have recently suggested that the use of 
molecular surface area (MSA), unlike SAS, leads to a potential of mean force that 
corresponds to that observed in simulations and therefore is more appropriate. 
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Fig. 2. (a) A thermodynamic cycle describing enzyme-inhibitor binding based on gas to aqueous 
phase transfer from which the nonpolar contribution to binding can be extracted using relative 
hydration free energies. (b) A thermodynamic cycle based on oil to aqueous phase transfer from 
which a nonpolar contribution to binding can be extracted using relative partition free energies. The 
relationship to the gas-phase cycle is also shown. 

There are two thermodynamic cycles which are commonly used to define the 
nonpolar contribution to binding. The first involves the use of gas to aqueous phase 
transfer and the second involves nonpolar liquid to aqueous phase transfer. The 
former is summarised by the thermodynamic cycle shown in Fig. 2a. The binding free 
energy in water is given by the gas-phase interaction energy plus the difference in 
hydration energy (AGso1v) between the bound and free species. 

(8) 

The hydration energy contribution can be considered to comprise a term involving 
the cost of cavity formation and two terms, a dispersion-repulsion and an electrostatic 
term, describing the favourable interaction of the solutes with water. 

(9) 

The gas-phase interaction term involves dispersion-repulsion and Coulombic interac
tion terms between the interacting molecules. The subscripts vdW and coul are used 
to distinguish these from the interactions between solute and solvent. 

(10) 
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Thus, 

AGbind = AG~!ul + AG~Jw + AAG~!~E-I + AAG~~;E-I + AAG~l~E-1 (11) 

The superscript EI-E-I indicates the difference for each energy contribution between 
the three species. Some authors make the assumption that, in a well-packed system, 
the dispersion-repulsion energy will be conserved and thus the AAGd_r and AGvdW 
terms will cancel, giving 

If the dispersion energy is included explicitly, then Eq. 11 can be rewritten as 

AG = AGEl + AGEl + A AGEI.E.I + A AGEI-E-I 
Ll bind Ll coul Ll vdW LlLl np LlLl ele 

where 

AGnp = AAG~!~E.I + AAG~~;E-I 

(12) 

(13) 

(14) 

This is convenient representation because, for nonpolar molecules with no dipolar 
nature (i.e. AGele = 0), differences in hydration free energy solely reflect differences in 
cavitation and dispersion-repulsion energies and an empirical relationship with sol
vent accessible surface area can be derived. 

AGsolv = AGnp = Ysolv MSA + Csolv (15) 

Hydration free energies for alkanes are given in Table 4. These data indicate that the 
value of Y solv should be 5.8 cal mol- 1 A -2. This corresponds to the relationship used 

Table 4 Solvation energies and transfer free energies for alkanes - relationship with surface area 

Alkane MSA" SAsa ~Gpart ~G~art ~G~olv ~G~olv 
(..\.2) (..\.2) ( octanol/water) (alkane/water) (gas/alkane) (gas/water) 

(kcal mol- 1) (kcal mol- 1) (kcal mol- 1) (kcalmol- 1) 

Ethane 69 180 2.47 -1.04 1.77 (3.34) 
Propane 89 211 3.22 4.05 - 1.80 1.98 (4.07) 
Butane 109 242 3.92 4.92 - 2.55 2.15 (4.89) 
Pentane 129 274 4.62 5.82 - 3.30 2.34 (5.57) 
Hexane 149 306 5.32 -4.06 2.55 (6.29) 

fCH2 20 31 0.72 0.89 -0.75 0.18 (0.74) 
"( (MSA)d 36.1 44.5 - 37.5 9.0 (37) 
(cal mol- 1 ..\.-2) 
"( (SAS)d 23.2 28.7 -24.2 5.8 (24) 
(cal mol-I..\. -2) 

a Data presented are for gas/n-hexane transfer free energy. These data together with the surface area data 
are from Jackson and Sternberg [28]. 

b Data presented are for cyc1ohexane/water transfer free energy. 
C Figures in parentheses are values of corrected hydration energy. Data from Sharp et al. [31]. 
d The "( value is derived from the relationship between solvation and transfer free energy and molecular and 

solvent accessible surface area. Thus, from octanol and hexane transfer free energies "(part is obtained, from 
hexane solvation energies "(solv.o is obtained, and from the hydration energies "(solv is obtained. 
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by Sitkoff et al. [30] in their work on the estimation of hydration energies using 
continuum methods. Sharp et al. [31] have argued that one needs to correct the 
experimental values of transfer and solvation free energies for changes in volume 
entropy. For hydration free energy, they obtained a corrected value for Ysolv of 
44 cal mol- 1 A -2. It is not absolutely clear whether the corrections derived by Sharp 
et al. are theoretically sound for small molecules. Jackson and Sternberg [28] have 
argued that they are not. It is likely that the 'true' value for Ysolv lies somewhere 
between 5.8 and 24 cal mol- 1 A -2. 

The second thermodynamic cycle that is commonly used to derive estimates for the 
nonpolar contribution is that involving transfer between water and a nonpolar 
solvent. This is based on the belief that the core of a protein is more like a hydropho
bic solvent than the gas phase. The relevant thermodynamic cycle and its relationship 
to the gas-phase cycle can be seen in Fig. 2b. 

Similarly to the gas-phase model described above, the binding energy in the oil 
phase can be defined by 

(16) 

As described above the solvation energy comprises a cavity energy term and disper
sion-repulsion and electrostatic solvation energy terms. The transfer free energy, 
described by the subscript part, is the difference between these contributions in the 
two solvents. 

AGpart = AGcav,part + AGd-r,part + AGele,part (17) 

The dispersion-repulsion energy for a molecule in any solvent is normally considered 
to be the same and is thus ignored (although this need not be the case). Thus, 

AG AGEl + AGEl + A AGEI-E-1 + A AGEI-E-1 
L1 bind = L1 coul L1 vdW LlLl cav,part LlLl ele,part (18) 

The nonpolar term (which now is solely a cavitation term) can be estimated through 
the relationship between surface area and waterjhydrocarbon transfer free energy for 
alkanes. 

(19) 

It is worth considering the relationship between models produced from the two 
cycles. Both can be represented by the general equation 

AG. = AGEl + AGEl + AAGEI-E-I + AAGEI-E-I bIRd coul vdW ele np (20) 

The Coulombic and electrostatic terms in the two models will vary in a manner 
defined by the solute dielectric. The nonpolar contribution to binding will be more 
favourable using the hydrocarbon model, because no allowance for the loss of 
favourable solute-water dispersion interactions is required. The transfer free energy 
values for alkanes are given in Table 4. The frequently quoted values for Ypart used by 
several groups are derived from experimental transfer free energy values in octanol. 
This is understandable given the extensive data that exist for octanol partition 
coefficients. The values of 23.2 and 28.7 cal mol- 1 A - 2 obtained for octanol and 
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hexane, respectively, are in agreement with other work [32,33] and are significantly 
different from the uncorrected value obtained from hydration free energies 
(5.8 cal mol- 1 A -2). As can be seen from the table, the difference between these terms 
derives from the solvation energy of the solute in the hydrocarbon solvent. 

As to which model for nonpolar binding to use, the issue becomes to what extent 
the method used to evaluate the intrinsic energy of interaction mimics the interaction 
in the hydrocarbon phase versus the gas phase. Where the intrinsic interaction energy 
is estimated using standard molecular mechanics force fields with gas-phase charges 
and a dielectric of 1, then the gas-phase cycle is more relevant. Alternatively, using 
continuum methods with a solute dielectric of 4 to determine interaction energy and 
electrostatic desolvation, it may be that the hydrocarbon cycle is more appropriate. It 
is interesting to note that using 'corrected' hydration energy, the value for Ynp obtained 
is very close to that obtained from the transfer free energy data. In the above we have 
referenced the values of Y corresponding to the SAS; however, equivalent values can 
be derived based on MSA and these are also given in Table 4. 

This assumes that the complete analysis involves the explicit calculation of the van 
der Waals interaction energy between the species in the bound state. If this is not the 
case, the dispersion-repulsion term within the solvation energy contribution should 
also be dropped. In this case we are left with a 'nonpolar' contribution comprising 
only a cavity term and the surface area scaling factor should be somewhat larger. 

In summary, there appears to be no universally accepted rigorously defined value 
for y. Values of between 20 and 30 cal mol- 1 A - 2 seem to be most commonly used. 
Given the uncertainties, authors are justified in using an empirically defined value that 
best suits the system under investigation. 

3.2.2. Electrostatic contributions 
Continuum methods: The use of continuum approaches to the estimation of solva

tion, conformational and binding free energies has become increasingly popular and 
well validated in recent years. Numerical approaches to the solution of the Poisson
Boltzmann equation have been the cornerstone of this approach, and a seminal paper 
by Gilson and Honig in 1988 [34] has formed the basis for much of the more recent 
work. The approach consists, in essence, of three finite difference Poisson-Boltzmann 
(FDPB) calculations (two if only relative binding energies to the same rigid protein are 
required), on the inhibitor and protein when free in solution and the protein-ligand 
complex. Conceptually, the overall binding energy can be seen as comprising the 
Coulombic interaction energy as a result of binding, the difference in reaction field 
energy (or electrostatic self-energy) between the free and bound states and the 
nonpolar contribution. The latter is calculated as described in the preceding section, 
based on molecular or solvent accessible surface area. As indicated previously, unless 
the surface area term is scaled to represent the cavity only (rather than the complete 
nonpolar contribution), the van der Waals energy of interaction should also be 
included. In fact, this has rarely been the case in examples published to date. In our 
experience the short-range nature of this energy and its sensitivity to the precise 
position of the atoms in the protein-ligand interface make it difficult to include 
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Table 5 Prediction of relative binding affinity of thrombin/inhibitor complexes 

Inhibitor ~~Gcoul ~~Gele ~~Gnp - T~~Sconf ~~Gcalc ~~Gob' Error 

l(NAPAP) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 - 0.3 -0.7 1.8 0.0 0.8 0.7 0.1 

~ 0.1 0.7 - 0.1 0.0 0.7 1.7 - 1.0 
4 24.3 - 21.6 1.5 0.0 4.2 5.6 -1.4 
5 11.5 - 9.1 - 1.8 0.7 1.3 0.4 0.9 
6 10.1 -10.5 1.6 0.0 1.2 0.9 0.3 
7 10.2 -10.6 2.5 0.0 2.1 1.7 0.4 
8 11.4 - 11.9 3.1 0.0 2.6 2.0 0.6 
9 11.3 - 8.9 0.5 0.7 3.8 4.7 -0.9 

All energies (in kcalmol- 1) are given relative to the thrombin inhibitor NAPAP. ~~Gcoul is the relative 
coulombic interaction energy. ~~Gele is the relative electrostatic desolvation energy. Electrostatic calculations 
carried out with DELPHI [34]. ~~Gnp is the relative non-polar contribution to binding based on accessible 
surface area and a scaling factor of 40 cal mol-l A -2. ~~Sconf is the relative contribution due to loss in 
conformational entropy. ~~GOM' the experimental values, are taken from Grootenhuis and van Galen [64]. 

explicitly. For this reason we tend to adjust the scaling factor for the surface area term 
to allow for this contribution. 

In work in our laboratory, this approach has been used successfully against a range 
of protein-ligand systems including trypsin, thermolysin, barnase and thrombin. The 
results for a series of thrombin inhibitors, based on NAPAP and argatroban, are given 
in Table 5. We have used a dielectric of 4 in the FDPB calculation to~ether with 
solvent accessible surface area and a scaling parameter y of 40 cal mol- 1 A - 2 for the 
nonpolar contribution. The relative binding energies are predicted to a mean error of 
0.7 kcal mol-I, which is generally the level of accuracy we have seen with the other 
protein systems. These results emphasise the importance of the electrostatic desolva
tion term. The overall electrostatic contribution (i.e. Coulombic plus electrostatic 
desolvation term) tends to be finely balanced and, in our experience can, often be an 
unfavourable contribution to binding. This demonstrates the need for polar groups to 
achieve a compensating favourable interaction on burial from solvent, in order to 
achieve a reasonable binding affinity. 

Shen and Quiocho [35] obtained a similar level of accuracy with their work on 
sulphate binding protein and arabinose binding protein, although they did not take 
into account the nonpolar/cavity term in their analysis. Zhang and Koshland [36], in 
their calculations on seven different substituted R-malate substrates bound to nine 
different mutants of isocitrate dehydrogenase, obtained a standard deviation between 
predicted and observed relative binding energies of 0.4 kcal mol- 1. Engels et al. [37] 
obtained an accuracy of 1.1 kcal mol- 1 in their work on thrombin and trypsin 
inhibitors, although the results were very dependent on the choice of solute dielectric 
and the nonpolar scaling parameter y. They chose a solute dielectric of 20 and a 
y value of 9 cal mol- 1 A -2. Interestingly, in this work the electrostatics were only 
responsible for around 10-20% of the variance in data. As part of his computational 
combinatorial ligand design (CCLD) program, Caflisch [7] has developed this ap
proach further using a full molecular mechanics description to obtain a gas-phase 
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interaction energy, together with FDPB calculations to estimate the solvent-shielded 
intermolecular association energy and the electrostatic desolvation energy. He used 
the changes in solvent accessible surface area and a scaling factor of 25 cal mol- 1 A - 2 

to estimate the nonpolar contribution. 
We have found the results of this approach to be relatively insensitive to the precise 

charges used for ligand and protein. We have used PARSE charges [30] for the 
protein and CHARMM-based [38] charges for the ligand and PARSE vdW radii for 
all atoms. The results, however, are sensitive to the precise positioning of the ligand. 
We always relax the complex through 500 steps or so of energy minimisation prior to 
carrying out the FDPB calculation. The protein is usually kept fixed during this 
process, although hydroxyl hydrogens are allowed to move. One of the draw
backs of this approach is that the geometry, binding conformation and orientation 
of ligands need to be generated using one theoretical model (i.e. standard molecular 
mechanics) an~ then the binding energy calculation carried out using another. 
This can lead tp some inconsistencies which need to be taken into account. The 
treatment of crystallographic water that appears to be playing a structural role in the 
protein or protein-ligand complex is another unresolved problem. We have found 
that it is usually necessary to include these explicitly in the calculation as part of the 
protein. Numerical accuracy of the FDPB algorithm can also be a problem for large 
proteins. 

These calculations are almost always carried out on a single conformation of 
protein and ligand, as it is currently not possible to be able to carry out calculations 
on a realistic ensemble. Each calculation usually takes around 10 min CPU on SGI 
R4400. Thus, the method is not well suited to ranking large hit lists of molecules 
generated by structure-based design programs, but is probably useful for problems 
involving a moderate number of ligands (up to 50). A recent publication by Schaeffer 
and Karplus [39] describes a new analytical treatment of continuum electrostatics 
(ACE) which, if it proves to be generally applicable, is reported to be sufficiently fast to 
use alongside the most prolific structure-based design methodology. 

Atomic solvation parameter approaches: The most common alternative approach to 
the use of the Poisson-Boltzmann methodology is the use of standard molecular 
mechanics potentials, or more occasionally quantum mechanical methods, to estimate 
relative binding affinities. There are examples where a reasonable relationship be
tween gas-phase binding energies, incorporating dielectric screening usually through 
the use of a distance-related dielectric, has been obtained [40,41,64]. The slopes of the 
lines fitting experimental and calculated binding affinities are always significantly 
greater than 1 in these instances. Given the omission of electrostatic solvation terms 
and therefore the vast overestimation of the electrostatic contribution to binding, 
these relationships must be considered exceptional and unlikely to be transferable to 
a wide range of ligands or proteins. 

It is not appropriate to use the nonpolar solvation contribution alone in conjunc
tion with an estimation of gas-phase interaction energies, even when the electrostatic 
contribution is reduced using an arbitrary choice for dielectric, although some 
workers have taken this approach [42,43]. Some account must be made for the 

483 



D. Timms and A.J. Wilkinson 

electrostatic aspects of desolvation. Other than the use of continuum methods, the 
most common approach is the use of the atomic solvation parameter (ASP) method 
[31,44-52]. Here the solvation contribution is estimated using the relationship 

(21) 

where Ai is the solvent accessible surface area of each atom while O"i is the atomic 
solvation parameter for that atom. Unlike in the approaches where the nonpolar 
solvation contribution to binding is estimated separately from the polar solvation 
contribution, each atom type is associated with a different O"i' These parameters have 
been derived from transfer free energy data, including water/octanol and gas/water 
partitioning. The nonpolar (and primarily entropic) contribution results from the 
positive values of O"i for carbon atom types, while the polar (and primarily enthalpic) 
solvation contribution results from negative values of O"i for polar atom types. 

It is worth comparing the two approaches to the calculation of overall solvation 
contribution. For the two methods to give equivalent results, then 

L(TiAi '" LYnpAi + dGes(FDPB) (22) 

For carbon one would anticipate that O"i will be close to Ynp. As indicated by Smith 
and Honig [53] however, the FDPBjy approach is more physically realistic. It cannot 
be strictly valid to use surface area to estimate the electrostatic contribution to 
solvation. For example, using the ASP approach the electrostatic free energy does not 
change once an atom is buried, yet in reality it is dependent on the depth beneath the 
surface and the shape of the interface. Because the ASP approach cannot account for 
dielectric screening, it is usually used in combination with an effective dielectric (e.g. 
€ = r), whose value is arbitrary. As a result, there can be difficulties in scaling ASP 
solvation energies to the rest of the force field. Despite these shortcomings, this 
approach has found great utility in a number of areas [13,54-59]. Perhaps the greatest 
practical limitation is the need for additional atom types to reproduce accurately the 
solvation energy of the range of molecules encountered in a drug discovery project 
and the limited solvation energy data that are available to derive parameters for these 
new atom types. 

3.2.3. Conformational entropy and strain energy 
Many workers make the assumption that both ligand and protein are rigid and thus 

ignore contributions arising from conformational strain energy and conformational 
entropy. While this assumption can be justified on occasion either because both 
protein and ligand are rigid or because within a series the relative binding energy is 
not affected by these contributions, in general these aspects must be considered. 
Usually any strain energy associated with the protein is ignored, the assumption being 
made that all accessible conformations in both the free and complexed states are 
equi-energetic. For the ligand, the strain energy must be estimated based on the 
ensemble of conformations observed in the free state. 

(23) 
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It is worth emphasising at this point that when a ligand or protein displays 
flexibility, this should also be incorporated into the solvation energy contributions, 
which should be calculated from a representative conformational ensemble. Vajda et 
al. [13] demonstrate the importance of this in their studies on MHC-peptide com
plexes. The generation of the conformational ensemble can be achieved by a system
atic conformational analysis or from simulation. In either case the ensemble may be 
biased by the 'gas-phase' energy function that is usually used and, if so, this needs to be 
addressed. 

If one assumes that all conformational flexibility is lost on complexation, the loss of 
conformational entropy on binding is given by 

dSconf = - RrPi In Pi (24) 

where Pi represents the fractional population of each conformation of both protein 
and ligand in the free state. Pi can be determined from an ensemble generated as 
described above or for particular classes of molecules, such as proteins or peptides 
from experimental data [60-62]. 

Making the assumption that all conformational flexibility is lost on binding is 
simplistic and some workers determine the residual conformational entropy in bound 
protein-ligand complexes by assuming that all conformational entropy is lost when 
60% or more of a side chain is buried. Between 0 and 60% buried the 'intrinsic' 
entropy loss is scaled with the degree of surface area buried [13]. This approach can 
also be used to determine the conformational entropy associated with the free protein. 
It is not appropriate to assume that side chains in an uncomplexed protein active site 
have conformational degrees of freedom equivalent to those available to a linear 
peptide. 

Many studies on peptide ligands focus upon the conformational entropy loss 
associated with side-chain flexibility; however, for linear peptides, the contribution 
from backbone flexibility in the unbound state can be equally important. This can be 
addressed in a similar way. For example, Vadja [63] has developed a method in which 
16 regions of the (<\>, W) map are defined as conformational states. The transition 
probability associated with each state is derived from high-resolution X-ray 
structures. 

Such entropy scales are not appropriate for the more general set of ligands that are 
encountered as part of a drug discovery project. For these, the entropy contribution 
must be calculated explicitly as described by the equation above or, alternatively, 
a more rapid but approximate approach can be used where it is assumed that all 
accessible states are equi-energetic and that conformational entropy inherent in the 
unbound state is given by 

dSconf = - Rrln W (25) 

where W is the number of different accessible conformations in the unbound state. 
This can then be approximated based on the number of single bonds in the liga~d and 
by assuming that each Sp3_Sp3 single bond can adopt three states. This leads to an 
entropy contribution of - R In 3 (i.e. 2.2 cal K -1 mol- 1) per rotatable bond. Despite 
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the approximations inherent in this approach, the value obtained correlates remark
ably well with the more sophisticated analyses described above [61]. 

3.3. Regression-based approaches 

Where large numbers ( > 500) of hits from high throughput screening are to be 
evaluated via ligand docking to a target protein, the speed with which an acceptably 
accurate estimate of binding affinity can be determined is of overriding importance. 
These two elements, speed and accuracy, currently are difficult to achieve at the same 
time. A number of empirical approaches have been developed in which available 
structural and binding data have been used to calibrate the contribution to affinity of 
chosen factors in the context of particular functional formats. Some of these are 
summarised in Table 3. 

The most basic of these approaches is that of Andrews et al. [67J, where binding 
data alone were analysed to derive functional group contributions to affinity. 
A regression equation involving 10 functional groups plus terms for the loss 
of rigid-body and conformational entropies on binding predicts the binding free 
energies for 200 complexes to an accuracy of 4.6 kcal mol- 1. Although this 
work was intended to provide insight as to the likely effect of incorporating particular 
functional groups in drug design, it also provides a useful baseline for binding affinity 
prediction. 

Combining known structures with known binding data, B6hm [68J has generated 
a regression equation which employs the relative contribution of the number and 
nature of hydrogen bonds and hydrophobic effects in addition to conformational and 
rotation/translation entropic terms. For 45 complexes the standard deviation between 
calculated and observed binding energies was 1.9 kcal mol- 1. A similar approach has 
been taken by Bohacek and McMartin [1OJ, who map the environment ofthe protein 
to a cubic grid and evaluate the correspondence between the ligand atoms and the 
grid point nearest to them to determine the number of hydrogen bonds and lipophilic 
contacts. The accuracy of binding energy prediction for nine thermolysin complexes 
was 0.5 kcal mol- 1; however, we have extended this approach using the program 
SCORER, developed at Zeneca, to 102 complexes covering a wider variety of ligands 
and proteins. This resulted in a prediction accuracy of 2.3 kcal mol- 1 (see Fig. 3). 
Another way of evaluating the value of this approach in examining a hit list from 
a ligand design program might be to ask how many molecules are correctly predicted 
to be better than 10 - 6 M as these are likely to be the molecules of real interest. 
SCORER predicts 77% of the molecules correctly with 5% false positives and 18% 
false negatives. 

As further structural and binding data are generated, these regression equations can 
be rederived, although there is no reason to believe that the accuracy can be improved 
beyond 1.5-2 kcal mol- 1• This results from limitations in the structural data, from 
inaccuracies and a lack of uniformity in the binding data, in addition to the simplistic 
approximations of the calculation. An additional limitation of this approach is that 
unfavourable binding interactions (e.g. a steric clash or a buried polar group) rarely 
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Fig. 3. SCORER predictions versus observed binding affinity for 102 protein-ligand complexes. 

occur in known protein-ligand complexes and are thus difficult to include in these 
methods. 

The magnitudes of the contributions of the various factors determined by these 
regression approaches show an approximate correspondence to values determined by 
experiment [69] or by theoretical methods [70] (see Table 6). The regression coeffi
cients obtained are, to some extent, dependent on the data set used and, as indicated 
earlier, these data are probably inadequate for sophisticated statistical analysis. If a set 
of coefficients based on experimental/theoretical values are adopted, one might 
generate an equation of similar predictive capability but without any dependence on 
the calibration data set. 

An alternative approach to the calibration of predefined physical contributions to 
the binding energy relates the interaction energy to the size and nature of the contact 
surface. Horton and Lewis [71] used the ASPs referred to earlier from liquid 
partitioning data, but with further calibration for the binding energies of protein
protein complexes. A similar approach using contact surface complementarity along 
with a repulsion term has been developed by Sobolev et al. [72] to guide docking 
calculations. This idea has been extended by Wallqvist et al. [73], who have calibrated 
the contact areas of 10 HIV protease ligand complexes in terms of pairwise 
atom-atom preferences for 21 atom types. The accuracy of the binding energy 
predictions for this limited data set was ± 1.5 kcal mol- 1; again extension to 
a broader range of complexes may lead to poorer prediction. 
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Table 6 Comparison between regression-based and experimental/theoretical values for contribu
tions to ligand binding energetics 

Contribution 

Cratic and rigid-body translation and 
rotational entropy term 

Conformational entropy term per 
rotatable bond 

Neutral hydrogen bond - exposed 

Neutral hydrogen bond - buried 

Ionic hydrogen bond - exposed 

Ionic hydrogen bond - buried 

Hydrophobic contribution accessible area 
coefficient (cal A -2) 

Hydrophobic contribution per CHr CH2 

contact; assumes change in area = - 66 A 2 

a From Bohm [68]. 
b E: experimental [69J; T: theoretical [70]. 

Regression 
(Bohm)" 

(kcal mol- 1) 

1.3 

0.3 

- 0.4 

-1.1 

- 0.7 

- 1.9 

26 

- 1.6 

Experimental! E/Tb 

theoretical 
(kcal mol- 1) 

13-18 T 

1.3 T 

0.0 to - 0.5 E 

- 1.0 to - 2.0 E 

- 2.9 to - 4.8 E 

15-53 E 

- 1.0 to - 3.5 E 

The idea of calibrating pairwise atom-atom preferences has been developed by 
Verkhivker's group [74] as mean-field distance potentials for 12 atom-type pairs. 
These short-range potentials were derived from 30 HIV protease complexes following 
the knowledge-based approach of SippI [75]. The potentials are augmented by 
desolvation and rigid-body/conformational entropy terms along with allowances for 
bound water and conformational changes from the free species. In a subsequent paper 
from the Agouron group [76], a pairwise linear distance potential has been adopted to 
describe hydrogen bonding and steric contributions to binding in a mean-field 
characterisation [77] of ligand-protein complexes. Jain [78] has likewise adopted 
a functional form to describe hydrophobic and polar complementarity. This function 
is a combination of Gaussian and sigmoidal terms and, again, there are associated 
repulsive, solvation and entropic contributions. When calibrated using 34 ligand
protein complexes, the accuracy of binding energy prediction was ± 1.2 kcal mol- 1. 

The method predicted the notoriously difficult streptavidin-biotin affinity quite well 
(log K j = - 12.5 cf. -13.4) and it will be of interest to see if this accuracy is 
maintained on extension to complexes beyond the training set. 

The determination of the contributions to binding energy by fitting to an experi
mental data set can be formulated in an analogous fashion to classical quantitative 
structure-activity relationship (QSAR) methods used to correlate drug potency and 
physicochemical factors in the pharmaceutical industry. The approach adopted by 
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Ortiz et al. [79] generates a partial least-squares (PLS) regression for a series of 
inhibitors binding to a given protein. This uses, as variables, force-field-derived 
components of the interaction energy between ligand and protein and also their 
intramolecular geometric and nonbonded terms. A similar PLS approach using 12 
calculated properties, including steric and electrostatic energies along with various 
contact surface area terms, etc., has been calibrated by Head et al. [80] using 51 
complexes. The accuracy of prediction in the training set was 1.4 kcal mol- 1 and, on 
further test sets, ranged from 1.0 to 2.6 kcal mol- 1 for HIV protease and thermolysin 
complexes, respectively. 

In summary, a variety of fast empirical methods based on the calibration of the 
contribution of various components in the context of a number of functional forms 
can predict binding energies to ± 1.5 kcal mol- 1 in favourable circumstances. There 
is evidence of training set bias in a number of cases and the adoption of values for 
contributions based on experiment or simple theory may be more generally applicable 
but of no greater accuracy. 

4. Insights from calorimetry 

The most obvious components of the free energy of binding are the changes in 
enthalpy and entropy on complex formation. Many of the contributions considered 
earlier have been associated with a particular thermodynamic component, e.g. hydro
phobic terms are regarded as largely entropic and hydrogen bonding as mainly enthalpic. 

Following calibration of an accessible area approach to calculating the thermo
dynamics of protein unfolding, Freire and co-workers [81] have applied the same 
methodology to the calculation of the entropic and enthalpic components of ligand
protein complex formation. The advent of an increasing volume of directly deter
mined calorimetric binding data [82] has allowed these approaches to be more widely 
applied and appraised. 

There is also a third thermodynamic parameter, namely L\Cp, the change in heat 
capacity on binding, which has been the subject of much interpretation. For protein 
unfolding, L\Cp is generally large and positive and has been directly related to the 
increase in accessible hydrophobic surface area in the denatured state. In the case of 
ligand-protein binding, large negative L\Cp values are often observed [83] and, by 
analogy, these have been interpreted as indicating the burial of hydrophobic surface 
on complex formation. For a number of systems, employing the calibration obtained 
from protein unfolding leads to estimates of buried hydrophobic surface far in excess 
of that identified from the structures of the complexes [84]. 

One explanation has been suggested [85] to involve a contribution from water 
molecules sequestered into the binding interface. Indeed, the majority of known 
experimental structures for ligand-protein complexes contain such sequestered water 
[86]. Depending on the particular environment at the interface, a sequestered water 
molecule can contribute of the order of - 60 cal K -1 mol- 1 to the L\Cp [87], and 
such waters tend to link a hydrophilic group in the ligand to one in the protein. 
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Ben-Naim has suggested the term hydrophilic interaction for this effect [88] and 
postulated a free energy contribution of - (2.5-3.0) kcal mol-I. However, based on 
perturbation free energy calculations, Sun and Kollman [89] indicate that this may be 
an overestimate. Analysis of calorimetric data suggests [86] that the hydrophilic effect 
contributes -1 to - 3 kcal mol- I to the binding enthalpy and that this is largely 
compensated by a - T AS contribution of similar magnitude but opposite sign. 
The resultant free energy for the hydrophilic contribution is of the order of 
-0.5 kcal mol- l per water. 
It has been suggested [88,84] that such hydrophilic interactions be incorporated in 

ligand design. Conversely, the replacement of such a water may allow the retention of 
the enthalpic polar contribution without invoking the associated entropy loss on 
immobilising the water, hence leading to improved affinity [90]. Thermodynamic 
data for the binding of a series of analogues to a protein often show enthalpy-entropy 
compensation [91]. If the ACp values are large and negative and are more negative for 
analogues which exhibit more negative binding enthalpies, and if these enthalpies are 
associated with compensating changes in entropic contribution, one might infer a role 
for sequestered water. 

In conclusion, calorimetric data can give insights as to the role of water in 
ligand-protein complexes. In addition, the burial of surface can be related to entropic 
hydrophobic and enthalpic polar contributions. The fact that water molecules may be 
involved in the binding interface and may impact on the binding energetics means that 
they need to be taken into. account when calculating binding energies. This may be 
straightforward when indicated in an experimental structure, but is problematical 
when the structure of the complex is the result of modelling or docking calculations. 

5. Summary 

A number of new approaches to the prediction of binding affinity have appeared 
over the last 3-4 years. In particular, the exploitation of finite difference Poisson
Boltzmann methodology has provided much encouragement. Many problems, how
ever, still need to be addressed, including the speed and numerical accuracy of the 
methodology, protein and ligand flexibility, the role of structural water, the develop
ment of a general atomic charge set and the treatment of the nonpolar contribution to 
binding. 

The extensive structural information now available on protein-ligand complexes 
has enabled a number of authors to develop regression-based approaches to binding 
energy prediction. These have been used with some success but current methods tend 
to be limited to molecules within or close to the training set. As one expands the 
number of protein-ligand complexes examined, the accuracy of the models tends to 
decline. 

As the quantity of experimental structural and binding data on protein-ligand 
complexes expands rapidly, our understanding of the contributions to the binding 
process increases also. Isothermal microcalorimetry is providing important insights 
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which should enable a new generation of methods to be developed over the next few 
years. The prediction of binding affinity remains one of the greatest challenges to the 
wider application and acceptance of structure-based design. Much progress has been 
made in recent years, but much remains to be done. 
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Synopsis 

Features of computer languages relevant to drug design, as actually used (or at least 
described) in the public domain, are reviewed. Ideally, the current molecular designer 
needs to know about eight different languages. There is a 'Babel' of forms used in 
conjunction, including Unix, C, C++, HTML, Java, VRML, SQL, PERL, editing 
languages and specific CAD software command/control languages. There is a need for 
a single lingua franca. No one language yet meets all requirements, but the way 
forward is becoming clearer .. Difficcties anand possssible limitits of compguages, and 
by extension the computational approach, are also discussed. 

1. Introduction 

All chemical agents affecting the body are 'drugs'; however, it is the beneficial 
subset, useful in prevention, diagnosis and treatment of disease, to which the word 
'drug' relates in terms such as drug discovery [1]. Successful drug discoverers are 
reasonably considered important benefactors of mankind. If so, then they deserve to 
be equipped with the most appropriate and powerful tools. 

What tools are these? The popular view considers drug discovery in terms of the 
ever-vigilant bacteriologist and the serendipity of bacteriological petri dishes with 
contaminating mould, or the chance discovery of the chemical genius collecting 
samples in a rain forest. In the latter decade of the 20th century, such events and 
individuals are rare if not apocryphal. Drug development is too expensive, and the 
needs too pressing, for chance to be the primary tool. Moreover, when such examples 
do occur, it is rare that the original agent 'discovered' represents the final commercial 
agent: a degree of tailoring and redesign is usually required (for example, the orig
inal penicillin molecule was too susceptible to the acid of the gut). It is true that 

*Visiting researcher and teacher in bioinformatics at Stanford University: Stanford Bioinformatics Re
source, Department of Biochemistry, Beckman Center, Stanford University School of Medicine, 
Stanford, CA 94305-5323, U.S.A. 

494 



Computer languages in pharmaceutical design 

biotechnology seems at present an exception to all this: the original agent often 
represents the final product, but this reflects our level of ignorance (about how to 
design de novo or even routinely implement useful changes) rather than aspiration. 
The situation is very simply that we need to develop more successful arts of discovery, 
tailoring and redesign [2,3]. 

The information to be handled in the practice of these arts of tailoring and redesign 
may be subtle, based on deep chemical, physical and mathematical principles. The 
information is also often substantial: even if some molecules seem promising straight
away, they are not immediately rushed into the clinic but must be placed in line and 
compared with others for extensive testing. The huge amount of data which might 
need to be sifted in order to discover the drug as it may be buried in that data, requires 
a very high degree of well-organised data management. More generally, then, rational 
drug discovery is the process of obtaining and manipulating information such that one 
can develop an acceptable, novel drug product. The tools required are those of computa
tional informatics. 

The thesis of the present discussion is that amongst the most potent of the 'hands-on' 
tools of computational informatics are the computer languages. Computer languages 
play two roles in computer-aided drug discovery: (i) They are required for the 
development of drug design systems: they underlie whatever means of man-machine 
interaction is used. (ii) They are represented by the control languages used by the 
drug design software. There is every good reason why two such languages should be 
the same. The modern approach of moving toward modular ways of building systems 
and high-level object-oriented approaches justifies a specialised chemistry and biol
ogy language in any event. System developers themselves would certainly appreciate 
the value of working with the end-user scientific experts to identify the essential 
component ideas in drug development, so as to avoid the writing of new code every 
time the system is extended or a new system is developed. 

In 1996, however, the emphasis is still not on the use of powerful languages at the 
user end: "Rather than performing time-consuming and costly laboratory tests, the 
drug designer can use software to visualize molecules, determine chemical properties 
and revise the proposed chemical structure", said Thomas Raechle, Director of 
Applications at Cray Research Inc. [2]. That is, the current emphasis on computer 
graphics. Nonetheless, while three-dimensional molecular graphics plays a powerful 
role, it must not be forgotten that one-dimensional human language serves as a means 
of communication which, in addressing a broader range of issues than just visual 
matters, is of unparalleled power. A picture may speak a thousand words, but there 
may be countless millions of concepts in human endeavour which a picture cannot 
portray, at least not without becoming a language (e.g. Bliss Symbolics). The competi
tive position of graphics in so much as it currently challenges language-based graphics 
is simply because the current technology of available high-level drug design languages 
is inferior. There are as yet no widely used public domain tools of sufficient power to 
rise to the graphics challenge. 

To be sure, graphics will always playa role. There are increasingly powerful virtual 
reality helmets to manipulate molecular models, and there will emerge a sophisticated 
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world of artificial intelligence and 'smart rooms' which will facilitate drug design 
using only human language. However, it remains the case that, to allow efficient 
human-machine interaction, the visual models represent the molecules as if they were 
entities of the macroscopic world of familiar experience. Conversely, if the user were 
to be immersed in a more realistically simulated version of the real world of the 
very small, it would be an alien one. Some of the differences are the themes of the 
books of Ref. 4. 

There are difficulties in meaningfully visualising the population and time average 
physical properties of single molecules, quantum mechanical effects, the effects of 
thermal agitation, and systems away from equilibrium. According to several authors, 
including Penrose [4J, it is possible that the quantum state vector does not collapse to 
distinguish different macroscopically perceived outcomes of different events except for 
masses and momenta much larger than those associated with single protein molecules, 
for example. We cannot escape the need to phrase our questions, commands and 
data in the logic of the molecular world since the molecular world does not behave in 
ways altogether similar to our experiences in everyday life. We will need to instruct the 
systems with which we communicate as our ambassadors to the alien molecular world. 

Relevant features of computer languages as used or previously described in the 
public domain are reviewed here. At the present time there are no languages which 
well address all the fundamental issues raised in this review. Although the author and 
his colleagues believe they have made a useful attempt in the commercial pharmaceu
tical sector, it would indeed be arrogant to assume that all the above matters of the 
molecular world are yet adequately understood, or even that we can pre-empt future 
needs and preferences of drug designers. It is possible, however, to lay a sounder basis 
for the future. What is needed is language forms which will evolve and naturally lead 
in turn to more sophisticated forms so as to make the transition, to a satisfactory 
global language solution, as seamless as possible. To do this we must still think ahead 
as best we can about the forms of language which humans and machines must master 
alike, in order to reach a common understanding. A major argument of the present 
review is that the ideal languages for drug design are likely to be structural in character, 
emphasising the inherent hierarchic structure of programs, computing systems, molecules, 
molecular data, and the design process. Amongst other improved features, they will be 
more fundamentally, more powerfully, structural paradigm languages than exist today. 

Irrespective of the choice we make regarding paradigm, there are important 
justifications for starting afresh with sound engineering principles. 

1. Firstly, to evolve efficiently and avoid 'white elephant' or 'legacy systems' which 
are hard to change, the ability to evolve smoothly and naturally needs to be designed 
into the system created. Efficient evolution does not come for free. 

2. Secondly, unless standard high-level environments are created, we will be stuck 
with a huge variety of disparate systems sharing numerous features which are 
redundantly repeated, and many novel features which are impossible to integrate with 
other standard and novel approaches. 

3. Thirdly, unless the work performed by different approaches can be inte grated 
sufficiently so as to be automated, drug development will be slow, the expert will be 
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doomed to repeat similar protocols of design for rather similar problems, and we will 
never have true reproducibility, which is the cornerstone of science. 

Underlying the third point in the above is a need to have a uniformity offeel through 
the system - effectively, as few paradigms and styles as possible. This criterion is not 
yet fully met by general computer systems. The operating system, file editors, pro
gramming languages and expert systems, for example, are normally distinct lan
guages. A system which has a degree of uniformity of feel with uniform access across 
all relevant systems at the same level is sometimes, perhaps misleadingly, called 
a polymorphic programming environment. 

An underlying theme throughout this review is the need to consider the structure of 
the design problem, or of each of its aspects. This is considered as much as the 
structure of any programming language (or polymorphic programming environment) 
which is required. Indeed, in an ideal world there will be a very close relationship 
between these structures. Unfortunately, there has been relatively little work looking 
at the problem 'top down' which will help us design a more appropriate language. 
Such a language would have structures which map directly to the design problem. The 
best this review can do is to point out some directions. 

1.1. Drug discovery - Relation to modern experimental methods 

Not all aspects of drug discovery are drug design. Drug discovery can take several 
forms with somewhat different information management needs. Drug screening does 
not require information management in the same sense as drug design, at least not 
until refinement of the leader is required. The present review relates primarily to drug 
design, but two aspects of screening deserve to be noted. In drug screening a track has 
to be kept of combinatorial libraries and the products of screening operations. This 
can require substantial data management. Further, the closer the screening approach 
comes to having the flexibility and power to deliver a drug product directly, the more 
closely it approaches a kind of molecular-scale analogue computer, in which the 
information is sorted by carefully constructed possibilities for molecular interactions. 
One can reasonably speculate about an exciting technological future for deep integra
tion between screening and design methods, within the same hardware complex. Such 
integration will have to use a language common to screening chip, digital chip and 
human brain alike, a language which relates to concentrations and probabilities. 

1.2. Drug discovery - Theoretical chemiStry 

In comparison to the drug screening approach mentioned above, in drug design an 
important feature of information management is that it includes prediction of the 
properties of a molecule which does not yet exist. Hence, drug design is by definition 
primarily a problem in theoretical chemistry. This has several important implications 
for computer-based drug discovery methodology, which the author has considered 
extensively elsewhere [3]. The implication considered in the present review is that it 
determines the character of the language to be used as the tool. It is interesting to 
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compare drug screening in another sense: seen as an analogue computation, the 
singular advantage of the experimental screening method is that it always gets its 
parameters (e.g. potential functions, quantum mechanical basis sets) and simulations 
right, albeit right by definition: reality is taken as the gold standard. How can we 
assure that our theoretical considerations will come as close as possible to that gold 
standard - in other words, how can we assure its predictive power? The possibility 
that such a theoretical chemistry does in fact exist, at least in principle, was perhaps 
first fully appreciated by Dirac [4]. 
"The underlying physical laws necessary for the mathematical theory of a large part of 
physics and the whole of chemistry are thus completely known, and the difficulty is only that 
the exact application of these laws leads to equations much too complicated to handle". 

In principle, then, it should be possible to obtain the properties of molecules by pure 
calculation, without recourse to experimental data, and hence also the properties of 
molecules not yet synthesised. Dirac, however, also highlighted the practicallimita
tion that the equations rapidly became too complex to be directly soluble. This relates 
to the restriction represented in the dimension of time (i.e. there is rarely enough). 
More recently, recognition of the importance of ab initio methods (i.e. methods based 
on a limited number of fundamental first principles with little input from empirical 
data) has increased dramatically. 

Whether at the quantum mechanical or Newtonian level, these are time-consuming 
calculations and require computer methods. Hence they are said to be problems in 
computational chemistry. We find by 1950 Boy's paraphrase "It has thus been estab
lished that the only factor limiting the calculation of the wave function of any molecule ... 
is the amount of computing necessary." The rapid advances in computation leading to 
the supercomputers of the early late 1970s and early 1980s further improved matters, 
as Clementi was quick to appreciate in the 1970s: "We can calculate everything" (for 
a historical review and discussion of these aspects, see Robson and Garnier [3]). 
Much of the language of theoretical chemistry is thus the language of quantum 
mechanics. Subsequently, computers have gained in power. In the summer of 1995, the 
U.S. Department of Energy and Intel Corporation announced the agreement to build 
the world's first teraflop computer (1 trillion floating point operations per second) 
consisting of 4096 32 GHz optical-wire linked, combined processor-plus-memory 
chips, bathed in liquid helium. 

However, computer time is always finite. Clementi's view, somewhat unfairly 
quoted out of context above, also encompassed the need to develop good approxi
mate methods based on quantum mechanical study, in order to make the most of the 
available computer power. Even then, computers can handle only the simplest systems 
by this method. For example, we do not yet know how to predict the structure of 
a protein molecule from its chemical formula (amino acid sequence) and most workers 
believe that teraflop machines will not solve 'the folding problem'. Dirac's cautionary 
note still holds true, and empirical data must be introduced into the problem, to help 
guide to a conclusion in reasonable time. This also affects the language form of choice: 
it must be, in part, not only a simulation language, but also a data acquisition and 
assimilation language. 
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2. Computational languages 

Here are outlined the basic principles of computation with particular emphasis on 
the modern world of the multiprocessor, multiuser systems and the basic principles of 
communication and data gathering [5-7]. 

2.1. The roots of computer language - The minimal requirements 

For completeness, this section is included for the reader who has not been formally 
trained in programming. 

The simplest conceivable useful computing device which is in principle capable of 
being suitable for our purposes (as a digital agent - see below) is an automaton [6]. 
This is a minimal hypothetical or simulated or real device (if it is a real device, then we 
neglect here hardware considerations). Since it is a programmable machine and it can 
be simulated, its properties are also the minimal requirement for a computer program. 
The Turing machine is a particular hypothetical automaton which can be considered 
as a simple program moving along a tape containing information which it can process 
and transform. The data on this tape could itself represent a language, and in 
computational theory frequently does [6]. Specifically, an automaton may be con
sidered as the smallest possible process capable of processing information in a mean
ingful manner, consisting of at least one function capable of transforming states, the 
input, and states in which to hold the results of the transformations (including those 
which will provide output). The most basic computer language is the 'intra-automata' 
language that will provide the facilities for a procedure with at least five components 
which make up a 'finite automaton'. These are 

S a set of states 

1 a set of input symbols 

F a transition process (e.g. as defined by a function, look-up table, etc.) 

S(I} an initial state 

S* a subset of states to be used as an accepting state, some of which will be used for 
output 

The simplest interesting thing that an automaton will do is transform each input 
symbol S to an output symbol predetermined by function F. If the output symbol is not 
found as one of the accepting states, the input is accepted; otherwise it is rejected. This 
can achieve a surprising number of useful applications. If we allow these into the class 
of digital agents, they will be able to perform useful data transformations, for example. 
However, the type of transformation cannot be changed. This is still very limited and 
not very useful for studying the general properties of computer programs, which was 
the original reason for invoking these devices. Broader activity is permitted to 
a 'nondeterministic' machine. Then, F is not a deterministic function whose returned 
value is 'cast in stone' once its argument X is specified, but may be a relation which is 
dynamically alterable (a user-defined or otherwise modifiable table). 
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In the hypothetical Turing machine, input I includes a blank symbol and the 
transforming process involving F or a look-up table respectively has a range (Si, I, 
{L,R,H}), where symbols L,R,H control the movements of the head reading the input 
symbols on the linear tape. When in the nondeterministic mode (by definition 
a deterministic form of the Turing machine is also allowed) the table returns more 
than one state, the machine is considered as being in all those states (the complete 
nondeterministic Turing machine acts as if it had infinitely many processors 
available). 

A program asked to solve a tough program may never stop. A digital agent (see 
below) sent off to treat an excessively complex problem, and told not to return until 
the task is completed, may never return. Automata are the classic minimalist concepts 
used for exploration of the notion of knowing when to stop, and related to this they 
are used to develop the notion of complexity of languages and computer programs. 
There are important implications for the theory of computation in the matter of 
'acceptance', or computation, of formula(X). Of particular interest is whether a 
Turing machine can perform its computation in a time t. 

Whether the time required increases as a polynomial function of some size of the 
task, or as a nonpolynomial (i.e. exponential) function, will basically determine 
whether the problem is, or is not, tractable. Languages are also possible input to the 
machine and represent problems of differing complexity. Class P languages are those 
languages which can be recognised in polynomial time on a deterministic Turing 
machine, and class NP is that class of languages which can be recognised in poly
nomial time on a nondeterministic machine. 

It would be inappropriate to describe the Turing machine in detail here, but the 
important thing is that Church's thesis, which can formally be shown to be equivalent 
to the Turing representation in its ability to generally describe computational pro
cesses, expresses the minimum kind of statements you need for a language (and does 
so in a more standard programming type of format). 

LABELl: X = X + 1, go to LABEL2 

LABEL3 : IF X NOT = 0 THEN X = X-1 ELSE go to instruction labelled 
LABEL4 

LABEL5: Halt and display X 

where each instruction may occur more than once with a different label, no label is 
duplicated and each LABEL pointer corresponds to one unique physical LABEL. 
Note that for generality and comparison with what follows, a label is associated with 
each instruction. A typical program command normally on completion initiates its 
successor (e.g. 'on the next line' of a program). It is merely a special case of 
an implied label. 

Church also developed a calculus - the Lambda calculus - which cleverly de
scribed the minimum elements of a language in a functional format. Aspects of 
this notation are relevant to styles being considered in potential language 
development. Amongst the practical deficiencies of Church's representation as 
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a high-level language, numbers (e.g. 6) are expressed as a repeating cycle of + 1 
operations ( + 1 + 1 + 1 + 1 + 1 + 1). This is hardly the epitome of 'user friendli
ness'. The minimum commands for practical purposes are 

LABELl: X = formula1(X): go to LABEL2 

LABEL3 : IF formula2(X) NOT = 0 THEN X = formula3(X) ELSE go to 
instruction LABEL4 

LABEL5 : Halt and display X 

where, again, each instruction may occur more than once with a different label, no 
label is duplicated and each LABEL pointer corresponds to one unique physical 
LABEL. With facility for more than one variable X and a few write/write utilities, the 
ability to write permutations of (essentially) these three instructions (essentially) 
represents machine code. 

Machine code is the deepest level of programming, neglecting, for present purposes, 
microcode which may be hardwired or software features of fundamental chip opera
tion. The commands of machine code are ultimately in binary numbers and have the 
form 

Command, Address 

where the address is the location in the machine where the number representing the 
command is to be placed. In essence, the number identifies the particular mechanism 
of the processor which is to be activated. At a slightly higher level, assembler code can 
be used, which exploits programs called assemblers to help more convenient forms of 
machine code to be entered and displayed. Assembler input, or 'assembly language', 
has the format 

Label, Mnemonic, Operand, Comment 

The label is a symbolic reference to the memory location or register where the next 
instruction is located, typically used as the destination of a jump (or subroutine call). 
In essence, there are two types of location, those which simply store and which play 
the role of variables (named boxes in which to place specific values), and those which 
store and carry out some action. Moving some information to a processor register 
such as the addition unit to a memory location which simply stores information, or 
the converse, or movement between two memory locations, is a typical process, and it 
is customary to speak of the source and the destination of such information transfer. 
Slightly higher forms of Assembler have appearances such as 

begin: MOV AH2,02; MOV contents of hex 02 to register AH. 

The minimal basic set of machine code instructions which would meet the require
ments of the Church-like expression above are 

MOV destination to source 

ADD add value in destination to source 

SUB subtract value in destination from source 
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JMP jump to target 

CMP compare destination to source 

JNZ jump if not zero 

JMP jump if zero 

INT halt 

With some ingenuity this set can be reduced, and on some machines one or two more 
instructions would be required in practice, but for all practical purposes the above 
exemplified the absolute minimum components of any language. 

At a somewhat more convenient level, the more practical Church-like options 
described above also resemble FORTRAN in its original form. FORTRAN (FORmula 
TRANslator) in effect facilitated the writing of the formulae in the above expression. 

100 X = A*COS(THETA) + B*SIN(THETA)-C 

200 IF (X) SOO,600,700 

which branches to statements labelled SOO,600,700 according to whether X is less than 
zero, zero, or greater than zero. Such a conditional jump as represented by the IF 
statement can implement any form of conditional flow, just by the way in which we 
calculate X. We note the advantage of IF statements of more readable form 

IF (X.GT.S) GOTO 700 

Later languages had not only numeric but also logical types of expression, and the 
extended convenient set of operations: 

numerical variable = numerical formula 

logical expression = logical formula 

numerical expression = logical formula (type conversion) 

logical expression = numerical expression (type conversion) 

IF logical expression then go to LABEL 

Halt 

We note that in real languages the formulae on the right hand side above may be 
special simple cases of a constant or other variable, that coercion can be defined within 
a language to convert type within a formula (e.g. the system can be programmed to 
know that TRUE = FALSE + 1 in expressions such as y = x + y where x is logical 
and y numeric), and that the GOTO statement can in general be replaced by any 
statement to be conditionally executed, though there must be a go to statement, or an 
implicit 'go to' action, within the set of instructions allowed. 

In higher languages the 'go to' instruction is discouraged and even disappears. Sole 
use of 'Go to' discourages portraying the program in a structured way, and leads to 
'spaghetti' codes in which the program flow weaves backward and forward in 

S02 



Computer languages in pharmaceutical design 

a tortuous, confusing manner. It is replaced by a block structure of BEGIN and END 
brackets or equivalent which actually state "If logical statement is true then do this 
whole block of commands, then return to continue with next statement.", viz. 

IF logical statement 

BEGIN 

many commands .. 

END 

next command to be executed IF logical statement was untrue. 

It is obvious that this implies 'go to' commands in relation to the first command 
within BEGIN and END and the first command after END. The implied 'go to' 
actions can however be complex because many BEGIN END brackets can be nested. 
In such cases, however, it is clear that the use of structure imposed by BEGIN END 
makes the program much easier to develop and read. It is possible to demonstrate rare 
cases where, even if such a block structure is available, a GOTO statement is still 
required. However, in some systems the practice has, at least until 1995, been to allow 
the statement only to system developers, not end-users. 

We also note the use of indexed arrays such as X(I) (meaning that X is a list of 
numbers and the (I)th is the one being referred to) and further convenient instructions 
which can act on commands or blocks of commands, the most important being the 
loop control instruction 

DO I = 1,200 

This repeats the following statement or block for different values of I from 1 to 200 
(unless otherwise specified, in steps of 1) and allows, amongst other things, more direct 
treatment of a mathematician's indexed counting as in 

L x (i) 
I ~ 1,200 

which would in FORTRAN be 

DO I = 1,200 

XSUM = XSUM + X(I) 

For practical purposes the above plus commands for read and writing data to and 
from the program are the basic elements with which programmers must work. Even 
so, in some paradigms such as the functional programming paradigm (see below) the 
above simple structure can be hidden. 

2.2. Environments and agents 

In a well-developed computational system or network it is possible to take a 'top
down' view which ignores the fine details. At the level of resolution of interest here, 
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one can consider the computer language with computer language statements as the 
smallest 'atomic' items. Like atoms in molecules, we can, if we wish, consider that only 
a limited number of types of statement exist, and that elaborate forms are really 
'molecular' statements. Church allowed only some three statements as absolute 
primitives (see above). The colloquial term 'code' is often used below for a collection of 
statements. 'Statement' is synonymous with 'commands', 'instructions', if we assume 
that the language is of the classical imperative form (see below). 

For human convenience, and possibly also as a consequence of the principles 
of complexity and of systems emergent by selection, it is not efficient that any 
system is a kind of uniform sprawling chaos in which we cannot distinguish struc
ture and modular character. In computer systems including networks, we can in 
practice distinguish (i) the internal environment or 'sea' and (ii) 'digital entities' 
or 'digital agents' which function in that 'sea'. We can also consider higher hierarchic 
structures of these agents, much as in the hierarchy biomolecules < organelles < 
cells < tissues < organs < organisms < societies. All of these, including the 
background 'sea', can still be considered as made of these computer language 
components. 

First it is useful to indicate what digital agents are not. There is a level of 
organisation intermediary to statements and agents, the level of objects (strictly, 'data 
objects' to distinguish them from functional forms). A definition of an object, like the 
systems discussed below, contains both data and a degree of code concerned with 
some distinct kind of information, but some current definitions do not allow them to 
have sufficient code to lead an independent existence within the background sea, and 
some computer language purists, in order to enhance that distinction, argue that there 
should be no additional code in an object definition at all. Examples of objects are 'a 
chart, table or a short movie' [5] expressed in code or data, and, for present purposes, 
typically a representation of a molecule, up to and including its molecular dynamics 
or simulation history, and optionally the style of representation. Objects are essential
ly manifestations of concepts on which agents act. Hence, digital agents are more 
complex than objects. 

A computer virus is an example of a digital agent. A more constructive example is 
represented by the imminent rise of the applet. An applet or 'miniature application' is 
an entity which 'may live partly on the Net. The client might send the server a little 
program that initiates a customised database search,for example. This environment of 
full two way interaction looks more like a lively exchange of digital agents than the static 
world of the Web today' (see Wolf [5]). We can, beyond this, consider more sophisti
cated entities, possessed of a high degree of intelligence, roving and exploring different 
parts of a network to gather fresh input and the data from lengthy calculations, 
automatically updating user sites. 

2.2.1. Principles of protocol exchange 

Digital agents can be considered as composed of, represented by, capable of moving 
in, and responding to and processing, the statements ('code'). Simple programs 
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residing at only one location are allowable as examples of digital agents but only as 
static, primitive ones. Mobility includes both movement within locations in a single 
processor, but most particularly between processors. True mobility implies compati
bility and specifically comprehension of, and by, the agent at both sites A and B. 
A sufficient degree of sophistication allows true asynchronous communication through
out a computer network. For most purposes, this simply means that an agent can be 
dispatched at any time which carries the information for how its transmission should 
be interpreted, and in particular it defines the communication protoco1. This ability 
depends on matters of language. The definition of an agent allows the existence of 
agents sufficiently sophisticated to be able to interpret, act on, and to define languages. 
The statements which make up our digital agents and their environment only have 
meaning as perceived by the agents which read and manipulate those statements. 
Indeed, it is possible that a set of statements would have different meaning to 
a different agent. There is the minimal requirement in asynchronous communication 
that either (i) the same language environment must be supported, at least as an 
executable option, on A and B, or (ii) that the transmitted agent can interact with the 
receiving site sufficiently to generate the required language environment. To this 
effect, Babel, or at least unnecessary effort in recognition and translation, is avoided 
by use of an agreed global language. 

Computational theory already uses the notion of placing Turing machines and 
other automata in series or in parallel, in order to analyse basic problems in computer 
science. Though a Turing machine can perform any kind of calculation by laborious 
programming, this assembly is a way to consider less fundamental kinds of complexity 
which aid in programming these devices. In particular, we may want to add conve
nient language features to control the relationship of the automata to each other in 
a network. In terms of the automata notation, there are transforming functions 
T(S*,A) which will read as input I the states (S*) of automaton A. If these transform
ing functions are deterministic, with fixed input-output relations, the network defined 
by the set of T(S*,A) is static. By analogy to the above discussion regarding the 
transforming function F, a language which allows T to change its action by the choice 
of A has greater complexity rather than simply a deterministic function. In such a case 
the network is dynamic and evolving. 

LABELl: X = T(S*, A), go to LABEL2 

LABEL3 : X = formulal(X) 

LABEL4: IF formula2(X) NOT = 0 THEN X = formula3(X) ELSE go to 
instruction labelled LABELS 

LABEL6: A = T1(X) 

LABEL 7: IF T2(A) NOT = 0 THEN A = T3(A) ELSE go to instruction labelled 
LABEL8 

LABEL9: Halt and display X 
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where again each instruction may occur more than once with a different label, no label 
is duplicated and each LABEL pointer corresponds to at least one unique physical 
LABEL. 

The practical complexity is further increased by adding, to such sets of instructions, 
further instructions 

LABEL: COPY(LABELl,AI;LABEL2,A2) 

which copies the line labelled LABELl in automaton Al to the line LABEL2 in A2. 
This allows the case Al = A2 and the case LABELl = LABEL2. A set of such 
instructions would allow new automata to be created and old automata to be 
modified. If the arguments are again computable, e.g. can be replaced by formula(A), 
this adds an ultimate level of practical complexity. A set of such automata and capable 
of moving around in the larger computational system or computational network in 
which they are embedded performing a useful function can be identified with an 
Applet (mini-application). In this case, AI, A2 might be considered as the specified 
processors or the site address of the remote computer, and LABELl would be the 
address within those processors or computing systems. 

In practice, the above is incomplete and further steps are required for its use. For 
example, it is not sufficient to force information onto another device without ensuring 
that it is in a recipient state. Several operations might need to be followed to allow 
fluid communication: 

1. attract attention of other machine to receive above application and 'handshake' 
2. verify environment and adapt remote-install procedure to accommodate 
3. remote-install the application 
4. leave tidy - instruct remote application as how to respond to future incoming 

instructions 
5. attract attention of the installed remote application and 'handshake' 
6. check local relevant status before updating information 
7. transmit information 
8. check information has transmitted, verify detailed content if necessary 
9. leave tidy - instruct remote application as how to react to future incoming 

instructions 
10. disconnect 

2.2.2. Practical aspects of protocol exchange: Examples of the Web, HTML and JA VA 
The Web is distinct from the network of computers known as the Internet. The Web 

is a set of software components, i.e. an application system. The earliest interest in 
software of this type was first developed by the nuclear physics community for 
communication purposes between their computers, and more recently it has been 
greatly exploited by the bioinformatics, and hence pharmaceutical, community. In 
1996, there is increasing emphasis on software components which are digital agents 
(see above) and which live on computer networks [5]. 

Being a set of software components which organise use of information, applica
tion of the Web is not specifically confined to the Internet, nor necessarily to 
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any network system in the physical sense. Admittedly, it is best known in the 
Internet context. Rather, it is a 'web' in the sense of software handling a network 
of concepts and information irrespective of the hardware and communication 
implementation. 

Wherever it is implemented in the computer network mode, the Web can be viewed 
as a communication system based on the following: 

1. The paradigm of the client-server model. A client is a software running on the 
end-user's local computer, while a server is a software running on the information 
provider's host machine. A 'browser' is typically a program by which the Web may be 
observed, and may be taken as synonymous with 'client' in the server-dient paradigm. 
In 1993 one of the first sophisticated browsers, 'Mosaic', was developed by Marc 
Andreseen and colleagues. Netscape and Microsoft's Internet Explorer are the current 
dominant commercial browser systems [5]. 

2. The paradigm of the knowledge net, as a set of links or 'threads' which connect 
each feature on a page of information to another page of information, allowing the 
user to work his way along a chain of references. The notion of associatively linking 
information in this way was developed in 1945 by Vanevar Bush. 

3. In protocol, a type of communication system called a hypertext communication 
system (see below). The term 'hypertext' was coined by Ted Nelson in 1965 to describe 
the chaining of text in a computer, on the Bush model. Tim Berners-Lee in 1989 
proposed the specific hypertext format which would provide an interface across many 
platforms, access a variety of document types and information exchange protocols, 
and all universal access to any user at any site (see Ref. 5 for a review of the historical 
development). By 1990 the first modern versions were implemented on the NeXT 
computer. This allowed the now-familiar implementation of the linkage mechanism 
and its navigation by a user. For example, 'clicking' on protein might lead to a page 
defining proteins and naming different basic types. Clicking on the type globular 
protein would then lead to a page specifying this class in greater detail. Note that 
a logical 'knowledge structure' is implied. Clicking on globular proteins and obtaining 
a page about the mating habits of wombats would be regarded as a linkage error. In 
the current world of the Web, the downloaded content is not confined to text but 
extends to multimedia defined in terms of MIME (Multimedia Internet Mail Exten
sions) embodying a variety of multimedia document and communication protocol 
formats. 

Finally, in subject matter, it is the set of the following components which are the 
objects of discourse in describing and using the Web: 

pages (or 'nodes') - are blocks of information displayed 

links - the connections between items of information 

anchors - the items themselves (which are source or destination of links) 

the host computers 

the users 

507 



B. Robson 

the servers 

the executable programs 

the information (e.g. database, image, sound) 

user interactions 

data communications 

network connections 

What specialised languages are used to facilitate the interplay of all the above? 
Most notably, the Web has a hypertext markup language HTML [5J used to create 
the Web page documents (strictly, HTML is not a complete layout design language, 
but a notation which provides 'tags' which make the appearance dependent on the 
browser or search engine while preserving the integrity of the information and its 
original content and relationships). With the available language system up to 
about 1995, the user could choose and observe content, rather as with the U.K. 
Teletext system, and as with that system the user could not generally interact. 
The approach also necessitates the use of helper applications. To view a movie in 
a multimedia system, the user had to first install software found in a helper applica
tions set. The user must also have a graphical system to display the result (e.g. 
X-windows, Macintosh Operating System or Microsoft Windows). Note that the 
movie display software, installation method, and local graphics system are of a variety 
of types. 

To overcome these limitations, one needs a common command content for the 
transmitting source, the entity transmitted, and the receiving environment. Java, 
developed by Sun Microsystems, is a programming language specially suited for 
overcoming the above limitation (see December [5J). Originally, the name Java, 
properly applied, stood for a suite of tools used to create and implement 'executable 
content' using the Java programming language, but it is frequently employed for the 
language itself. Like the Web, Java is not specifically an Internet matter. Indeed, Java 
interactive technology can potentially be implemented in 'embedded systems' such as 
telephones and TV and VCR controllers. 

HotJava [5J is the browser or search engine built to 'show off' the advanced 
capabilities of the Java programming language. 

Java is suited for the construction of the first generations of true Applets, as well as 
potentially more powerful self-intelligent net-roving constructs. A Java Applet is 
a program that can execute with the Java interpreter inside the HotJava browser or 
a browser that supports Java code. A Java application is a program that can execute 
outside of the HotJava browser. 

A typical Java application is a program which commences with a specification 
such as 

class ApplicName {public safe void FunctionName (String args[ J) {body-oJ-code}} 
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The body-oj-code is a set of Java commands which are rather reminiscent of C and 
fairly typical in having assignment statements of the general type 

variable = (constant, variable or expression) 

and IF, WHILE and other flow control statements. 

The Java Applet differs principally in not having a component such as Function 
Name(String args[ ]), since arguments are not passed. 

The Java Applet is compiled with the Java compiler ('javac') producing a 'class file', 
and is included in an HTML file through the APP element, i.e. a Hypertext item called 
< code> app < /code > which flags that the code describes a Java Applet. A Java

enabled browser or search engine not only sees into HTML and displays MIME 
specifications, but also automatically copies to the user's local processor a file 
containing Java 'bytecodes', i.e. codes in format which can be interpreted and executed 
by the user's local Java implementation. An example HTML file including the Applet 
'MySearch' would appear as 

<HTML> 

<HEAD> 

< TITLE> My search applet < /TITLE> 

</HEAD> 

<BODY> 

"Here it is" < APPLET Class = "MySearch" > 

</BODY> 

</HTML> 

(Note the HTML style which uses < section> to indicate "Begin section" and 
< /section > to indicate "End section".) 

The rather complex opening of the Java application/applet definitions (with the 
keyword 'class') requires some explanation. Although not the principal consideration 
in the present section, it is notable and relevant to the overall theme that the 
developers have chosen to make the Java programming language as an example of an 
object-oriented language. Applications could in fact be objects such as animals which 
interact with each other and with an object describing the hero in an adventure game. 
The FunctionName is a specific instance of the ApplicName class. A keyword 
'extends' is available to relate an Applet or Application to a broader class of which all 
the principal features and methods are inherited. Thus one might develop an Applica
tion with all the properties of vertebrates and more specific Application with the 
properties of mammals and even more specific Applications which have the properties 
of cats. 
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The progress in these areas is spectacular. Since writing the first draft of this 
Chapter, Java has gained enormous popularity, such that in Northern California it 
appears to be almost as widely distributed amongst the general population as that 
other beautiful language, Spanish. On one roadside a sign reads 'Artichokes $1 a bag. 
Also Java programmed'. It may emerge as the best known programming language 
outside classical programming circles. 

The needs of drug design develop at least as rapidly, however. The author feels that 
for drug design purposes, Java is rather artificially inserted into HTML, at least in the 
original manner, as shown above. He has very recently developed specifications and 
pilot forms ofTRIDENT© (Text-Rich Data Engineering and Networking Tool). This 
language embeds HTML commands as a subset, introduces many new commands in 
HTML < Command ... > format, allows nesting of < ... > commands, and has 
block structure < block > .. < /block > structures with conditional and loop con
trol. The language is more naturally and fully HTML-miscible. Generally, like 
HTML, the language sees the commands as relatively sparse features embedded in 
extensive text (e.g. the sequence of the Human Genome), and as concerned with the 
transformation of that text, on display. One key feature is the extension of the 
< FORM ... > ... < /FORM > command to assign values to local variables 

(read using e.g. < INPUT... >) as well as to pass on information to a URL or 
file. These variable values are then used to interact with and control 
the display. Such features allow HTML-type philosophy to lend itself naturally 
to bioinformatic computing. Notably, the < DATA ... > ... embedded text 
data... < /DAT A > statement is introduced. This has the HTML-like and extended 
parameters type = , display = , which may be set (by assigning variable or constant) to 
transform on screen (or to a specified file) the embedded text. For example, 
type = whaLusecsets, type 'DNA', display = 'protein'. The embedded text is usually 
a DNA sequence which is transformed to a protein sequence in one of the six (three 
per strand) reading frames. A DNA or protein sequence can be converted to a pre
dicted glycosylated sequence, a secondary structure prediction as a string of charac
ters H (helix), B (sheet) or L (loop), and some 20 other various useful representations 
(which are computable transformations of the initial DNA or subsequently derived 
protein sequences). Clearly, some transformations, such as display = 'tertiary struc
ture', could be computationally intensive. 

2.2.3. Present (1996) structure of 'the Net'; bioinformatics sources as examples 
Apart from Java (see above) and the Internet exchange formats themselves, 

protocols not universal and not very intelligent, but at least there is a sensibly 
limited standard set such as http ('Hypertext transfer protocol'). The principal 
others at present include !tp, file, gopher, mailto, news. Computer addresses are 
identified by universally recognised codes known as uniform resource locators or 
URLs, such as 

http://gnn.com/ 
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To the above may also be appended a chain of subsystems and directories which will 
direct the searcher to a specific process or file. 

http://gnn.com/gnn/meta/edu/index/html 

(AOL advice page 1995) 

To illustrate the opportunities at this time in 1996, the following are of interest. For 
http the WWW W orId Wide Web affiliation http://www. followed by further specifiers 
is one of the more popular uses. Efficient searching, whether by humans or by 
automated procedures, is an issue. General success depends on the power of the 
software responsible for the details of the search - the search engine. R. Finn's Lycos 
search engine for the WWW can be found at http://www.1ycos.com and useful search 
facilities are obtained from the W orId Area Information Service (W AIS). Other search 
and display tools for drug designers and biotech nolo gists are found in Pedro 
Coutino's Biomolecular Research tools at http://www.public.iastate.edu/-pedro/ 
research-tools.html. For molecular display of the results one may use Roger Sayle's 
celebrated molecular display package RASMOL at ftp:jjftp.dcs.ed.ac.ukjpubjrasmol 
or at ftp:jjsrc.doc.ic.ac.ukjpackagesjrasmol (for general image processing one may 
note ftp:jjzippy.nimh.nih.govjpubjnih-image). 

At several such addresses there are a number of gene and protein sequence 
databases and other information. One of the most important is 'Entrez' to genome 
data at NIH ftp:jjncbi.nim.nih.gov.entrez. This can access some 300000 protein 
sequence and 500000 DNA nucleotide sequence records, and well over a million 
MEDLINE (Biomedical citation) records. Other examples are 

European Bioinformatics Institute 
ftp:jjftp.ebi.ac.ukj 
gopher:j jftp.ebi.ac.ukj 
http://www.ebi.ac.uk/biocat/biocat.html 
Bio archive biology software and data 
ftp:jjiubio.bio.indiana.eduj 
gopher:j jiubio.indiana.eduj 
http://iubio.bio.indiana.edu 
National Institute of Genetics gene data 
ftp:jjfto.nig.ac.jpj 
gopher:j j gopher.nig.indiana.edu 
http://www.nig.jp/ 
Houston gene database 
ftp://ftp.bchs.uh.edujpubjgene-serverj 
gopher:jjftp. bchs. uh.ed uj 
http://www.bchs.uh.edu 
Houston biomedical archive 
ftp:jjdean.med.uth.tmc.edu 
gopher:j jdean.med.uth.tmc.eduj 
http://dean.med.uth.tmc.edu/ 
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It is notable that addresses of this type have a branching structure, the specific 
names represent the path taken at each multiple fork in the road, qualifying further 
the target location. With the increased importance of the Internet and multiple 
processor single machines, tree structures and network structures in general have 
gained increased importance, and the ideal language should recognise that. In addi
tion, the language itself should have flowing, branching character (see above) and last, 
but not least, so should the structure of molecules and the organisation of the data we 
associate with them. This is considered in the form of a simple language in Sec. 2.3 
below and, following the consideration of some top-down requirements in Sec. 2.4, is 
readdressed in Sec. 2.5. 

2.3. A bottom-up design of a general structured language - A simple example 

Here it is demonstrated that quite reasonable language forms can be written to 
emphasise the branching or network structure of the programs both in terms of the 
program flow and the way arguments are passed. These forms can be made internally 
consistent with structured data forms considered below. 

By 'bottom up' is simply meant that one thinks of the details of the programming, 
while making it as generally powerful as possible (e.g. in handling mathematics), and 
then thinks of the application areas where special cases are developed for molecular 
work. The first generation of the Prometheus ™ system [8] at Proteus was largely 
developed that way. An example processor network language based on these funda
mental concepts can readily be constructed. A simple example avoiding the details of 
the internal workings of procedures or processes is as follows. Except in its notation to 
implement parallelism, it resembles the language FORTH and, like FORTH, it 
concentrates on the aspect of program flow, rather than trying to emphasise details. 
We can consider that the minimal requirements inside each named visible statement 
such as JOHN, which would make each component work, are those FORTRAN-like 
primitive statements discussed above. 

JOHN MARY 

where JOHN and MARY may be considered as procedures or applications, at the 
very least containing code made up from use of the minimal 'Church-like' function 
evaluation and IF test statements. Note that the label pointers to the next application 
or routine are implicit and tucked away in the details inside each statement: when 
JOHN is complete, MARY is initiated. Information can be passed from the first 
executed to the second. We can consider all global variables (those not declared just to 
be private to each application or procedure) to be accessible to the subsequent 
command. In practice we can define one such procedure as an input procedure (e.g. 
READ) and one as an output procedure (e.g. WRITE) to display data. For our 
practices we would assign specific molecular manipulation functions to such proce
dures or processes, e.g. 
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The fact that we can have named procedures, commands and processes arranged 
sequentially is straightforward and typical. Where one may begin to have specialised 
customisation of a language is at the level of considering whether separators between 
the procedures etc. might have alternative forms with different significance for data 
transfer. For example, we can also construct such a language so that information to 
the screen is sometimes automatically output when each is executing. In one develop
ment of this experimental language (which the author implemented) a convenient 
notation comparable with UNIX and DOS is to include a symbol which also channels 
any screen output as input to the procedure following. 

JOHN > MARY 

and other transfer notations can also be defined which specify which type of data we 
want transferred, e.g. > X,Y > might be taken to mean that only information about 
X and Yare transferred (it will be apparent from what follows that > X,Y > and 
> X Y > could be used to distinguish parallel and sequential transmission). In this 

mode we might use some applications or procedures to represent variables, e.g. X%, 
from which data can be recovered later, viz. 

JOHN> X> Y% MARY JILL Y% > HARRY 

where the value of X returned from JOHN is stored in Y% to be picked up later by 
HARRY. One might also allow some inputs to be constants, such that we can write 

"LYSOZYME" > BUILD_PROTEIN FOLD_PROTEIN 
DRAW_PROTEIN> STORE 

A consistent notation could also be developed such that Y% > X > HARRY meant 
pass the value of Y% and assign this to Y on entry to X, in the manner of passing 
function arguments. In practice, there is no reason why a more classic style offunction 
brackets as in HARRY(Y%) should not be permissible and effective, but both can 
coexist, with Y% in the above example playing more the role of a global variable. 

There are quite a few languages like this. The principal reason for an informal 
definition of this simple language is however to emphasise its role in constructing 
networks of computation. Languages for parallelism are of course known; the follow
ing are principally illustrative of convenient notation. As in normal algebra for 
identical numeric operations between symbols, simply inserting brackets in a string is 
redundant and has no effect. 

JOHN MARY [BILL JOHN JACK] SANDRA 

This means do John then Mary then, on completion of MARY, do BILL JOHN 
JACK also sequentially, then SANDRA. The difference arises when the comma 
operator is introduced, meaning do in parallel: 

JOHN MARY [BILL, [JOHN FREDA], JACK] SANDRA 
FRED I DONE(MARY) TOM I '" DONE(MARY). 
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Here do BILL, JOHN and JACK in parallel after completing MARY. When 
JOHN is complete, initiate FREDA. When all are complete do SANDRA. Then do 
FRED on condition MARY was complete and FRED on condition MARY was not 
complete. 

LAURA(JOHN, MARY) 
Use JOHN and MARY as arguments for LAURA 

FRED(JOHN MARY) 
Use JOHN as an argument for FRED then repeat using MARY. 

The usefulness of this notation is a matter of taste. Traditionally it might suggest "do 
JOHN then MARY" and use any result as the argument. In the present case JOHN 
and MARY are still done sequentially, but are used to activate FRED in some way, as 
each is done. 

LAURA(JOHN,BILL MARY,JILL) 
Use John and Bill as arguments for Laura, then repeat using MARY,JILL as 

arguments 

FRED(SMITH({l ... 1O})) 
Repeat for SMITH(l), SMITH(2), ... 

FRED(SMITH({l ... 10})IEQUAL(X,Y)) 
Start to repeat for SMITH(l), SMITH(2) ... only if X equals Y. 

FRED(SMITH{l ... STOP I EQUAL(X,Y)}) 
Repeat while X equals Y. 

FRED(SMITH({1 ... lO} I EQUAL(SMITH(X), Y))) 
Repeat only for cases where SMITH(X) = Y. 

JIM(X, Y): [MARY(X) TOM(Y)] 
Define Jim as MARY followed by TOM 

COPY(JIM:{1 ... END}, PROCESS5, 100) 
Copy all procedure JIM to process P5, line label 100) 

2.4. Top-down design of languages 

The broadest choice that we make at top level in designing a language is to choose 
the paradigm. Language types are generally classified into paradigms, largely reflect
ing the way in which the human user prefers to think in order to get a particular job 
done. Some paradigms are not mutually exclusive. Where two paradigms can coexist 
with various possible combinations of partners, the most popular marriage is taken to 
be the current most popular combination of relevance to molecular computation 
(somewhat reflecting the author's personal view), included here as follows. 
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Group 1: Imperative languages 
1. Formula translation paradigm - FORTRAN. 
2. Algorithmic and block structure languages - using BEGIN ... END or equiva

lent block structures to emphasise the structure of the algorithm and to facilitate 
algorithm development. 

3. Mathematical operator languages - such as APL, emphasising the conversion of 
mathematical operations as a mathematician's 'sketch pad' ideas into executable code. 

4. Data interrogation and recovery languages, such as relational database systems, 
Awk, and particularly PERL (pattern extraction and report language). 

5. Networking languages. 
Group 2: Nonimperative languages 

1. Some list processing languages, and potential languages based on Church 
'Lambda' calculus - languages which to various extents see the language grammar 
and/or the data on which it acts as a series of operations. 

2. Functional programming systems (FPS) - which emphasise the program struc
ture from the viewpoint of information flow through functions (input innermost, 
output outermost), and in the purest form disallowing any 'hidden actions'. 

3. Predicate calculus languages such as PROLOG, emphasising the relations 
between data relevant to logical reasoning. 

4. Some expert systems, such as EMYCIN, emphasising capture of human exper
tise in a program. 
Group 3: Object and related concept languages 

(These may, in principle, be combined with imperative or nonimperative forms, but 
are typically primarily of imperative form.) 

1. Object-oriented languages - which display encapsulation, modularization, and 
polymorphism. That is, they act on information in unified blocks with special 
properties, such that all operations and consequences of dealing with a single concep
tual structure can be done at once, without the need to process element by element of 
the constituent information. They are typically polymorphic in the sense that identical 
commands will have equivalent effects in different application areas of the software. 
The approach has a certain affinity with FPS systems (since functions are, to some 
thinkers, a natural kind of object), or can be considered as a sophisticated extension of 
type definition in the simpler languages. 

2. Relational languages, which can be also typically of some object-oriented char
acter. In such languages, concepts akin to +, -, *, ( .. ) in ordinary mathematics act 
instead on sets of data describing entities such as molecules. The sets of data are 
typically considered as objects. 

3. Systems resembling human languages, with objects and verb forms. 
4. Graphics languages, emphasising visual interaction and pictures as objects. 

Group 4: Structural languages 
1. Related to object languages, these are to be distinguished from 'structured 

languages' in the sense of the latter having the BEGIN ... END block structure or 
equivalent. It is argued below that they are well suited to be the paradigm of drug 
design languages. 
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Of course, in molecular work as any other, there are times in which almost all 
of these paradigms have some merit, but of principal interest is the object
oriented approach since we will wish to manipulate conveniently (i) molecules and 
(ii) modelling procedures as single concepts, and the enrichment of that as the 
structural paradigm. Of enormous importance, however, is also database interroga
tion and information gathering procedures, and expert systems (since drug design is 
a complex, problem-dependent process requiring great expertise). 

Having said this, there is a need to consider carefully the broader extent to which 
a language addresses the more general programming issues, since programming, or 
the construction of some kind of high-level protocol, will be something which the user 
still frequently has to do. Moreover, such issues control the 'look and feel', which will 
mould the philosophy with which we address problems, and ensure a uniform 'style', 
not a patchwork 'Frankenstein's monster' composed of disparate last-generation 
pieces. These latter aspects will not in general be matters in the universe of chemistry, 
but there will be some choices which will more naturally lend themselves to the way in 
which chemists think at this moment in history. 

2.5. Object-oriented and structural languages 

Almost all concepts have structure, and hence so does human language. Where 
structure is missing we could choose to impose it: even the concept of the empty set 
'nothing' might be further resolved into more specific types of nothing in terms of 
types of nothing for poetic, philosophical, or even mathematical reasons. In the phrase 
'Black Cat', the adjective qualifies the world of Cats to point to 'black cats' as opposed 
to cats which are white, tortoise shell, etc. In the phrase 'Move up', the preposition 
qualifies the action of the verb to distinguish it from 'move down', 'move in', 'move 
out', etc. In the phrase 'very quickly', the adverb is 'hedge' to distinguish it from 
'slightly' or 'to an average degree'. 

Objects are entities which can be distinguished from other entities by special 
attributes which they carry with them. The notion of structure comes in 
because objects may also share some attributes in common, and, in particular, 
one type of object can have a subset of the attributes of another, making that 
object a special instance, or case, of the other object, as a cat is a special case of 
a mammal. These are issues of class, and descriptions of classes and subclasses are 
used to define objects in many object-oriented languages. 

Object technology and much technology which makes use of structural consider
ations has roots in the earliest (FORTRAN) notions which distinguish variables and 
constants of different types. Variables of type integer would not be stored, or generally 
treated, in exactly the same way as variables of type real. For example, in the 
assignment z = x/y, different results would be obtained according to which variables 
are of type real as opposed to type integer (notably, in relation to 'round-off'). For this 
to occur, 'type' is clearly a property which must be 'carried with' each variable, in 
addition to the variable name and the value stored in it. It would affect the interpreta
tion of that value, and the nature of the operations applied to it. In most languages, if 
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there is an ambiguity in relation to the action of an operator, the consideration of type 
is dominant over the operator. Hence in BASIC, the operation ' +' will mean 
addition if the arguments are of type integer or real, and will mean string and 
concatenation if of type string. Note also the common use in imperative general 
languages of type array, which implies an ordered list of data accessed by the order 
number on that list (e.g. XARRAY(6) is the sixth item in the list). 

PERL [7] is an example (also discussed later below as a data-oriented language) of 
a language which extends this notion to other types of object, though the extension is 
not as pure, complete, or general as in the full objects oriented languages (OOLs). It 
has proven a tool of choice for bioinformatics and related disciplines however. The 
dialect BIO-PERL has been established at the University of London. Its variables are 
classified as scalars, arrays-of-scalars, and associative arrays of scalars. The latter is 
accessed by a string, as opposed to a number (e.g. XARRAY('MONDAY') is the data 
item relating to the Monday case). Since the language specialises in manipulating data 
on files, further objects are file handles, directory handles, and formats. 

Modern object-oriented (00) systems properly reflect, however, more than one 
paradigm [7]. 

1. The types are not fixed as in non-OO languages but are 'user-definable'. User
definable types are sometimes referred to as abstract data types (ADTs) [7]. 

2. They show modularity/identity. As with fixed types in non-OO languages such 
as FORTRAN, the implementation detail (e.g. how z = x/y is interpreted) does not 
flow over into other code. The only exceptions to this in more advanced languages are 
in the use of coercion operators which force reinterpretation of the type of a following 
constant, variable or expression. Otherwise, it is invisible inside the module which is 
treated as a 'black box'. The contents of such a black box may be much greater than in 
the above FORTRAN integer/real example, and may be ofthe kind of complexity one 
sees in a FORTRAN subroutine or function. In this sense, and in respect to FOR
TRAN which first exploited the user-defined subroutine/function idea, it does main
tain the FORTRAN notion ofthe distinct subroutine or function code which one was 
supposed to treat as a distinct entity. One only has to worry about attaching the visible 
inputs and outputs ofthe box into the surrounding environment. Also this means that 
even if code is common, this makes the module distinct from any other module. 

3. They show abstraction. The visible inputs and outputs are confined only to the 
characteristics relevant to the current purpose. This is not fundamentally different to 
the argument list in a FORTRAN subroutine or function, but the equivalent of such 
a list is hidden (by being hidden, it has some analogy with FORTRAN's use of named 
'common blocks'). 

4. They show classification. The current purpose (and hence the relevant character
istics) relates to the level or scale at which we wish to examine the problem. A fine level 
of consideration will focus on special cases, say on cats in mammals. There is no 
obvious relation to the FORTRAN case here, save that functions (and subroutines) 
could be called by other functions (and subroutines). Partly for this reason and the 
above, there is generally held to be a degree of affinity between functions and objects. 
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5. They show inheritance. As some consolation to the 'black box' structure pro
hibiting code reuse, one can reuse previously defined classes as the basis for new 
objects. If the 00 system allows only single inheritance, then a subclass can only 
inherit from one parent class. If this prohibition is relaxed, it can be misused and lead 
to nonsensical contraintuitive relations, and increased complexity. 

6. They show specification inheritance (essential inheritance). It is in true 00 
systems using this that the 'is-a-kind-of aspect inherent in human speech truly 
appears. Unlike inheritance as above, it is not code-reuse but encoding semantic 
relations which is intended [7]. 

7. They show polymorphism. In its simplest sense, this simply means that, like in 
FORTRAN, the operation depends on the type. When user-defined types provide 
a multiplicity of types, the complexity of an 00 system is reduced by the provision of 
consistent semantics, which are chosen by the programmer. An important point in 
polymorphism is that such choices should make operations with the same name 
perform the same generic function. For example, objects could represent physical 
objects such as furniture, which can be moved, but not eaten or walked-through, for 
example. Since it is up to the programmer, choices could be irrational, or at the very 
least the complexity greatly increased instead of diminished. 

8. They show structure by arranging the objects into classes and in some 00 
systems the structural relations are particularly emphasised with provision of opera
tions to manipulate and borrow from structures. 

In structural languages which are not otherwise particularly object-oriented, it is 
the above last aspect which is emphasised. 

The advantages of 00 systems over structural systems lacking some or all other 
00 qualities are in the recursive or iterative life cycle of development. This includes 
an 00 efficient reuse and avoidance of 'white elephant' legacy systems. They also 
encourage peer-to-peer message levels and a sharing of knowledge [7]. However, 
a good structural system will at least retain some of the advantages in indicating 
distinctness and relationship, in inheritance, and in facilitating development of ab
straction levels. 

2.5.1. Molecules as objects 
One of the most important features a chemistry language needs is the facility to 

define chemical structure. The concept in a simple tree format exists for files in UNIX 
and DOS, where each directory can be considered as branching into further subdirec
tories and, finally, files. This branching structure is also inherent in the specification of 
address on the Internet. The program itself has a branching structure, as emphasised 
by the language of Sec. 2.3. 

A structure applied to data is a form of object in which we can address the hierarchic 
levels of data within the object. We can extend this to almost any kind of data. 

The structure of a molecule, for example, benefits from being able to specifically 
define entities in a manner such as 

alanine = NH.CH(CH3).CO 
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To do this in practice will typically require a definition, implicit or explicit of type 
STRUCTURE akin to INTEGER, ARRAY, COMPLEX. 

(Comparable representations for molecules, often referred to as SMILES code, were 
also much used in the 1970s by the Weizmann Institute group, particularly by 
Michael Levitt.) 

Structure representations in powerful 00 languages can be used much more 
generally, however. The assignment-like statement where ': =' means 'of' (i.e. 
CONF: = X means TAKE (AND KEEP AS CONF) THE CONF OF X) 

CONF: = 
MOLECULE.L YSOZYME(XYZ,PHIPSI).HYDRA TION.-W ATERS(XYZ) 

means copy into structure variable CONF data of the type of CONF, the molecule 
lysozyme with variables XYZ (Cartesian coordinates) and PHI PSI backbone dihedral 
angles, and its associated water molecules with Cartesian coordinate data only. 

The statement 

CONF: = MOLECULE.L YSOZYME.HYDRA TION.-WATERS 

would be equivalent if there were only types of coordinate XYZ and PHIPSI, but 
otherwise it would copy all data of the type ofCONF, including perhaps nonbonding 
parameters for the molecule, atom by atom. What is not specified in this notation 
means assume the whole class. Hence the command 

CONF: = MOLECULE 

would copy all data of the type of CONF starting with the name MOLECULE, 
including data for LYSOZYME above and also for all other molecules specified, such 
as MOLECULE. MYOGLOBIN (XYZ,PHIPSI).WATER(XYZ) 

The power of such notations can be greatly extended by structure class operators, 
such as 'not' 

CONF: = MOLECULE. '" (LYSOZYME, TRYPSIN) 

which transfers data of the type of CONF for everything but the LYSOZYME and 
TRYPSIN data. 

This is an exclusion operator. Useful operators which act between variables of type 
structure include the relational operators of union and conjunction. Closely related 
are operators related to the relational database approach, since we can regard 
structures as databases: 

1. + add structures at a specified node and take out duplicating redundant 
branches; 

2. - subtract out structures at a specified node (take everything out of the first 
structure which is common to the second); 

3. form more complex trees as the formal product of two simpler trees (in one 
formulation, every branch of one tree is replaced by an image of the whole tree of the 
other, and then inconsistencies and redundancies are removed). 

Functions such as COMPOUND could be defined to search a database for the 
molecule corresponding to the given molecular structure. 

519 



B. Robson 

CONF: = MOLECULE. '" (COMPOUND(CH3.CO.*.CO.CH3)) 

which assigns to CONF the conformational data for all molecules in the set 
MOLECULE which are not N-acetyl N'-methylamide derivatives. 

It should be possible to define a language with a uniform feel by combining the 
structured language flow of Sec. 2.3 with the structure of the above data item, which 
are molecules, directories, and so on. Within the structured language, the structure 
object might appear as an argument in the following example format: 

ENERGY_OF(CH3.CO.NH.CH(CH3).CO.NH.CH3, CONF) 

which calculates the energy of the molecule in a conformation defined by 
CONF, 

ENERGY_OF(CH3.CO.NH.CH(CH3).CO.NH.CH3, 

({ - 180 ... + 180}, { - 180 ... + 180},{ - 180 ... + 180})) 

which repeatedly calculates the energy of the molecule 360 x 360 x 360 times, for each 
increment by 1 degree of each of three variables. 

2.6: Language content - Structure in the levels of discourse in molecular design 

It is demonstrated here that the modelling and design studies can themselves be 
ordered in a hierarchic way which could be exploited in a structural drug design 
language. 

There is a singular advantage ofthe theoretical drug design: the 'trawl space' is very 
large. That is, more molecules exist in principle, waiting to be discovered in some kind 
of theoretical chemical 'virtual reality', than can ever exist in practice in a petri dish, 
a rain forest, a laboratory full of test tubes, a biological broth, or a combinatorial 
chemistry chip. We can speak of a very large possibility space. This is particularly easy 
to see in the case of possible protein structures. The number of possible amino acid 
sequences of a protein that is N amino acid residues long is 20 raised to the Nth 
power. For each such chemistry there is a conformation of some number of distin
guishable conformational possibilities, say C, of each residue, this C being also raised 
to the Nth power. For the medium to larger proteins, there are not enough funda
mental particles in the universe to make even just one conformation of every possible 
variant. Indeed, as far as we know the capacity of the real universe could not even be 
a faint scratch on the menu of possibilities from which one might choose novel 
molecules. In various related senses described below, however, the dimension of time 
rather than of matter and space provides an important restriction in design. The 
universe will not last long enough to allow us to generate and explore the many 
molecular possibilities. Indeed, there are many who have questioned even the possibil
ity of predicting the folded structure of a single reasonably large globular protein, 
from first principles alone. 

What kind of languages will ultimately be required to explore this possibility space? 
To understand that, it helps to appreciate that the full possibility space is arranged as 
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a hierarchy, such that each space is embedded in a space of further dimensions. These 
dimensions and the points and volumes defining specific regions of the space are 
formally and ultimately the objects of the ideal computer language for drug design. 
Each dimensional level represents the 'level of discourse'. To this level, to define the 
character of language required, we must add the operations which combine and 
separate spaces, or which transform one point or region to another. In principle, all 
other matters are derivable from these by simple fundamental rules. 'The rest is 
silence.' In practice, nonetheless, a language has to be comprehensible to humans, and 
we require operations that allow the operations to be managed, and the consequences 
to be understood, in human terms. Each level will have its own vocabulary, appropri
ate to that level. Generally speaking, it would also seem that we want to maintain the 
same grammar at all levels of consideration. However, while it is desirable that 
a larger universal grammar is available, it does not follow that the component features 
selected to handle information at one level will be the same as those at another. For 
example, some language features are well suited to consider molecular formulas as 
connected graphs, and others for addressing levels which involve forming operations 
on regions of (effectively) continuous space using relational algebra. 

2.6.1. Atom-set space 
How is the possibility space comprised? The simplest relevant space is perhaps the 

atom-set space, describing the types and number of atoms which are available to us for 
considering molecules. The key feature which will determine the way we consider the 
higher spaces is which atoms are considered as distinguishable and which are not. For 
example, this partly determines the value of the grand partition function, a recipe 
which gives the probability distribution of different molecules in different aspects of 
behaviour in the higher spaces considered below. Here we consider that we select 
N atoms from this space to build a molecule of interest (the implications of the full set 
including those atoms not selected are considered below). 

2.6.2. Connectivity space 
The next level is connectivity space, the set or field of all the used N x (N-1)j2 possible 

modes of connections between the N atoms, such that one point in that space defines 
the organic chemist's specific structural formula for the molecule. Each such point has 
its own further dimensions so that the connectivity space can be regarded as a sub
space of a higher-dimensional fuller description. Specifically, there is the description of 
the molecule represented by each specified structural formula in terms of energy as 
a function of the positions of its atoms, and hence its chemistry and conformation. 

2.6.3. Conformational space 
This is a 3N-6 dimensional conformational space of many maxima, minima and 

saddle points. Workers discuss this energy in terms of quantum mechanical language 
with terms such as 'basis set' 'variation principle' in the quantum limit, and in terms of 
e.g. 'potential functions', 'force field', 'minimisation' for the construction of the empiri
cal counterpart of the quantum mechanical energy in the classical limit. 
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2.6.4. The higher spaces 

2.6.4.1. Phase space 
This above description is embedded in turn in the higher 6N-12 dimensional 

description which includes the conjugate momenta, namely the phase space. Here we 
treat not just the potential energy as a function of the positions of the atoms, but also 
the kinetic energy of all the atoms. At this level, we most typically use the approxima
tion of the Newtonian world offorces, velocities and accelerations. This is the realm of 
the molecular dynamics simulation and the rich language which has developed for 
that discipline. In providing a dynamical description, it also enters the realm of 
thought and language of dynamic systems theory, and one may speak of 'periodic 
behaviour', 'quasi-periodic behaviour', and, over longer timescales, 'chaotic behav
iour' and 'attractors'. 

2.6.4.2. Design game-state space 
In turn, this representation is embedded in a higher design game-state space which is 

the realm of all possibilities for the particular approach taken. The analogy is with all 
possible legal board layouts of a chess game representing the state space for chess. 
This space can also be considered as an extension of the conformational or phase 
space for design purposes. Assembling and trying to build new molecules by taking 
atoms in and out of a pot can be considered a broader case of moving atoms around in 
space to change the conformation. Indeed, if in considering the above atom-set space 
we consider the larger set available to build any kind of molecule, then the set which is 
put aside when we select a subset to build our specific molecule will partly define the 
higher dimensions of this space. 

2.6.4.3. Complexity of the higher spaces 
Topological and related methods exist for formally (if abstractly) constructing the 

higher state spaces to match the (molecular design) algorithms used, working outward 
from the descriptions familiar to theoretical chemists. The resulting spaces are how
ever highly topologically complex. 

The phase space has surfaces and manifolds (higher than two-dimensional 'surfaces') 
representing the regions of constant total potential plus kinetic energy (other surfaces 
exist for the constant temperature case). It is likely that the language of topology will 
come increasingly into playas this deep relationship is increasingly appreciated. To 
some extent, however, a deeper understanding depends on the ability of mathematic
ians to continue to develop the discipline of topology. For example, there is a deep 
relationship between the network which represents the structural formula of the 
molecule (i.e. a point in connectivity space) and the topology of the isoenergy surfaces 
in phase space, but the nature of the relationship is not well understood. 

Whether the drug designer thinks of it that way or not, however, and even more 
disturbingly whether he knows it or not, in many aspects of his approach he is subject 
to topological considerations. Simply running a simulation forever will not necessarily 
help, for example. Most often, he is bound for practical purposes to some kind 
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of function surface, a discontinuous manifold of great topological complexity like 
a system of strong tides in an ocean of higher dimensions. If not simply trapped in the 
doldrums, the simulation procedure used for design purposes is doomed to wander for 
all eternity like a digital Flying Dutchman. These aspects are currently expressed in 
the language used by search-methodologists, such as 'global minimisation/optimisa
tion', 'simulated annealing', 'force bias methods'. These are heuristic tricks and devices 
for helping searches by more logical strategies. Nonetheless, if we try to apply a little 
creative scientific technology and try and jump like the Starship Enterprise in 
hyperspace, but do so only on the local information near the starting point, then we 
may be completely lost and disoriented. 

There is also need of external empirical data and of specific requirements as a guide. 
The language of external data and of external requirements is currently rich in terms 
like 'penalty functions', 'constraints', 'biases', 'umbrella sampling', 'targets', 'target 
functions'. At this level too the commercial goals become a consideration. What type 
of drug is the target? With a little effort one can, in the grander scheme of things, 
imagine a procedure which seeks to choose the molecule so as to optimise the 
commercial profit with the human benefit. The language of economics and of the 
ethical committee and the FDA comes into play. At present, we believe that no 
method without guiding data will guarantee a solution to these problems at any of the 
higher levels, in reasonable time. If, however, we could explore this space instan
taneously, then we could reach and assess all possibilities in the full possibility space. 
A portion of this space, governed by the practical, ethical and commercial consider
ations, is the only portion of interest to us. Nevertheless, this is in the sense that those 
portions are the goals. The possibility space is still the landscape which must be 
searched in order to locate those goals, and the ultimate language must address both 
this and all the underlying levels. 

Experimental data, however creditable, are not in a convenient form for many 
computational experiments and either the computational results or the experimental 
results must be processed to bring them into correspondence. Reality is glimpsed 
'through a glass darkly'. Whereas reproducible effects of the real world may be 
deemed true, they do not always carry the information we would like. We require the 
tools of statistics. Statistical aspects are inherent and will need to be part of the 
language system. Data are intrinsically noisy, because of experimental error, and in 
other aspects (which we describe as intrinsic error) it is meaningful to describe this in 
terms of a 'chaotic attractor'. Further, the results of experiment are averages over the 
behaviour of large populations (roughly Avogadro's numbers) of molecules over 
a long period of time, and only a crude average picture is seen. To analyse this picture 
and to bring our computations into line with it, we need the tools of statistical 
mechanics. Since computers carry much less information than the real world, and run 
much less efficiently, we are confined to looking at one molecule or relatively small 
populations of them over relatively short periods of time. By virtue of this limitation, 
however, we can obtain great insight from a picture which is not a gross population 
and time average. We can see more meaningful short-timescale 'action replays' or 
simple 'snapshots' in time, of the molecule, as if enlarged by a supermicroscope. 
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While both simulation and reality have defects in providing the quality of informa
tion we would like, it is important for computational prediction that the imperfections 
are of different types. Thus the theoretical and experimental approaches complement 
each other: on this basis Pauling and Corey put theoretical models together with 
ambiguous X-ray diffraction data to obtain the helical and pleated sheet structures of 
proteins, and similarly Crick and Watson obtained the double helical structure of 
DNA. 

2.6.5. The higher space of external information 
One potential solution to the complexity of searching the above complex spaces lies 

in the simple fact that even in the realm of theoretical calculation, we do not have to 
deny ourselves recourse to experimental and other empirical data. In computational 
pharmaceutical science, much greater emphasis is now given to the integration of ab 
initio information tools as with other kinds of information as follows, and the 
languages must be appropriate to handle them. For example, this problem has been 
partly addressed, and is being increasingly addressed, in regard to gene and protein 
structure by the discipline of bioinformatics. The control languages of bioinformatics 
software can be regarded as languages of this class. The more general language PERL 
(pattern extraction and report language) is also gaining wide support. 

The kind of data which must be manipulated includes: 
1. Direct experimental data obtained from direct studies on the molecule of 

interest, either freshly obtained or recovered from database. This includes sequence 
data, X-ray crystallographic data, nuclear Overhauser distances from nuclear mag
netic resonance spectroscopy, circular dichroism data, difference spectroscopy data, 
hydrodynamic and viscometric data, light scattering data, immunological data, solu
bility and partitioning data, and pharmaceutical data. 

2. Indirect experimental data in databases where such data are not obtained from 
experimental studies on the molecule of interest, but from other members of the class 
to which that molecule belongs. The assumption that some information peculiar to 
that class will also apply to the molecule of interest. This includes, for example, 
conformational data about proteins with sequences homologous to the sequence of 
a protein of interest, for which a conformation may not be known. With the advent of 
genetic engineering approaches, it is extremely common that the chemistry of a pro
tein is known only through the characterisation of its gene. 

3. Information in human expertise. The fact that the design problem must pri
marily be one of theoretical chemistry remains true even if theoretical considerations 
take place in the mind of the expert pharmaceutical chemist (even one who may be 
cynical about the contribution which computers can make). The theoretical aspect 
need not represent just the application physicochemical principles at the quantum 
mechanical or Newtonian level, but less tangible information held in the computer 
though drawn from expert human sources, including the way the expert utilises 
experimental data. It was precisely the existence of such information which gave 
pharmaceutical chemists a competitive edge in the 'computer chemistry versus 
chemist debate'. 
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2.6.6. Examples of code features addressing the above issues 

2.6.6.1. Early forms 
Operating system aspects including flexible file management is a feature of several 

molecular calculation languages, a feature currently expressed most elegantly in the 
general programming language PERL (see below). By way of example to show the 
merits of a high-level approach, the first example is the simple but interesting control 
language of LUCIFER of the University of Manchester developed in the 1970s. This 
was academic code which would be an insult to the modern structured programmer, 
but its unique command language is of interest in regard to its form, if only to show 
the direction for improvement in look-and-feel aspects of languages. LUCIFER used 
a specially written batch editor language BRED ('B.R.'s Editor'!), a code which 
allowed procedures to be written for fairly intelligent accommodation to new formats 
of incoming data. This provision was not well met by existing file editors available at 
Manchester at that early time, and none available as imports could be easily inte
grated with the modelling software. There were some examples of routines using 
BRED which could hunt out and adapt the format of a large variety of foreign files. 
The BRED command language was based on a one-verb one-argument format, but 
had a limited block structure with the provision to change the action within the block. 
Even earlier forms written by the author in the early 1970s had, for practical purposes, 
indefinite nesting of BEGIN and END, and the facility to write and call named 
procedures. With only slight modifications for readability, a typical input for most 
recent forms might be as follows. 

ASSIGN FILES FIND FILE ATOMS 
TAKE FILE 
FROM LINE 20 UP TO LINE 300 VIEW FROM COL 2 VIEW TO COL 60 
VIEWTIMES 3 

BEGIN 
EDIT LINE / ATOM/ EDIT LINE /CH/C1/ ON ERROR EDIT LINE /CA/C2/ 
END 

MAKE OK 
MAKE FILE NEW~TOMS 

SEQUENCE + (A.Y.G.G.K.L.L.M.N.G.S.S.G.P.Q.Q)
BUILD 
IF ERROR THEN DUMP 

TAKE FILE OUTTREE 
THROUGHOUT EDIT VIEW TO COL 2 EDIT LINE iN/ 
NEXT 6 EDIT LINE /H/ IF OK SCRAP LINE IF ERROR THEN LISTFILE 
WARNINGS 
INPUT FILE GL YCOSYLA TION 
IF ERROR THEN DUMP 

MAKE FILE INTREE 
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FROM FILE OUTTREE TO FILE INTREE COPY FILE 

SET DIELECTRIC 10.0 BUILD 

MINIMISE 2000 CALL_MD 50000. 
GO TO FILE REPORTS GO TO MARK LAST ENTRY 
IF OK FROM MARK TO END LISTFILE 
IF ERROR THEN DUMP 

This hunts out files and attaches them to standard data streams ready for use. It 
takes the file with label atoms and, from lines 20 to 300 and between columns 2 and 60, 
examines only lines containing the characters ATOM, and up to three occurrences of 
atom type name CH are changed to Cl. If CH is not found in the above range, CA is 
located and changed instead, if present. The output tree structure (the chemical 
formula expressed as linkages) is then modified to make a new input file by adding 
glycosylation to the appropriate site on the asparagine. The molecule is then rebuilt 
with a dielectric set by rescaling the charges. The molecule is built ready for up to 1000 
energy minimisation steps followed by 50000 dynamics iterations. The last entry on 
the output file is scanned. If no label called 'LAST ENTRY' was written, an error 
condition is indicated and a print-out is made for debugging. An important feature of 
such simple languages is the ERROR COUNT where a counter is incremented by one 
every time an error is found. An error is deemed to have occurred when a subroutine 
reports a difficulty, and, most importantly, an error is incremented when something is 
not found. Note the use of MAKE OK to reset the error count to zero. 

Clearly, this is clumsy: it requires detailed attention of the programs about where to 
look and what to do. It is moderately difficult to use and time-consuming to write. The 
better language might say 

BUILD PROTEIN + (A.V.G.G.K.L.L.M.N.G.S.S.G.P.Q.Q)
ADD MOLECULE GLYCOSYLATION AT FIRST N 
SET DIELECTRIC 10.0 
MINIMISE, DO DYNAMICS TILL ENTHALPY CONVERGENT 

A 20-30-fold reduction in written instructions is typical for languages which go 
from the former explicit form to the latter more 'intelligent' form. One aspect of 
'intelligence' at a basic level is sensible defaults. Extended lavishly, providing sensible 
defaults suited to circumstances is an example of an expert system. 

2.6.6.2. Current/orms 
The languages used for molecular modelling are, with the principal exception 

described below, not true languages at all. They are command languages which must be 
mixed with operating systems, other languages and database searching tools in order 
to function. 

Following Java, there has been a second relevant and dramatic language develop
ment since this article was first written. This is VRML or Virtual Reality Modelling 
Language, developed by Gavin Bell, Anthony Parisi and Mark Pesce at Silicon 
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Graphics Inc. It could well have been discussed alongside Java, as VRML is also 
becoming the standard for delivering three-dimensional images across the Internet. 
The information is in three-dimensional coordinates and so these images can be 
manipulated by the local VRML server; moreover, objects within the three-dimen
sional field can be anchors (the hyperlinks) on which the user can click to access 
information located at the same or at remote Internet sites. The author had little 
difficulty in locating and downloading a VRML interface to his laptop, and manipula
ting downloaded files of molecular display (but while on-line he had problems in 
getting the anchors to remote sites to perform). Although VRML has no special 
features for molecular calculations, it has become popular amongst a small but 
growing group of virtuosos for displaying molecules including proteins and, impor
tantly, to display proteins in motion. Some, notably Hardy and Robinson at Oxford, 
have begun to build specific VRML applications. There is also already a well
established protein motions database. Display modes for proteins are lines or 'wires' 
(traditionally this was the faster mode in molecular graphics, and still is), tubes, and 
ellipsoids of thermal motion. Examples of displays which are available at this time 
include Alan Robinson's simulation of a bilayer of 166 lipid molecules with 
a Gramicidin channel running through it, texture mapping of molecules to illustrate 
electrostatic surfaces, and even a whole bacteriophage. It is not hard to see how the 
hyperlink action connecting other locations can be used to introduce not only a query 
capability, but dynamics and energy calculations as well. VRML is well worth noting 
here as a 'current form' because of this kind of imminently realizable potential, and 
because of its popularity for protein work. Indeed, Robinson and others have recently 
made a strong case for VRML in chemistry, but at present it is, as a molecular 
programming language, incomplete. It remains a graphics language whose objects are 
general three-dimensional images and styles, rather than a molecular modelling and 
design language per se. Tomorrow may however be different! 

Extending the power of C++, Java, and VRML, is a new architecture which is, 
more precisely, an adaption of existing language systems (especially by C++ subset 
extensions). CORBA (The Common Object Request Broker Architecture) is an 
emerging standard which has gained particular popularity in the field of bioinfor
matics. Its application in more general drug design arenas may therefore follow, but 
what CORBA is, and also what it fails to be, more clearly defines the future directions 
required. CORBA was first defined by the Object Management Group (OMG) in late 
1990. CORBA may be considered a more security-minded form of Java. Like Java, it 
is object-oriented. This is in contrast to its nearest procedure-based contender, DCE 
(Distributed Computing Environment) which was developed by the Open Software 
Foundation (OSF). It is important to appreciate that both these languages (CORBA 
and DCE) are also characterised by being primarily for use as 'middleware'. Middle
ware such as CORBA and DCE glues existing programs together by acting as an 
intermediate environment, which overlays the operating system. In this way, these are 
important 'glue' media which therefore must be mentioned. However, at the time of 
writing, this binding of utilities is static. The CORBA bindings require definition prior 
to run time as an intermediary specification known as an OMG IDL file. This 
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restriction does not seem to exist for interactive glue languages such as GLOBAL. 
Such differences and the 'middleware' philosophy as a whole more clearly define, to 
the author's mind at least, the notion of 'everyware'. Middleware increases the 
multiplicity of languages, rather than decreasing it. It is 'everyware' which is required. 
Broader power and more dynamic capabilities may still be required for true 'every
ware' in drug design applications. 

Today, UNIX and C are the commonest support tools and allow the manipulation 
of text of files and communication between separate UNIX processes. However, these 
jobs are still implemented only with difficulty. PERL was conceived as a data 
reduction language which is becoming popular as a background support for confor
mational chemists. BIO-PERL for bioinformatics is a dialect developed at the Univer
sity of London. It is a language to navigate amongst files in a somewhat arbitrary but 
efficient fashion, to invoke from this searching commands which obtain dynamic data, 
and to output the findings as easily formatted reports. However, this role soon 
expanded to encompass the roles of the operating shell itself. Files can be easily 
manipulated as a whole, and processes can be created or destroyed, the information 
flow between them controlled, processed and formatted. It is now above all things 
a networking language, with the ability to unite tasks and activities on different 
machines [7]. It makes use of the Regular Expression pattern matching facility of 
UNIX, a powerful generalisation of the 'wildcard' '*' and'?, symbols in DOS filenames. 
Its overall structure is block-like, like the ALGOL/Pascal group. However, it could 
permit a functional programming ('FPS') approach with little or no modification. 

Compared with BRED above, PERL code can appear very like human speech, even 
poetry: 

BEFOREHAND: close door, each window & exit; wait until time. 
Open spellbook, study, read (scan, select, tellus); 

write it, print the hex while each watches, 
reverse its length, write again; 

kill spiders, pop them, chop, split, kill them. 
Unlink arms, shift, wait & listen (listening, wait), 

sort the flock (then, warn the "goats" & kill the "sheep"); 
kill them, dump qualms, shift moralities, ... 

(Anonymous [7]) and so on in that vein. This actually parses and it gives some feel for 
the operations encountered in file data manipulation, but such examples are highly 
contrived and do not do much that is useful. As a more typical example of useful 
PERL code, the following example prints out the history file pointers on a B-news 
system [7]: 

#- print out history file offsets 
dbopen(%HIST, '/usr/lib/new jhistory',0666); 
while «$key,$val) = each %HIST) {print $key, ' = ',unpack('L', $val,"\n";} 
dbclose(HIST); 

When used in this way it may have much greater power but it was not developed by 
molecular modellers, as was BRED. It is noteworthy that, with some allowance for 
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taste, PERL is often less readable to the uninitiated than BRED. It is excessively 
concise. It should be noted that there are many even far less readable examples of 
PERL, doing some relatively simple operations, which could be given as examples. 
PERL has however earned a powerful following of adherents and this is well deserved 
in view of the power of the language. 

A detailed language comparison between the leading command languages in 
chemical design would be tedious and not particularly profound, but it is possible to 
construct some form of consensus. The following represent the collective language 
features which most commonly occur across the above software or which give it 
particular power. They exemplify or indicate (i) specifications, (ii) arguments and 
(iii) commands which are selected from the menu or keyboard commands for a variety 
of drug design and protein modelling software. They are to some extent rationalised 
into a convenient common framework to avoid inconsistency. They represent the 
minimal set required for a powerful language with a graphics orientation which will 
also allow a reasonable degree of automation, so justifying software development of 
a new package in the late 1990s, and may be helpful in the selection of software for 
purchase. 
File types Text, commands, spreadsheet, parameters, formula, DNA-sequence, 
RNA-sequence, ProteiILsequence, proteiILsecondary structure, alignments, confor
mation, dynamics "playback". 
Filename (arguments) Preferably of structured type directory.subdirectory.subdirec
tory.name. Up to 256 characters per component. 
Remote filenames (arguments) E.g. Remote/ /http:// .... 
Virtual filenames (arguments) Input, Screen, Printer, Memory, Menu, Trash-can, 
Shredder. 
File operations Open, Read, Read-remote, Reopen-recent, Close, Write, Write
remote, Print, Save As, Append, Move, Scrap, Rename, Obey(take as command 
input). 
File Edit operations Move, Copy (or Cut, Paste), Find, Change. 
Data types Integer, Real, Logical, Character, String, Array (for each the previous, e.g. 
Real Array), File, Spreadsheet, List, Menu, Structure, Object. 
Data restrictions Local, Global, Default, Allowed Range, Allowed size (List, Array). 
General: Program Flow: 10 Define types, Define Procedure/function, Return, Call 
procedure, IF, Go to, Obey file as input stream, Obey String as command, Do 
from ... until, Do while, BEGIN ... END, Assignment (X = constant, variable, ex
pression), Read, Write, Format. 
Modelling operations - (principally calls to simulation procedures) Define bond ge
ometry, Build (dihedral angles, bond lengths, valence angles to Cartesian coordinates), 
De-build (coordinates to dihedral angles, bond lengths, valence angles), Convert to 
secondary structure, Edit secondary structure, Convert secondary structure to built 
molecule, Convert built structure to planar motif representation, Edit planar motif 
representation, Convert planar motif representation to built molecule, Define energy 
parameters, minimise in Cartesian, minimise in rigid geometry (dihedral angles 
change only), Monte Carlo in Cartesian, Monte Carlo in rigid geometry, Dihedral 
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angle dynamics (pseudo-molecular dynamics using rigid geometry, rigid body dynam
ics), Molecular Dynamics, Hybrid/Stochastic Dynamics, Add Water, Build Unit Cell, 
Assign Molecule as Object, Fit Object to Object, Combine Objects as Object, Take 
part of Molecule as Object, Convert Molecule Object to Abstract Molecule Object 
(calculate vectors and points to represent hydrogen bonds, charges, nonpolar points, 
van der Waals surface, etc.), Calculate abstract molecule to fit specified site, Calculate 
virtual molecule Object to fit quantitative structure activity data Object, Convert 
abstract molecule Object to molecule Object (grow real molecule to best represent 
abstract molecule), Define part of virtual molecule Object as an Object, Make Object 
from combined Objects. 
Graphics/Menu Manipulation Examples The examples below are placed in a uniform 
language style to show the scope: 
Obey_active_MenlLitem 
Atom...xyz(6) 
Cursor-xyz 

-Cartesian coordinates of atom 6 
-Cartesian coordinates of cursor (if x,y view, z is 
either zero, or deduced from cursor use in last x,z 
or y,z view) 

Atom(66) -Atom number 66 
Type(Atom(50» -Type of atom 50 
Atom(cursor) -Atom closest to mouse cursor 
NeaLType(10, Type(Atom(60),Atom(cursor») 

Atom(Near(10,Atom(cursor))) 

-List of all atoms of same type as atom 60, which 
are within 10 A of the atom nearest the cursor 

-All atoms within 10 A of the atom nearest the 
cursor 

Chain(Atom(100» -List of all atoms in chain containing atom 100 
Residue-.number(Atom(66» -Residue number containing atom 66 
Residue_Type (Atom(cursor» -Residue type closets to cursor 
Atom(AdjacenLRes(1,-1,Atom(100») 

-List of all atoms in the residue containing atom 
100 and all atoms in the adjacent residues before 
and after in the seq uence 

Atom(Contact(Atom(cursor») -List of all atoms in residues in contact with closest 
residue to cursor 

Secondary_number(Atom(cursor»-Secondary structure feature (e.g. helix) and num

Menu(cursor) 
PoinLAtom (30) 
PoinLMenu (20) 
Step_MenlLCursor 7 

Step--AtollLCursor 37 

Minimise_Chain(Cursor-xyz) 
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ber containing atom 66 
-Menu item closest to cursor 
-Move cursor to atom number 30 
-Move cursor to menu item number 20 
-Point to menu item number 7 higher than current 
menu number 

-Point to atom 37 higher than current atom 
number 

-minimize energy of chain including force to cursor 



Computer languages in pharmaceutical design 

Graphics style arguments Stereo, superimposed, Max-fit superimposed, Perspec
tive = , Colours = , Backbone, Ribbon, Wire, Stick, CPK, Change CPK size, Nichol
son, Show hydrogen bonds, Show distances < x, Show buried residues, Show by 
colour progression of chain {e.g. MacroModel}, Show by colour energy of interaction 
with all other atoms, Show mobility, Show number of references about each segment 
{Michael Levitt's LOOK}, Grow atoms to touch, Add labels, Apply to backbone, 
Apply to side chains, Apply to atom range, Apply to volume radius R round point. 
Graphic operations Select, Xtranslate, Ytranslate, Ztranslate, Xrotate, Yrotate, 
Zrotate, Centroid =, Viewpoint, Zoom. 
DNA-protein sequence operations Show, Hide, Align, Unalign, Edit, Mutate, 
Glycosylate, > DNA {convert to best guess DNA sequence and similarly ... }, 
> RNA, > Retro, > ContrLstrand {sequence as if translation of the opposite 

strand of DNA}, > besLhomolog {replace sequence by best homolog}, 
> NexLbesLhomolog, > predictecL.secondary~tructure, > predictecLpbLpsLangles, 

HighlighLconsensi, Highlight motifs, Model mutant from known parent conforma
tion, add alignment constraints, remove constraints, show % similarity, show 
% identity. 
Information Help, Search sequence database on sequence, Search sequence data
base on name, Search sequence database on entry/acquisition number, Search liter
ature on name, Search for homology, Search for cryptic homology, search 
for homologous conformation, Use knowledge base to find all references to 
subject X. 

The above languages are not integrated with the background operating systems 
though some make a significant effort. For example, Michael Levitt's LOOK is 
integrated with some more general data file manipulation aspects, especially Net 
searching tools. Generally speaking, you could not write a respectable general pro
gram of any value using these command languages, and in that sense they do not 
satisfy the test of a Turing machine for the ability to perform, in principle, any 
function. Nor does one address many operating system functionalities by means 
of the command language code. There are a few efforts, inside pharmaceutical or 
biopharmaceutical companies, to move towards this. They are not in the full 
public domain however, except to collaborators {Glaxo has traditionally claimed 
an open policy, and while making many innovative contributions it generally seems to 
rely heavily on external and academic tools}. In the late 1980s and early 1990s, the 
author's team sought, at Proteus, to develop an integrated computational system 
{Prometheus TM} to explore and exploit the use of as much information as possible. The 
system was one intended to optimise the way in which both application of quantum 
mechanical and Newtonian principles and stored human expertise could be manipu
lated together, both by utilising experimental data and by expressing the operations 
which an expert would form in a high-level chemistry computer language specially 
developed for the purpose [8]. This system was based on a deeper analysis of the 
design problem and how various types of experimental data [9] might be utilised 
{especially human molecular modelling and design expertise, and generics data} to 
generate proposals for drugs automatically [10-14]. 
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Prometheus™ was largely constructed in a proprietary language GLOBAL © 
as described in greater detail in the above references (especially Refs. 8 and 9; note: the 
present proprietary language may have since changed substantially). This language 
had several PERL-like features. Indeed it deliberately included a number of features 
from other languages. The examples given thus also describe features of other 
powerful languages. Two principal points dictate the power of GLOBAL: 

As in APL, a function can be defined to be evoked in several ways. Also, as in PERL 
and a few other languages, a procedure once defined can appear in several guises. 
A procedure 

BEGIN PLUS (x,y); 
z=x+y; 
RETURN z; 
END; 

could be called as a nonadic, monadic or diadic operator 

3 [PLUS] 6 

as a function 

PLUS(3,6) 

or as a command (with some flexibility allowed in appearance, e.g.) 

PLUS 3,6; 

The second is that such a command can not only follow another command 
sequentially, but be embedded within it. In such a case the full statement brackets 
must be made explicit $ ... ; or { ... } as an option for embedded forms. Such an 
embedded statement, which is evaluated before the embedding statement, leaves its 
result as a trace, a string of ASCII characters which replace the occurrence of the 
embedded in the embedding statement. It is, in effect, a form of macrosubstitution as 
in UNIX, DOS and other operating systems. Note that a statement which is a simple 
constant, variable or expression leaves a trace which is the (string) value of that 
constant, variable expression. Typical simple use of this is 

SPECIAL_DAY = "BIRTHDAY"; 
DAY_TO_REMEMBER = {ANSWER WHAT IS YOUR {SPECIALDAY} 
PLEASE?}; 

which asks WHAT IS YOUR SPECIAL DAY? and stores the user's answer in 
the variable DAY_TO_REMEMBER. It is noteworthy that functional form 
ANSWER( ... ) could validly have been used in the context, so this approach would 
not have great advantage over a functional substitution. However, the second inner 
statement {SPECIAL_DAY} could not be passed in the functional manner. The 
brackets { ... } (or $ ... ;) are like BEGIN; END; special operations controlling 
program structure and flow. The quotes" ... " are the inverse operation of { ... }, for 
example, so that X, "{X}", {"X"} are equivalent. 
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A consequence of the difference between a trace left by an embedded statement and 
a function passing a value is that the trace can be placed anywhere, even as part of 
a variable name. For example, one form of the expert system approach in GLOBAL© 
is that variables can be variable by name as well as content and so represent general 
statements which may be used in probability, truth and predicate calculus computa
tions. The syllogisms can be encoded, as in 

and supported by extrinsic procedures which compute and transfer logical values or 
probability, as in 

SURE = 1.0; 
LESS_SURE = 0.7; 
WHEN IT_RAINS, THE_STREETS~RE_ WET, SURE; 
WHEN THE_STREETS~RE_ WET, ILlS_RAINING, LESS_SURE; 
IF ITjS_RAINING; SAY TAKE UMBRELLA; 

Another bioinformatics example is 

PREDICT_2RY _STRUCTURE{ ALIGN {MY_SEQUENCE} 
{MOSTJIOMOLOGOUS{MY_SEQUENCE}} } 

which is representative rather than actual since the current names of procedures may 
currently be different within the Prometheus system (the fact that new statements and 
functions are readily defined and hence renamed nonetheless makes this an attainable 
example!). 

Finally, as noted with PERL, GLOBAL© can make extensive use of Regular 
Expression notation as a fundamental feature of the language. One could readily 
address all entries of an array where the search string matched the contents, or a list in 
which the name of the location matched the search string, for example. The definition 
and use of the Regular Expression is exactly that as found in UNIX, probably with 
some extensions after 1995. 

3. Automatic language-based approaches - Difficulties and limitations 

3.1. Language difficulties 

A user does not work well with a language mode which is unnatural to him, 
and not every user enjoys the same paradigm in thinking about computer-aided 
drug design. Functional programming systems are notoriously unsettling for 
users who prefer the imperative paradigm of FORTRAN, PASCAL, BASIC 
and UNIX. Difficulty in reading initially is an issue, but not a main one. C and PERL 
are difficult to read when approaching them from a classical FORTRAN/AL
GOL/PASCAL background, but they have essentially the same imperative and block 
character. 
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Those with a tendency to mathematics, or who enjoy the esoteric, often tend to 
represent one extreme. They tend to like languages which have very few symbols and 
rules, but which, by an ingenious choice of grammar, appear elegant. In contrast, 
many of a more engineering inclination often prefer bare bones imperative forms 
which are practical mnemonics without too much unnecessary sophistication in 
human grammar. 

For example, the standard system editor available at Manchester University in the 
1970s had essentially only three instructions: mark this spot, move to the next spot 
copying the material crossed over to another specified file, and move to the next spot 
not copying. This was sufficient to perform all basic editing operations but was 
irksome to some users who thought it 'too clever for the average user'. In consequence, 
there was a spate of writing editors from scratch, with instructions like COPY LINES 
20-30 TO 50. One such led to the command system for the LUCIFER modelling 
suite described above. 

Another example of a language structure which has elegance but which is confusing 
to the uninitiated is that it would be perfectly possible to allow within a language 
a type FILE so that operations resembling mathematical operations, and formally 
consistent with the relational calculus, do all the file and data manipulations. For 
example, a command form such as 

COPYBTOA 

is adequately represented by the assignment 

A:= B 

when A and B are type file. Similarly 

A:= B + C 

would concatenate C after B and copy result in A. In the relational database 
application, the action would also remove redundant duplicated information which 
had arisen as a result of the operation. With this important feature in mind, it may be 
noted that the operators + - * with specific relational algebraic meanings would, 
taken in various combinations such as in 

A: = (B + C)*(D - E) 

perform all the operations of the relation database approach. {For completeness it 
may be noted that D - E removes all information from D that is found in E, and 
* forms the formal product such that every information item in the result of (B + C) 
is associated with all the information items in the result of (D + E), with inconsis
tencies and degeneracies removed.) This is powerful, but the important point for 
present purposes is that these new concepts do not come naturally to the average 
user. Nonetheless, fairly fluid access to relational databases such as Oracle and Ingres 
is found in ISIS software from MDL. In this case, a less concise approach comes more 
naturally. 
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An elegant choice can become acceptable with familiarity, but there is energy 
needed to acquire understanding and familiarity. There is one paradigm which we can 
be reasonably sure will be preferred by those who have a job to do (as opposed to 
exploring elegant new features for their own sake). This can be described as 'the 
paradigm of the banal'. The need for familiarity was the most critical factor for the 
average user in the development and application of the PROMETHEUS™ system, 
and the trick was to bury the sought-for enhanced power and sophistication within 
that familiarity. Not to get on with design would seem frustrating. To press on with 
the job, users would prefer to press on with the language features with which they are 
familiar. There was a strong requirement by management for users to automate their 
expertise in GLOBAL©. Yet the users would sometimes ask 'Why do I have to learn 
another language?' even when the language familiar to them was entirely unsuited to 
efficient expertise capture, e.g. it would not be at a sufficiently high, chemistry-oriented 
level. Not only are end-users important to appease, the smooth extraction of expertise 
from the expert user, into re-executable code, depends on an affinity between the 
expert user and the language; if this is lacking, expertise will not be captured even if the 
language is much better suited to the task in principle. The problem was that users 
had different language backgrounds. 

Thus to overcome this, GLOBAL © had many language features which could be 
mixed and matched from other languages, and although essentially of a functional 
programming system form, this would normally appear as facilities in the more 
familiar imperative language form. There were FORTRAN-like read/write facilities, 
ALGOL/PASCAL-like block structure, a PERL and C content. The language also 
allowed a smooth blend with host operating system commands which, for example, 
allowed UNIX to be used within programs. 

Such an approach may be referred to as banalisation, meaning 'to make ordinary'. 
The further trick, nonetheless, is to make a smooth whole without appearing as 
a discordant mix. On the whole I believed that GLOBAL © achieved this. The biggest 
difficulty was the need to mix familiar FORTRAN-like forms in which the string 
constant part is specifically indicated by quotes " ... ", with the natural func
tional/macro-editing character of GLOBAL where it is the variable part which is 
specifically indicated by curly brackets { ... }. Hence there would be two types of 
solution to reading and writing allowed, e.g. coding for input and output, for example: 

1. FORTRAN-like method 

S = "name"; 
PRINT (*,"What is your ", A10, "?") S; 
READ (*,20A4) YouLanswer; 

2. 'Canonical GLOBAL' method 
S = "name"; 
YouLanswer = {ASK What is your {S}?}; 

It is interesting to recall that in the GLOBAL language generally the inverse 
relation between " ... " meaning a constant and brackets meaning a variable part 
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{ ... } had nonetheless a degree of consistency, since they were in fact inverse opera
tions with respect to each other such that, for example, "{X}" = {"X"} = X (see above). 
Nonetheless, in the above choices of command line form remain inconsistencies. They 
might well irritate the mathematical style thinker who prefers limitation of choice and 
elegance, though the aims of the above were, of course, commercial, not academic. 

In allowing mixed forms in a language, the form most intrinsic to the paradigm and 
style of the language and inherent in its underlying structure, is termed 'canonical'. 

The approach of also allowing a language to resemble several possible languages is 
effective in getting the job done in the commercial sector. The primary difficulty is that 
one can tell from the code the background of the writer. In the extreme, a user's code 
could look like UNIX, FORTRAN or PERL. Thus editing a routine was not always 
trivial to an expert coming from a different computer language background. What 
justifies this approach, however, is that it is much easier to read a language in another 
paradigm than it is to write it, as it is easier for an Englishman with some smattering of 
understanding to read French than it is for him to write it. Bearing in mind that in 
updating the expertise in a block of code the user is not required to confine himself to 
the style of the surrounding code since all GLOBAL © styles are compatible, this is 
a moderately satisfactory state of affairs. However, it can lead to code which is efficient 
but not aesthetic. It can also tend to lead to users confining their expertise updates, 
when extensive, to separate functional modules invoked from the older text. (This is 
sometimes deemed a desirable thing to do in any event.) 

What is the solution? The difficulty resides not in anyone language, but in the fact 
that there is a multiplicity of them. Since familiarisation overcomes many difficulties, 
there is a need to reduce the energy in acquiring familiarity. Amongst other things, this 
is an argument for standardisation to a single, global lingua franca. 

3.2. Prediction is not design? 

It has been possible to make computer-based predictions of molecular behaviour, 
for many years, particularly since the 1960s. One of the criticisms was that doing 
a calculation, and thereby making a prediction, was not the same as actually designing 
something. This is certainly true, though there are comprehensible relations between 
prediction and design. This matter is discussed in detail in Sec. 4. 

3.3. Need/or human creativity? 

In such criticisms as voiced in Sec. 3.2, there is buried the further argument that 
design demands human creativity, and specifically that computer approaches, syn
thetic chemistry and testing are necessary but not sufficient to drug development. 
There are three levels of objection and counter objection: (i) There is the argument 
that only human beings armed with consciousness can add the essential spark of 
creativity. However, even if it is argued that consciousness is a special human quality 
which can never be implemented in a computer, it does not automatically follow that 
human consciousness is required for drug design. (ii) One can nonetheless believe that 
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in practice, until truly intelligent and creative machines come along, drug design must 
involve human beings. Nobel Laureate Peter Mitchel believed so [15]. He nonetheless 
appreciated the scientific merit of automation by seeking to enforce reproducibility, 
which is, after all, the cornerstone of science [16]. 

Automation of creativity may not be seen as an intractable problem, but it can still 
be seen as a hard problem. In principle, an expert system, combined with artificial 
intelligence, might capture human creativity. If we allow that this is the case (as does 
this author), then there are still deep practical problems. Notably, the Feigenbaum 
bottleneck refers to the enormous difficulty of capturing human expertise. This is 
largely because much expertise is subconscious, but there may be other issues. The 
expert might be resistant to the process because of a fear of being shown to be unable 
to defend his views on logical grounds, for example, or of losing an elite position or 
even his job (the 'Luddite response'). Debriefing an expert is a skilled task performed 
by a 'knowledge engineer'. If we provide the appropriate computational interface, and 
teach the expert how to express his expertise himself in computer terms, and at the 
same time the expert has also a job to do in terms of meeting deadlines in molecular 
design, we run into further difficulties. It takes time to make the first pass in 
automating expertise, and the expert may even believe that an interactive graphics 
method feels more like real work is being achieved. (Similar observations have been 
made for the 1970s when interactive program editors and user operating systems 
replaced punched cards and careful reading of lineprinter output.) 

3.4. Difficulty of predictability due to complexity of biological systems 

Effective design is also often distinguished from prediction because the complexity 
and the unknown factors in complex biological systems are a bar to full understanding 
and predictive power. Unexpected, strong and undesirable side effects are usually 
evocative of the thalidomide tragedy, though it is clear that this was less a design 
matter and, in part, due to the need to pay attention to the alternative chiral forms of 
the molecule which were present in pharmaceutical production. More illustrative of 
the problem in its purest form is the case of IL-12, which seemed so promising in 
research, but which caused severe toxic effects and two unexpected deaths in clinical 
trials. "The episode was all the more shocking because the patients, who were suffering 
from kidney cancer, were given doses that had previously proved tolerable ... The drug 
apparently had a unique property which couldn't have been foreseen" [17]. Inasmuch 
as binding to other receptors may be an important origin of toxicity, theoretical 
design could be applicable here too, once the receptors are known, by reducing the 
binding to known undesirable sites. This is for the longer term but, equivalently, steps 
are already increasingly being made to check that epitopes selected for peptide 
vaccines have reduced likelihood to cause autoimmune effects by resemblance to 
segments of other gene products. These are further strong cases for the value of the 
human genome project; however, many toxic effects are perhaps too complex in 
character for such data to be useful in the near future. They might involve the 
disruption of complex systems in a less specific, more diffuse manner. Further, 
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difficulties like those experienced above [17] might often arise because of complex 
control processes modifying the response of 'magic bullet' targets and so possibly 
shifting the efficacy and toxicity of a drug. In a study which seemed to have real 
potential for developing oral substitutes for insulin, we noted a promising highly 
specific 'magic bullet' action of a plant extract. It was one of the first known specific 
inhibitors of mitochondria fatty acid oxidation, with consequent potent useful hypo
glycaemic effects [18]. However, it had a much more complex toxic effect of potently 
uncoupling oxidative phosphorylation and, further, it emerged that the degree offatty 
acid inhibition was unexpectedly extremely sensitive to diet. 

In addition to such familiar difficulties, the precise mechanism of action of a drug 
may be misconceived. The intensive" ... efforts to develop antisense compounds as 
therapies for cancer, AIDS, and other diseases have encountered some unexpected 
questions about how the drugs really work" [19]. In encountering such difficulties, 
however, there is usually the assumption that the barriers are not fundamental, and 
that even if pharmaceutical researchers "don't fully understand an insidious effect" 
there will usually be a happy conclusion that they "know how to avoid it" [17]. 

3.5. Fundamental difficulties for design involving biological systems 

In rarer cases, however, criticisms of prediction in relation to final pharmaceutical 
action relate to the notion that there are fundamental differences in living systems. In 
pharmaceutical discovery we are ultimately concerned with the repair or amelioration 
of complex biological systems. In this worthy task, it is highly desirable that special, 
e.g. vitalist, considerations do not apply, else we are restricted. Criticism of computer
aided design on the above grounds may not be extremely rare. In the present author's 
personal experience, not all scientists, biotechnological industrialists and investment 
bankers really share a pure nonvitalist view of biological molecules. For example, 
a vitalist consideration does seem occasionally to arise in the commercial biotechnol
ogy sector, at least in some 'fuzzy' guise, as to whether a protein derived by chemical 
synthesis is likely to be satisfactory for some purpose even if its chemical constitution 
is correct. However, the 'vitalist objection' is often tangled up with a more valid 
objection. There is recognition in the biotechnology industry that following cloning, 
expression, there is also the need for correct folding of the product proteins [20]. The 
vitalist objection has valid overtones in some criticisms regarding the difficulty of 
chemically synthesising and folding complex molecules with the same precision as can 
be achieved in biological systems. However, such syntheses are possible, and the 
molecules can be folded to functional forms [21-24]. This need for precision on a large 
molecular scale is the same problem that must be addressed in the nascent nanotech
nology industry, and is discussed in more detail in Sec. 5. 

3.6. Limits to computational reproducibility 

Reproducibility implies reproduction at different times, and the dimension of time 
introduces a special complication, of which one must be aware. Dynamical systems 
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theory studies how the phenomena in reality (or manifest in molecular mechanical 
computations) change with real or simulated time. In the theoretical computer realm, 
with the dimension of time introduced, the calculations are referred to as simulations, 
typically as molecular dynamics simulations (generally taken to mean at the New
tonian level of molecular mechanics, but they may contain a quantum mechanical 
element). The popular branch of dynamical systems theory known as Chaos theory 
emphasises how some processes, in the real world and in simulation, can diverge 
exponentially after minute perturbation. In effect, the consequence of a minute 
incalculable effect leads to progressive loss of ability to predict the history of a particle 
and, conversely, what its future will be. Hence in the real world, and in the computer, 
not all results of interest can be obtained reproducibly. In reality this might be due to 
perturbation by something as weak and remote as an unaccounted electron in 
a distant star, and in the computer to changes such as running the simulation on 
a different computer with a different numerical precision. It is also possible that some 
results can appear reproducible within certain limits, because of the presence of an 
attractor in the underlying mathematical space. Both (i) simulations of weather and 
(ii) the development of weather in the real world are subject to chaos and hence limited 
predictability. But it can still be said that the temperatures of summer and winter will 
be largely confined, or, better, 'attracted', to a distinct range. Note that two or more 
variables may change chaotically, but some mathematical function of them, such as 
their sum, might represent a conservation law. 

4. How computers can design automatically 

There is the concern expressed above that, though computers can predict, predic
tion is not the !lame as design. Further, there was the concern that the design 
component was necessarily a matter for humans and could not be automated. 

4.1. Prediction 

The general features of the molecular design process can be considered from 
a purely 'mathematical' viewpoint. We can think of the resulting simple and general 
mathematical descriptions as strategies which must be 'fleshed in' with details to 
develop the protocol for a drug design study. Consider first a molecule with chemistry 
C and with properties P. Tools such as quantum mechanics and molecular mechanics 
provide the basis for simulation algorithms which predict the properties from the 
chemistry given, and play the role of a transforming operator T which transforms the 
C to P. 

P = T(C) (1) 

The molecule with chemistry C need not actually yet exist. When the molecule with 
chemistry C already exists, there is a certain analogy with performing an experiment 
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on a real molecule. To explore the consequences of such an analogy, it is often useful 
to consider the real world as a kind of sophisticated computer program, and it is by 
common consensus that we will favour the calculations resulting from that program 
as being inevitably 'true', provided they satisfy the condition of reproducibility. Clearly, 
if experiment yields a result P' in one case and a different result, say generally ~ P' 
(meaning not PI), in another case, we cannot say which of the outputs is true or false. In 
contrast, the predictions of a theoretical calculation are held to be true only if they 
match the results of the real world. 

4.2. Design 

Prediction is not the same as design. This objection is correct. Equation 1 begs the 
question of how one chooses the C to generate the P of interest, say P*. Two 
approaches can be conceived. 

In the first case, we consider prediction as a subcomponent of the overall design 
process. One adjusts the chemistry C to minimise the discrepancy between the 
predicted property P and the required property P*, as a function of chemistry C. 

C* = min{abs(T(C)-P*) I C} (2) 

This is akin to aiming a gun, or let us say optimising the strength of the explosive 
powder C, to hit a target P*. The predictive component in the heart of this feedback 
cycle will typically contain at least some molecular dynamics simulation. Since 
Newtonian dynamics can be nonlinear, and since in any event the above equation 
implies a negative feedback, drug design by this route is potentially Chaotic. Chaotic, 
that is with a capital 'C', does not in itself mean a bad result. What it does mean is that 
for long computations we might obtain two different good results on two different 
computers. This approach sets a fundamental limit to the argument that automation 
implies reproducibility. 

In the second case, we consider prediction as the inverse of design 

C* = To 1 (P*) (3) 

In general, computer programs cannot be written such that one can predict P from 
C and also C from P, by working backwards. This would be akin to feeding the target 
into the mouth of our gun to magically produce the required powder at the other end. 
It would seem to imply time reversal or the breach of the entropy principle. Specifi
cally, with the above considerations of dynamical system theory in mind, it requires 
a nondegenerate flow of information, without losses, in each direction. However there 
are, in principle, specific procedures, such as the use of neural nets with bidirectional 
associative memories, which could be programmed. Such nets could be trained to 
predict properties by feeding them a set of known properties with known chemistries, 
and then effectively driven backwards with a required property as input. For funda
mentally related reasons, reversible logic systems are also of considerable interest. 

A special case of Eq. 3 arises when we consider C and P (actually or mathematically) 
as two surfaces which are complementary. Then we may think of each as a template 
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for the other. In particular, we can imagine the details of the binding site of a receptor 
as driving the assembly of a molecule from chemical components to form a final 
molecule which will fit that site (hence, 'induced design'). Solutions are degenerate and 
a receptor binding site might define many chemistries which will fit it. If we rank these 
in some way such that the fit of one molecule can be said to be better by so much than 
the fit of another, then by exhaustive examination of all the fits, or more realistically 
by screening a combinatorial selection of generated hits, or by a more intelligent 
search procedure, one may obtain a best fit. 

4.3. Some basic operations with pep tides as objects 

The following are amongst those operations of potential value both in developing 
computation-based and experimental protocols. In precise use many will obviously 
require arguments to qualify further their action, e.g. to set ranges of effect in an amino 
acid sequence. They may indeed be quite lavish protocols involving several computa
tional procedures. In cases like 'make a dimer' or 'Pegylate' (add polyethylene glycol), 
either when implemented by a human or by a computer, they will themselves contain 
optimisation features and feedback cycles (,wheels within wheels'!). 

( ) 
[ ] 

{ } 
{ }vw 
-1 

t 
c 
+ 

x 
u 
(') 

>< 

q 
r 
p 
<2> 
a 
b 

bracketed form implies reference to chemistry 
refers to sequence of polymeric units (e.g. amino acid units, but not to 
components within units) 
applies to electrostatic and van der Waals density in 3D space 
applies to van der Waals density in space only 
do inverse of operation (postfix superscript) 
do transpose of operation (where meaningful) 
form complement (see above) 
add new specified modular component 
delete specified modular component 
swap specified modular components (diadic) 
use all groups/sequence segments from both specified entities (diadic) 
use only groups/sequence segments common to both specified entities 
(diadic) 
use only groups/sequence segments from first specified entity which do not 
occur in second (diadic operator) 
remove all redundant (e.g. second) occurrences of substructures such as 
sequence segments (but not redundancies within polymeric units) 
make mirror image (enantiomer) 
swap hydrogen donor (basic) for acceptor (acidic) residues 
synthesise a polymer sequence with units in reverse order 
'pegylate' (add polyethylene glycol) 
make dimer 
swap i - 3,i - 4 and i + 3,i + 4 residues over specified sequence range 
swap polar and nonpolar amino acid residues over specified sequence range 
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g replace specified glycine residues by D-alanine 
h replace hydrophobic group by the next most hydrophobic group 

and so on ('diadic' operators normally have two arguments, e.g. A x B). 

For example, the operation 

C* = i(r«C))) 

represents the retroinverso approach of synthesising the sequence backwards using 
D-amino acids (see Sec. 5.4) and 

C* = i(r(q(C))) 

may be regarded as an improvement on retroinverso when applied to regions where 
there are strong backbone-to-sidechain dipole interactions (e.g. hydrogen bonds). 

In computational approaches this range is greatly extended because changes can be 
described and implemented in intimate molecular detail not routinely available to the 
laboratory bench chemist with pencil and paper. 

However, the lack of full invertability of procedures (e.g. due to degeneracy) in the 
case of Eq. 3 leads to the generally preferred use of Eq. 2, involving a minimisation 
procedure with various degrees of intelligence and sophistication. 

4.4. Heuristically aided design 

As noted above, the need for heuristic information follows from the arguments of 
Paul Dirac. An ab initio solution from fundamental theoretical physicochemical 
principles alone was, according to Dirac, possible in principle (at least in matters of 
terrestrial chemistry). In principle, no higher intelligence or clever programming is 
required to manipulate the state space: the chess game should play out itself. It is 
a game or puzzle which contains the seeds of its own optimal solution (the minimisa
tion of the free energy of the system). A computer program applying this notion may 
be described as a Dirac engine. In practice, as noted above, the equations for any but 
the most trivial problems are too complex to form and solve in reasonable time. The 
reason is that the mathematical surfaces of the processes described, which with a given 
starting point determine the dynamical behaviour of the system, are topologically 
extremely complex. They are filled with many local attractors as well as the strongest 
global one, even assuming that a unique strongly global one exists. In considering part 
of the problem, the conformational energy surface as a function of conformational 
variables of a molecule, one speaks of the 'multiple minima problem' which underlies 
the 'protein folding problem'. As discussed earlier we can consider this level of 
description of molecular behaviour as embedded, in turn, in the tougher description 
which includes the conjugate momenta. This gives the phase space. In turn, this 
representation is embedded in a higher state space which is the state space of the 
approach taken (see above). The notion of conformational space, being an energy 
function of the relative positions of different atoms in space, can be extended to taking 
atoms in and out of a pot to assemble new molecules. In any event, the resulting spaces 
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are highly complex. In consequence, they cannot be searched so as to guarantee 
a solution in reasonable time. 

In the author's view, heuristic approaches including expert systems are best seen in 
conjunction with extensive uses offundamental physicochemical principles and imple
mented at a higher level ('metal eveI') than those principles, in effect so as to manage 
their use and search their consequences. We may compare a chess-playing program 
where the rules of chess are the fundamental principles, and the intelligent chess
playing program as analysing, manipulating and predicting based on those principles. 
Heuristic approaches must then, in the above 'metalevel' philosophy, have some kind 
of ab initio calculation, or some kind of simulation, somewhere, on which to act. This 
does not seem unreasonable: a chemical computer-based chemistry approach which is 
of heuristic character and yet does not address in any way at least some of the 
theoretical insight gained in the 19th and 20th centuries would indeed be hard to 
imagine. 

More rigorous approaches lead to rather similar conclusions. For example, 
a powerful argument due to the statistical mechanician Jaynes (see Ref. 8 for a dis
cussion) was that all such theoretical studies contained 'loose probabilities' which 
might be set by the prejudices of the researcher. The Jaynes recipe for reducing 
subjectivity was to choose all the values of these probabilities so as to maximise the 
entropy. However, isolation of those probabilities which may be assigned values 
according to well-founded prejudices, including those from experimental data, is 
a plausible method for combining the ab initio and heuristic information. In certain 
routes to achieving this, such as sampling based on biases introduced by Monte Carlo 
methods, one may remove the biases retrospectively so as not to interfere with the 
statistical mechanical averages. In finite time, such an approach becomes a particular 
form of guided search. 

What will heuristic information typically be? Experimental data about the molecule 
and about similar molecules are the most widely used. However, it is not helpful to 
assign the term too broadly and thus it is instructive to note what kind of information 
is not heuristic. Information directly related to the understanding of the biological 
action at the molecular level does not itself necessarily constitute heuristic informa
tion. This is because the receptor target should properly and formally be treated 
as part of the system to be simulated (see, however, the next paragraph). The 
design approach is then based on assembling molecules to fit cell-surface 
protein receptor (or other) targets such as saccharides, internal receptors, enzymes or 
DNA [10]. This is generally called direct drug design. Of course, where receptor data 
are incomplete, information of heuristic character may be brought in to help deduce 
the receptor structure. Prior to and during the development of the Prometheus ™ 
system there were ongoing studies on how experimental data and expertise 
in the analysis and modelling of protein structures might be analysed [8J and 
captured [9]. Such studies provided a basis primarily for the analysis or modelling of 
protein structures, such as receptor structures, such that organic drugs or pep tides 
might be designed to bind to them and bring about activation or inhibition as 
required. 
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Receptor information may not be available. It may also not be reliable since it is 
also inevitably incomplete. We note that information about the receptor, even X-ray 
crystallographic data, is not sufficient to define the 'switched-on' state of a receptor 
[1-4] and hence to design an agonist or antagonist. This depends on interactions of 
the receptor with the rest of the cell. Even the same receptor molecule in different cells 
may have different switched-on states so that an agonist in one case is an antagonist in 
another. Thus, the physicochemical system really means much more than just the 
ligand plus receptor. Use of 'circumstantial evidence' about the structure and activity 
relationships of molecules related to the ligand of interest is then required. Instead of 
automatically developing molecules to fit the binding site of the target, one develops 
them to fit quantitative structure-activity (QSAR) data from the probe compounds. 
This is called indirect drug design. 

Indirect drug design does use data which should be regarded as heuristic. A variety 
of methods have been explored and implemented, primarily reflecting the choice of 
target function and minimisation procedure in Eq. 2. By the analysis of many related 
molecules, three-dimensional QSAR data representing a molecular field analysis 
(MFA) represent a kind of van der Waals electrostatic complementary image to the 
receptor site which is deduced indirectly [10]. One may also attempt to assign to 
components of the chemistry (regarded as a formula or treated as a three-dimensional 
object) additive elements related to the activity [10]. These can be regarded as 
representing a molecule-family profile, which isolates the salient features explaining 
the efficacy of the family. Fast assembly of drugs to fit such data on a trial-and-error 
basis can use various optimisation techniques. In particular, a genetic algorithm [13] 
was found effective. Combinatorial methods which more efficiently generate large 
numbers of drugs from a finite set of components, in order to fit a receptor site, have 
also recently proven effective. 

5. The objects of prediction and design 

5.1. 'Organic'drugs 

The cunning of the synthetic chemist has for many years allowed the synthesis of 
a variety of novel forms of organic molecules of molecular weight typically less than, 
say, 800 Da. A good indication of size limit is that earlier ISIS/Host software from 
MDL Information Systems could not handle more than 256 atoms per organic 
molecule. This has now been increased, but most molecules of interest to pharmaceut
ical companies and considered as organics (other than polymers) are still within that 
size. They have proven extraordinarily valuable as orally administerable compounds. 
With the advent of biotechnology it became important to understand that 'organic' is 
a historical term and now simply means 'containing carbon atoms'. The accepted 
implication in pharmaceutical jargon is that they are low-molecular-weight com
pounds which are not typically derived from biological sources. The word is usually 
taken to mean the very opposite of 'from an organic source'. For example, 'organic 
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molecules which bind DNA' would actually imply 'molecules binding DNA which are 
not proteins or other nucleic acids'. Corporate lawyers often get confused on that 
point! Nature provides an abundance of examples of low-molecular-weight organic 
compounds, such as penicillin, which have potent effects on other organisms. It is 
based on these examples that the organic chemists of the 19th and early 20th centuries 
learned to study the principles of carbon-containing chemistries. The components of 
organic drugs which are commonly used nonetheless form a finite set of groups such 
as benzene, carbonyl, amine, etc., and dictionaries of these are assembled in auto
mated drug design programs. In the Prometheus system, a high weighting is given to 
cyclic structures which have maximum connectivity and minimal conformational 
entropy on binding to a molecular surface, as this is a common feature of many 
organic drugs, partly for similar entropic reasons. 

5.2. Peptides 

These are entities in the 1-35 residue range, generally lacking a cohesive hydropho
bic core. At least about 40 residues are typically required to form such a core. Avian 
pancreatic polypeptide of 36 residues only forms a well-defined core by making 
a dimer. Oligopeptides of some 12-46 residues are typically roughly linear. In the 
range 10-15 a protein can fold back on itself, but the chain is likely to be otherwise 
~-like, with a length of 3.8 A/residue, to allow enough contact surface, which is mainly 
by hydrogen bonds. These define '~-loops' or 'hairpin loops'. Lengths of 20 do not in 
general have tight well-organised structures, but fragments of partially synthesised 
C-terminal 20-residue fragment immunoglobulin folds in aqueous medium seem able 
to form a complex compact structure (Gryphon Sciences, personal communication). 
A high degree of twist is seen in the larger structures of this class, often such that the 
loop itself can be considered as bent back on itself in a higher-order loop. In some 
cases this approaches 'Greek Key' motifs. Lengths of 30 or more are really required to 
guarantee that at least one arm of the hairpin is an IX-helix, which has a length of only 
1.5 A/residue. 

5.3. Proteins 

Molecules in excess of 40-50 residues may be ciassified as fibrous or globular. If 
globular, it implies that they are compactly folded in a specific way with a well-defined 
hydrophobic core with a degree of hydrogen bonding skeleton (if absent, it is likely 
that the compact form would be a 'molten globule'; however, some large polypeptides 
such as parathyroid hormone are relatively polar, unfolded, and do not form a molten 
globule). Functional proteins can be made chemosynthetically, with no possible help 
from biological machinery [21-24]. As reviewed and analysed elsewhere [25-30, 
35,36], the industrial importance of the view of Anfinsen that protein molecules 
carry their own information (in the amino acid sequence) for folding up correctly 
was increasingly appreciated in the early 1970s. No special machinery is required to 
achieve the spatial structure. However, proteins such as chaperonins may catalyse the 
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process and help avoid aggregation difficulties due to intermolecular interactions 
between proteins. 

Computationally, the linear sequence of amino acid residues can be considered as 
a linear code coding for the three-dimensional structure. The year 1974 was a water
shed year for recognition [25-28] of the importance of understanding this code, which 
also relates directly to the 'folding problem' as discussed above [29]. Then, the late 
1970s saw fairly intensive activity to understand the code, and optimism ran high with 
occasional unjustified excitement that the code had been broken. The author also 
critically reviewed this later phase in a series of News-and-Views in Nature (for 
a compilation see Ref. 30) and Amino Acids Peptides and Proteins (for a compilation 
see Ref. 31) throughout this period. Despite Anfinsen's thesis that the native structure 
of a protein is the accessible state ofleast free energy (see Ref. 29 for a discussion), there 
is a justifiable further concern. 

In implementing new designs, caution should be exercised. Since synthetic proteins 
[21-24] and cloned proteins start from different spectra of configurations, they could 
have different folding paths (e.g. Ref. 28). Different solvents can affect the folding history 
[32]. In practice, the biggest problem is that one can end up with wrongly connected 
disulphide bonds. Mass spectroscopy is a powerful tool [33], and there are improved 
methods for using it to verify the required connectivity [34]. The reason for optimism is 
precisely that proteins do carry such information for their own folding and can be 
carefully folded and refolded correctly (to recover their functions), provided they have 
not been extensively modified since biosynthesis (see, for example, Refs. 35 and 36). 
These latter studies also provide a sound rationale on how to identify, study and 
characterise protein folding intermediates, which may well be directly related for 
aggregation. Provided that disulphides are shown to be joined correctly, one can have 
reasonable confidence in the final structures produced by these precision chemistries. 

The 1980s to 1990s have shown a progressive interest in actually implementing the 
design of novel proteins, even though the stereochemical code has not been broken. 
Four approaches have been taken, exemplified as follows. 

A. Editing secondary structures. This relates particularly to ~-barrels. A well-known 
example is the Richardson '~-bellin' [37], and other pleated sheet structures were tried 
in the 1990s [38-40]. A ~-sheet has the advantage of being a large entity poised 
somewhere between a secondary structure feature and a supersecondary structure 
feature, and ~-sheet barrels naturally give a globular overall form. This should be 
distinguished from editing whole domains such as helix bundles, which relates more to 
C below. Editing ex-helices alone is technically interesting (kinetic and thermodynamic 
studies on nucleation have been performed in Baldwin's laboratory for example), but 
a helix would generally be considered a peptide rather than a protein. 

B. Editing known/olding domains. It is possible to adapt or edit sections of proteins 
for which the amino acid sequence and conformation is known experimentally. For 
example, there has been a recent design [41] of a metal-binding protein with a novel 
fold, but the fold is adapted from the immunoglobulin folding motif. 

C. Assembling known segments. The feeling is also that by assembling segments 
from nature for which the folding pattern is known, one could build up more complex 
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proteins. This is reminiscent of the modular approach described in regard to synthetic 
and bionic nanoscopic structures described above, and both may make use of 
secondary and supersecondary (subdomain) components drawn from known protein 
structures. Bryson et al. [42] provide a concise review which captures the optimistic 
mood which is currently prevailing. 

D. Replacing natural by unnatural amino acids and novel linkages. This might also 
be described as 'editing the genetic code' [43--48]. The above novel proteins are novel 
only in regard to changes in amino acid sequence using the 20 naturally occurring 
amino acids. However, the ability to insert more than the natural 20 amino acids into 
expression systems, albeit still a very restricted set of chemistries, also allows a detailed 
exploration of novel proteins with novel chemical features and even adds understand
ing to the properties of natural protein features [43]. There are much fewer re
strictions if the manufacture is totally by chemical synthesis. By 1994 Keith Rose held 
a record for the largest precision made artificial protein at 20 kDa [24]. A superoxide 
dismutase [44] analogue of 15 kDa has been made chemosynthetically by Gryphon 
Sciences [45]. Other comparable large structures made entirely synthetically include 
proteins which, however, contain features which could not be incorporated by cloning 
and expression (such as unusual linkages or N-terminal to N-terminal chain connec
tions). These include a leucine zipper heterodimer [47] and a solubilised receptor [48]. 
The implications for 'breaking the shackles of the genetic code' have been reviewed 
elsewhere [48]. It may be presumed that in some cases certain physicochemical 
properties of natural amino acids will need to be conserved by their unnatural 
substituents [49-51]. 

E. Total de novo design of proteins. In trying to generate entirely novel sequences 
with correct fold and function, significant and reproducible success has not 
been achieved. Even when de novo design is the stated aim, this approach has 
been largely confined to developing the requisite computational tools and calibrating 
them on known systems. Purely statistical tools such as the GOR method [52,53] 
and related methods [54] have been extensively tested [55] and developed [56-59], 
but can only act as starting points for modelling, despite high expectations by 
some early authors. A set of references reflecting the efforts in our own laboratory 
and which provided the background for the LUCIFER modelling suite at Manchester 
and the Prometheus ™ suite at Proteus are given in Refs. 60-66. By way of example, 
these studies and those underlying the MacroMode1 suite developed primarily 
at Columbia University are discussed in more detail below. LUCIFER, Prometheus 
and MacroMode1 pay particular attention to the problem of searching conforma
tional space (see e.g. Refs. 67-69). These methods have also been used to study 
problems as diverse as enzyme activity and flexibility [70-74] and problems in 
chemical synthesis [73]. 

5.4. LJ-l'roteins 

D-proteins are made entirely ofD-amino acids. They fold up like globular proteins, 
but in mirror image form [74-75]. These molecules should not be confused with the 
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widespread use of peptides with just one or a few D-amino acid insertions. These 
systems are in purest form 'all D' and clearly represent a special and unique case. Only 
once can the 'mirror be flipped' on biological systems. There are no other true 
reflections of the L-proteins than the D-proteins, i.e. the proteins made of D-amino 
acids. What are the principal advantages? Despite the relation to protein sequence in 
genomic databases, all these D-peptides and proteins also share many properties with 
organic molecules, and represent a kind of unexplored continent between biotechnol
ogy products and classical organic drugs. For example, the data so far suggest that 
they will be highly resistant to proteolysis and relatively invisible to the immune 
system (see, for example, Ref. 76). These 'stealth' properties will be also particularly 
important when the next generation of high molecular weight precision therapeutics 
is constructed, since such nanoscopic machinery is susceptible to proteolysis and, 
particularly, immune response. The important components of such a system can be 
encoded in D-amino acid format, and yet can still be assigned function (see below). 
There is a further bonus, and hope, that like organic drugs they may, in some cases, be 
subject to oral administration [77]. 

Although for design purposes we can in many cases start with biological knowledge 
and L-protein sequence data, the D-peptides and D-proteins are incapable at 
this time of being synthesised in biological systems. At the same time, D-peptides 
and D-proteins are not true xenobiotics. D-amino acids appear in the ageing of 
natural proteins, by post-translational modification (via an amino acid residue epi
metase), and occur naturally in products of bacterial infection. D-peptidases and 
D-amino acid oxidases also exist in the body. It is also worth noting that a number of 
peptide analogies containing one or a few amino acid residues are also available as 
approved drugs. 

When the substrate is chiral, D-enzymes will only act on the full mirror image 
enantiomer of the substrate [74]. This seemingly restricts the range of application to 
achiral or approximately achiral target systems when protein sequence data can be 
directly used. Compared with an original native L-protein hormone, the mirror image 
of the required van der Waals surface would be as diametrically opposed as one can 
get, to that which would fit the original receptor, for example. To assign function to 
('program function into') these molecules, one could use standard discovery methods 
of trial-and-error screening. One could also use sophisticated design methods as for 
organic molecules, and indeed the techniques developed for the de novo design of 
proteins (CAPE - computer-aided protein engineering). The latter does allow access 
to some genomics by potentially using structural data from homologous proteins, for 
example. However, in the case of screening and when design is based purely on basic 
physicochemical principles, these routes certainly do not 'map us directly' to genomic 
data. 

However, there are special design shortcuts. The retroinverso approach [78] has 
proven promising. In this approach, the sequence is synthesised not only with 
D-amino acids, but also backwards (C-terminal-most residue at the N-terminus 
and vice versa). The principal consequence of these operations is that it is similar to 
taking the normal L-sequence, but with the amine and carbonyl backbone groups 
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exchanged. This does not in principle affect the internal hydrogen bonds (NH ... OC 
becomes CO ... HN with equivalent geometry) but the carbonyl-~-carbon interac
tions in particular change, affecting the handedness of helices and sheets (which 
inevitably have a degree of twist). This information is still 'genomic' in origin: we apply 
simple operations to protein sequence data from biological systems. Gryphon 
Sciences has developed further 'quasi-retroinverso' approaches based on further 'rules 
of thumb' and powerful proprietary experimental methods for the programming 
function, based on genomic data, into these molecules, so that they may interact with 
their biological targets. Finally, we note that D-peptide structures may also contain 
a number of L-amino acids without being subjected to proteolysis. 

5.5. Ribozymes 

These can be produced by DNA-dependent RNA polymerases, as proteins can be 
produced biologically on ribosomes by cloning and expression, even when the 
producing organism is not the natural origin (e.g. as in the use of bacteria and yeast in 
biotechnology). The question of the difficulty of precision chemical synthesis in the 
laboratory, outside cells or ribosomal systems, does not usually arise. 

5.6. Nanoscopic structures 

Making large complex molecules with precision has been described by several 
different terms: precision macromolecular chemistry; ultrastructural chemistry; mac
rostructural chemistry; supramolecular chemistry; nanoscopic chemistry; nanochem
istry; chemical nanotechnology. They all relate to compounds approximately in the 
1000 Da range and higher, and typically to structures 20-2000 nm (0.000000001 m) 
across. However, the term would cover the case of assembling these modular 
fashions to form larger entities, and to some extent to the production and linkage of 
the lower-molecular-weight building blocks to produce the essential basic structure. 

Natural proteins may be modified by chemical methods to include unnatural 
sections [79]. Nanoscopic structures may also contain protein-like components 
chemically synthesised and cloned and expressed. When such components are mixed, 
one can speak of the molecules being 'bionic' (having synthetic parts as well as natural 
parts). An advantage of mimicking nature as closely as possible is that it helps design. 
Designing complex structures can be difficult. Although we do not yet know how 
proteins achieve their three-dimensional structure (see the discussion of the folding 
problem above), we can at least borrow from the structures generated by the design 
process of nature, which is some 3--4 billion years of mutation and natural selection. It 
is rather as if nanomachinery from an extraterrestrial race has fallen into our hands, 
and we can to some extent reverse-engineer it. 

Nanoscopic systems are conveniently assembled from modular components and 
are well suited to carry out multiple functionalities, rather like a Swiss Army Knife TM. 

Gryphon Sciences also uses the colloquial description of 'Molecular Battlewagon' for 
more sophisticated constructions. An advantage of this modular aspect means also 
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that the parts can be preplaced (at least in subsequent resynthesis of the whole entity) 
cassette fashion. By keeping the molecular compounds down to the minimum without 
extraneous complexity, this allows a more rigorous exploration of how to optimise the 
functionality of the component for pharmaceutical applications. 

Synthetic systems such as synthetic peptide vaccines and the even more sophisti
cated gene therapy vehicles require a variety of functionalities. These are amongst the 
earliest of the entities that may be deemed 'nanoscopic'. Good modern synthetic peptide 
vaccines require a molecular frame and functionalities including B-epitopes, T-epitopes, 
CTL-epitopes, molecular adjuvant, immunostimulation, targeting and delivery. 

DNA vaccine vectors require a molecular frame and functionalities for (i) holding 
the DNA plasmid, (ii) targeting, cell entry, and (iii) endosome escape. 

Gene therapy devices require a molecular frame and functionalities for (i) holding 
the DNA plasmid, (ii) targeting, cell entry, (iii) endosome escape, (iv) nuclear entry and 
(v) incorporation into chromosome. 

It is easy to see that the molecular weights of such structures can easily exceed 
150 kDa. This quite naturally brings such therapeutics into the range of known 
nanoscopic chemistry and, at the very least, borders on meeting the long-awaited 
chemical requirements for nanotechnology. In other words, the nanoscopic character 
is need-driven and emerges from what we wish to make, rather than being a technol
ogy looking for an application. 

A constant feature of this nanoscopic chemistry is the need for 'molecular due 
diligence'. The majority of steps should be followed by high-resolution atomic mass 
spectroscopy, high-performance liquid chromatography and nuclear magnetic reso
nance spectroscopy (see, for example, Ref. 33). In this verification, one must be 
prepared to accept a reduction in yield. This helps ensure the precision of the 
chemistry, i.e. that, chemically speaking, each atom is in its place, and that 
the molecule is folded up correctly, so that each atom is in its right spatial position. 
The criteria for success may be more demanding than the normal analytical criteria, 
so the term 'precision' as opposed to 'purity' is often employed. This problem of 
placing every atom in its correct spatial position applies equally to folding. 

6. Available molecular modelling software 

Conformational energy and related calculations relate the chemical formula to 
physicochemical properties as a function of conformation. Classical organic drugs are 
not as rich in conformational possibilities as their larger counterparts, so conforma
tion, while remaining an issue, is much less of a concern. Biomolecules in general are 
a more difficult task, and proteins remain the supreme problem. 

6.1. Software using statistical methods 

These methods are wholly empirical; they make predictions and build models on 
the basis of what has been seen before. Energy is only implicit, in the form of 
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probabilities or 'equilibrium constants' for distributions of conformational studies in 
databases of sequence structure relationships. Only the method developed by the 
present author and colleagues is mentioned here, despite many important contribu
tions by other workers. Variations of this method, at least in the earliest research 
phases, had language-like forms to facilitate exploring the effect of addition and 
neglect of different contributions (e.g. from pairs of residues, hydrophobic pat
terns, different definitions of secondary structure state). Early published forms 
even had a simple language-like 'driver' with a facility for redefining details of 
automatic runs (see Appendix III of Robson and Garnier (1984,1986)) [54]. Such 
language-like features at early stages of development, perhaps just as much as its 
sound theoretical basis of broad power, was a major factor leading to its widely 
applauded automatic use and reproducibility (for a discussion see Robson and 
Garnier (1993) [54]). 

Statistical methods are well illustrated by references to studies on peptide and 
protein systems, and the stereochemical code. To have a greater mastery of the 
stereochemical code would however allow more than simple 'adapting'. Indeed, it 
would not confine us to protein systems, but extend the scope to nanoscopic pharma
ceuticals. Earlier the author has argued that the stereochemical code should be seen as 
a code having the form 

{S} = T{R} 

where {R} is the string of amino acid residues, {S} is the string of residue conforma
tional states, and T is the transformation operator, the elucidation of which by any 
means would represent breaking the code. Statistical analyses have been applied in the 
author's laboratory to a variety of other possible correlates, such as the way in which 
amino acid residues substitute in the course of evolution [50], and to spatial distribu
tions of amino acid residues [51]. However, simply considering the amino acid 
sequence {R} as an input message with a linear output {S} has been the most 
revealing. 

In the realm of secondary structure prediction and engineering, this leads to the 
widely used GOR method [52], the algorithm for which has been reported as 
a computer program [5,53] and widely reproduced in most commercial and academic 
bioinformatics software. In fact, the method has a long history commencing in 1970, 
and some of the statistical reasoning described in these earlier studies has more 
general application (see Ref. 54 for a compilation). Notably, the method has been 
formally expressed as a theory of expected information [49]. Precisely, it represented 
the use of Bayes theory of probability as degrees of belief to obtain expected values of 
information from finite data. The Bayes approach, poorly exploited at that time save 
at the Department of Statistics at Cambridge and by Simon French at Oxford, is now 
widely used and the similar use of Bayes factors is recognised as a powerful approach 
to quantifying evidence in favour of a scientific theory [55]. These observations are 
relevant to combining in a proper, fairly weighted, manner the contributions of 
information from ab initio data, experimental data, databases, and human expertise 
sources for drug design as discussed above. The ability of Bayes reasoning to link 
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human belief and confidence in a theory is important here. Similarly, the chemical 
results of information theory may also be related to the statistical weights of thermo
dynamics and statistical mechanics. A simple result from helix-coil transition theory 
illustrates the point [52]. Though the 1978 GOR method is still widely used, it has 
been continuously refined over the years (e.g. Refs. 56-58) and the widely distributed 
software based on the earlier method is not really representative of the full power of 
the approach. 

This view of protein structure remains essentially linear. A full three-dimensional 
appreciation requires molecular modelling by energy (or force) calculations. 

6.2. Conformational modelling software 

A great deal of background work tends to go into a modelling suite. Whereas the 
front end language may be prominent to the routine user, the matters behind the 
scenes are the development of the force field, the development of methods of simula
tion and the searching of conformational space, and the calibration and testing of all 
of these. 

A variety of available software is shown in Table 1. The language aspect is fairly 
well developed in Tripos and BioSym· codes, and though Polygen is now amal
gamated the original Polygen codes were fairly sophisticated. BioSym programs 
Insight and Discover represent some of the earliest and still best established software 
in the field. BioSym was scientifically founded by Dr. Arnie Hagler. BioSym's original 
language-like instructions did have some nice human language-like features, but are 
basically keyword based in the manner of keyboard-operated adventure games. At 
MAG (Molecular Application Group - a commercial enterprise), Michael Levitt's 
LOOK emphasises use as a front end to the Internet, and with the principal exception 
of his search language SOOP, it is a 'Web-user' Menu feel which is implemented. For 
the most part in all the above, the underlying codes are not generally written in 
a specialised proprietary language, though some, like the software of Chemical 
Design, use nice underlying customised language to control screen display. Otherwise, 
apart from some batch-type capability using the control language, they are for the 
most part written in standard programming languages, especially C, and FORTRAN 
for the older forms. 

Rightly or wrongly these aspects have so far been all intertwined and the force field 
and search methods are often unique features of systems, 'coming with them' as an 
inherent part of their culture. Amber uses its own force field and the BioSym force field 
has its origin in the consistent force fields of S. Lifson's laboratory at the Weizmann 
Institute, which were conceptually also the starting point for LUCIFER (see below) 
parameters, the parameters of Michael Levitt, and the 'universal force field' found in 
the graphics interface Pimms of Oxford Molecular. Many of the other programs use 
MM1, MM2 or MM3 force fields, as does Macromodel from Columbia University, 
which is one of the best vehicles for these widely used sets of potentials. Although 
protein calculation parameters tend to be of similar end result quality in most 
systems, Macromodel has tended to pay attention to sugar parameters [77], 
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Table 1 Available software 

Analex Laboratories for Cray Research Inc. National Biosciences Inc. 
Molecular Design 644-A Lone Oak Dr. 3650 Annapolis Lane # 140 
3550 General Atomics Ct. Egan, MN 55121 Plymouth 
San Diego, CA 92121 Phone: 612-683-3538 MN 55447 
Phone: 619-455-3200 Fax: 612-683-7198 Phone: 612-550-2012 
Fax: 619-455-3201 DNASTAR Fax: 612-550-9625 
Aldrich Chemical Co. 1228 S. Park St. Oxford Molecular 
P.O. Box 2060 Madison, WI 53715 The Magdalen Centre 
Milwaukee, WI 53201 Phone: 608-258-7420 Oxford Science Park 
Phone: 414-273-3850 Fax: 608-258-7439 Stanford on Thames 
Fax: 414-287-4079 Genomic SA Oxon 
APOCOM B.P. 43, F-74160 Collonges OX4 4CA, U.K. 
1020 Commerce Park Drive sans Saleve Phone: 1865-7846000 
Oak Ridge, TN 37830 France Fax: 1865-784601 
Phone: 423-482-2500 Phone: 5043-6765 Oxford Molecular 
Fax: 423-220-2030 Fax: 5043-6870 U.S. Office 
Biosoft U.K. Hypercube, Inc. 700 E. EI Camino Real 
49 Bateman St. 419 Phillip St. Mountain View 
Cambridge CB2 1LR; u'K. Waterloo, ON CA 94040 
Phone: 1223-68622 Canada N2L 3X2 Phone: 415-952-7300 
Fax: 1223-312873 Phone: 519-725-4040 Fax: 415-962-7302 
Biosoft U.S. Fax: 519-725-5193 Softshell International 
P.O. Box 10938 

Molecular Applications 715 Horizon Dr. #390 
Ferguson, MO 63135 

Group Grand Junction 
Phone: 314-524-8029 

445 Sherman Ave. CO 81506 
Fax: 314-524-8129 

Palo Alto, CA 94306 Phone: 303-242-7502 
Chemical Design Inc. Phone: 415-473-3030 Fax: 303-242-6469 
Roundway House Fax: 415-473-1795 Terrapin Technologies Inc. Cromwell Park 
Chipping Norton Molecular Arts Corp. 750-H Gateway Blvd. 

Oxfordshire OX7 5SR, U.K. 1532 East Katella Ave. South San Francisco 

Phone: 1608-644000 Anaheim, CA 92805 CA 94080 

Fax: 1608-642244 Phone: 714-634-8100 Phone: 415-244-9303 

Chemsoft Inc. Fax: 714-634-1999 Fax: 415-244-9388 

892 Main St. MDL Information Systems Inc. Tripos Inc. 
Wilmington, MA 01887 14600 Catalina St. 1699 S. Hanley, Suite 303 

Phone: 508-567-8881 San Leandro, CA 94577 St. Louis, MO 63144 

Fax: 508-657-8228 Phone: 510-895-1313 Phone: 314-647-1099 

Cherwell Scientific Fax: 510-483-4738 Fax: 314-647-9241 

Publishing Lpd. Molecular Simulations Inc. WindowChem Software 
Magdalen Centre 16 New England Executive 1955 West Texas St. 
Oxford Science Park Park # 7-288, Fairfield, 
Oxford OX4 4GA, U.K. Burlington, MA 01803 CA 95433-4462 
Phone: 0865-784800 Phone: 617-229-9800 Phone: 707-864-0845 
Fax: 0865-784801 Fax: 617-229-9899 Fax: 707-864-2815 
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which have in the past been somewhat neglected in commercial software, and its 
force fields overall fare well in comparative tests [78]. Though LUCIFER is now 
largely obsolete, its force fields are in the public domain and remain of value. Two 
semiapproximate force fields for peptides and proteins are of interest in LUCIFER. 
A method suitable for the rigid backbone approach is increasingly popular [61], and 
even cruder models, suitable for early stages of modelling, have been parametrized 
[62]. At the other end of the scale of resolution, LUCIFER OFF (orbital force fields) 
force fields separately represented non-core orbitals such as lone pair orbitals and 
hybrid forms, first identified by high grade quantum mechanical calculation. They 
have been calibrated not only for modelling of proteins [63], and biologically active 
peptides [64], but also for nucleic acids and particularly analysis of sugar systems (for 
a compilation see Ref. 65). There were also special approximate methods for vaccine 
design. For a compilation of calculations using LUCIFER and related software, see 
Ref. 66. 

Most of these are strong on graphics, compared with Prometheus ™ described 
below which is (or was in 1995) more than acceptable on graphics but exceptionally 
strong on the language element. Graphics systems sometimes approach a language 
element if they have a powerful menu system. In the extreme case, the selection of 
a limited vocabulary from a Menu can be equivalent to writing a language input. 
Unichem of Cray Research Inc. is essentially Menu and graphics driven to make 
supercomputer chemistry more approachable. The commands relate to running 
programs in a batch mode at a remote site, particularly of quantum mechanics (most 
recently, of density functional theory type) and molecular dynamics simulations. 
SCULPT illustrates particularly well some of the strengths of a graphics approach, in 
which modelling proceeds by pulling the chain round with a cursor, with the chain 
responding in a natural way. HyperChem produced by Hypercube also does an 
excellent job of blending dynamics simulations with graphic manipulation. 

Some systems emphasise data management in regard to chemical structures and 
properties. MOL information systems are well known in the area and use the concept 
of spreadsheets (they allow integration with Excel spreadsheet software). The 
language is well suited to this: a single command, for example, places chemical 
structures and data onto the spreadsheet. Chemical Design can also produce excellent 
structure searching software and has a neat little facility for generating combinatorial 
chemistries by computer and searching on them. SoftShell and also WindowChem 
Software emphasise not only the drawing of molecules and the management of 
structure databases, but also the preparation of documents and interaction with the 
Web. SoftShell claims a powerful use of both formatted and free-formatted chemical 
data. Aldrich Chemical Co. also produces software which shows the spectra of over 
10000 substances and facilitates their drawing. TRAp™ from Terrapin Technologies 
Inc. predicts relationships between chemicals and their binding targets; by computa
tionally screening compound libraries, TRAP matches chemical fingerprints against 
those in the database. 

Some systems emphasise searching conformational space both to locate the lowest 
free energy state of molecules, and to calculate the properties of flexible systems. 
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Searching conformational space was the major point of LUCIFER academic 
software at the University of Manchester, developed early in the 1970s to 1980s. 
Amongst the 'physics-flavoured' ab initio approaches independent of any experi
mental data or expert system style input, the more interesting search options 
include, in the system Prometheus ™ at Proteus (see below), a number of methods 
which modify the laws of physics (for a compilation see Ref. 67). The ability 
to separate harmonic or rigid parts of the calculation from Newtonian laws cal
culated by reiteration has recently attracted interest [68,69]. MacroModel reflects 
an interest in searching conformational space, and many excellent routines which 
emphasise this aspect have been implemented in MacroModel [80-87]. The ability 
to study motion and broad conformational changes (which relates to the matter of 
entropy) is important in designs where one may not wish to have a compact 
structure. It has been argued that simple artificial enzymes, based on peptides, 
benefit from a high degree of flexibility [70]. In some cases a better approach to 
design might be based on statistical coil theory [5,71]. One may also wish to select 
sequences which are to be deliberately floppy and so avoid difficulties of compaction 
(,premature folding') in the conditions of expression or chemical synthesis [72]. At 
the other extreme, relatively rigid sections might be linked by synthetic bonds 
[79,88]. Ultimately, all these matters are to do with a correct and full treatment of 
the entropy, which is enormously difficult. Future languages might well emphasise 
this aspect. 

Pangea is a company in Northern California that has emphasised integration tools. 
Integration is already an important feature of the large BioSym and Tripos codes. 
Tripos also excels in the manipulation of chemical structure data, and blends this in 
a fairly powerful language construct with simulations and quantitative struc
ture-activity analysis. This allows a high degree of integration to combine conforma
tional field analysis, distance constraints, and constrained conformational searching 
in modelling studies. The system is fairly large to accommodate all this. It includes 
model building, generation of spectra and other data, including structure-activity 
relationship data, in an elegant manner. It can also perform property calculations, 
protein structure analysis, evaluate binding energies for drug design, generate 
proposal drugs, etc. 

The need for a system to integrate molecular work is increasingly recognised. 
Oxford Molecular, in comparison, had a huge variety of software from academic 
contributions, and from corporate acquisitions, and this was in consequence poorly 
integrated. It is clear that this integration is part of the battle plan with a major deal 
struck between them and Glaxo Wellcome. "The integrated and expandable environ
ment will combine the proprietary features of Oxford's molecular management tools 
with additional advanced analysis and computational chemistry methods from Glaxo 
Wellcome - explains A.F. Marchington, CEO, of Oxford Molecular - Our goal is to 
streamline the drug discovery process by developing a computational environment 
that is rich in functionality, familiar in look and feel across platforms and integrated so 
that results can be shared by scientists working at each stage of the drug discovery" 
[2]. Integration at this kind of level was already a key design goal in the development 
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of the system Prometheus TM, and most of the aspirations are already implemented and 
being explored (in 1995), albeit on a currently small network of some 32 workstations 
and 2-3 mini-supercomputers. The concept of the uniform environment as a 'poly
morphic programming environment' [8] was also inherent in the Prometheus system. 
The GLOBAL © language also allowed true asynchronous communication and fluid 
flow of data and routines across different hardware platforms. 

GLOBAL © and the Prometheus system also sought to exploit one aspect of power 
of the kind of network described by Marchington, namely to capture expertise. Of 
course, as discussed above, expertise capture is difficult. Sophisticated expertise 
embodiment was however achieved in the Prometheus system by 1994-1995 in some 
important areas, most successfully in regard to protocols for the automatic generation 
of organic molecules and pep tides to fit binding sites, structure-activity data, or both, 
and, in the case of proteins, in elaborate forms of improved modelling by homology. 
More powerful metasystems, expert in extracting general expertise, are probably 
required, but restrictions in the power of computer languages as currently perceived 
may be a limiting factor in this. 

7. Conclusions 

The vast majority of software available does not have a truly powerful, flexible and 
general command language facility in comparison to that in general programming 
languages, operating systems and expert systems, though graphics are often well 
developed. The best one can do at any time is build in the capability for development 
and growth. Integration in the commercially available systems is often good inter
nally, but the intersystem communication capabilities are still primitive. 

Generally, the biggest difficulty is perhaps that more intelligent systems are re
quired to facilitate the capture of expertise into a language. Complex protocols in 
modelling and design cannot easily be automated to a level required for expertise 
capture. It is likely that relating the structure of the problem better to the structure of 
the language will facilitate the problem-to-solution mapping. In any event, there is 
currently insufficient means to trap high levels of expertise which will allow the expert 
in future to be free to concentrate on other tasks, or tackle the design task at a higher 
level without needing to concentrate on fine details. Modelling work of a complex 
nature is often not exactly reproducible. The system Prometheus ™ and its language 
GLOBAL © sought to overcome these difficulties. The capture of human expertise 
still proves difficult, so clearly language improvements are required to facilitate this. 
Ultimately a system expert in catching expertise is required, and this should hold for 
all systems who wish to develop with use and not be set in stone as legacy systems. 

The considerations for powerful, integrated, automatic drug design languages are 
complex, but at least appear to be definable. What is clear is that great care must be 
taken in the definition and development of the languages required, since a plethora of 
different nonstandard forms would retard the field. It is timely to consider cautiously 
the design of a single unified lingua franca in computational drug design. 
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Introduction 

The dynamical structure and stability of duplex DNA is closely related to biological 
phenomena such as transcription, replication and regulation of gene expression. The 
modification of bases in DNA is known to have an important influence on the 
biological function of DNA. Modified bases cause a change in the structure and 
stability of DNA and, as a result, the interaction of enzymes and regulatory proteins 
with DNA is modified. There are several reports [1-6] in which the structure change 
of DNA by base modification is theoretically treated using molecular modeling, 
molecular mechanics and quantum chemistry, but few studies have adopted a dynam
ical approach such as molecular dynamics and free energy calculation. Thus, we tried 
such a dynamical approach to understand the effect of base modification on the 
stability of the DNA duplex. 

The EcoRI endonuclease-DNA system is an attractive system for theoretically 
studying the effect of base modification on DNA-enzyme interaction, because the 
crystal structure of the enzyme-DNA cocrystal has been elucidated [7-9] and, based 
on the structure, the effect of base modification on cleavage reaction has been 
examined in some detail [10-13]. The crystal structure of the endonuclease
DNA(TCGCGAATTGCGC) complex shows the following characteristics. The DNA 
is kinked at three sites upon binding of the endonuclease. One kink is located at the 
center of the recognition site (neo-1) and the other two are located at both termini of 
the recognition site (neo-2). The kinks appear to be necessary for the enzyme to be 
accommodated into the major groove and contact functional groups located on the 
nucleobases. The endonuclease interacts with the recognition sequence only in the 
major groove of the DNA and the minor groove is open to the solvent. The N7 and 
N6 of the adjacent adenine and the N7 and 06 of guanine interact with the amino acid 
side chains of the endonuclease. 

Brennan et al. [10] and McLaughlin et al. [11] have reported the effect offunctional 
group change in the recognition site on the cleavage reaction catalyzed by the 
endonuclease. Their studies have clarified that the change of functional groups which 
interact directly with the endonuclease causes a varying effect upon the cleavage 
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reaction, as expected. In addition, the introduction of an NH2 group into the 
2-position of either adenine in the recognition site reduced the reactivity. Since this 
NH2 group is in the minor groove, it does not appear to interact directly with the 
endonuclease. The kinetics data show that the modification mainly influences the 
kcat value and not the Km value; namely, the catalytic step is inhibited, while the 
binding step is not. Since all the functional groups of the bases which interact with the 
endonuclease are not changed by the modification, no alteration of the binding 
appears to be reasonable. On the other hand, the mechanism of inhibition against the 
catalytic step is not clear. It appears to come from the alteration of the intrinsic 
property of DNA, and not from that of the interaction mode with the endonuclease. 
Thus, we tried to approach this problem from the point of view of the dynamical 
stability of DNA. We examined the effect of the introduction ofNH2 and other groups 
into the 2-position of an inner adenine in the recognition site on DNA stability using 
the free energy perturbation method based on molecular dynamics (MD). The 
dodecamer duplex of sequence d(CGCGAA TTCGCG) was chosen as target DNA, 
because not only is the dodecamer the same as that of the endonuclease-DNA 
cocrystal but it is also a typical example of B-form DNA, the crystal structure of which 
has been studied in detail by Dickerson and co-workers [14]. 

Molecular dynamics has been developed as a powerful theoretical method to study 
the dynamical properties of macromolecules, and several groups have reported the 
MD simulation of DNA [15-25]. It is well known that DNA shows plastic properties 
such as the bending of whole structure. The negative charges on the phosphate groups 
mutually induce strong repulsive interactions, and the presence of counterions and 
solvent water strongly influences the structure of DNA. Such unique properties of 
DNA have made its MD simulation more difficult as compared to that of most small 
globular proteins. Although the MD simulation of DNA including water and counter
ions explicitly has been carried out by a few groups [19,20,25J, the conclusion 
obtained by them is not necessarily in agreement, since they use different types offorce 
fields and oligonucleotide duplexes. Thus, as a first step we examined the MD 
simulation of DNA in detail using AMBER and a B-form dodecamer duplex, 
d(CGCGAATTCGCG), which contains one complete helix turn. Then, based on the 
result of MD simulation, we calculated the effect of base modification on the dynam
ical stability of DNA. 

The thermodynamic perturbation method has been used in calculating the free 
energy change not only for the chemical alteration of small molecular systems but also 
for macromolecular systems such as proteins [26]. This method has succeeded in 
a number of studies on protein-ligand interactions and the stability of protein 
conformations during the past five years. In contrast, there are only a few reports 
[27-29J on free energy simulations for nucleic acid systems such as DNA and RNA 
structures. Thus, the small alteration of a base appears to be a proper model for the 
free energy calculation of the DNA system. 

The stability of the DNA duplex is defined by the equilibration constant between 
the double-stranded DNA and the two single-stranded DNAs which make up the 
double strand, that is, the free energy change between them. Since it is extremely 
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55-DNA + 55-DNA --~) d5-DNA 

~G2 
55-DNA* + 55-DNA ~ d5-DNA· 

ss-DNA : single-stranded DNA 

ss-DNA': modified single-stranded DNA 

ds-DNA : double-stranded DNA 

ds-DNA·: modified double-stranded DNA 

Fig. 1. Thermodynamic cycle for the formation of a double-stranded DNA from single-stranded 
DNAs. 

difficult to directly simulate the formation and dissociation process of a double
stranded DNA even with the most powerful computer hardware, we used the thermo
dynamic cycle perturbation method [26] which evaluates only relative free energies. 
The difference in the free energy change due to the base modification can be evaluated 
from both the free energy change of the base transformation in a double-stranded 
DNA and that in a single-stranded DNA instead of the association path correspond
ing to the physical process as shown in Fig. 1, since free energy is a state function. This 
nonphysical transformation path is accompanied by less conformational changes as 
compared to the physical one and, therefore, is much easier to deal with. However, 
a single-stranded DNA is more flexible and spans a much wider conformation space 
than a double-stranded DNA. It is not possible to properly sample such a wide 
conformation space on a picosecond scale. Therefore, we used trinucleotides contain
ing a modified adenine in the middle position instead of modified single-stranded 
DNAs. This treatment would be valid because the influence of distant residues is 
supposed to be small in single-stranded DNA. In addition, isolated 9-methyl-adenine 
derivatives are used to simulate free energy change when the base is completely 
exposed to solvent water, which is thought to correspond to an unstacked random 
coil state. 

Free energy perturbation method 

The free energy perturbation method is based on the statistical perturbation theory 
developed by Zwanzig [30], and the detailed implementation of the free energy 
perturbation method into a molecular dynamics program is discussed elsewhere [31]. 
The essential features of the method are briefly described here. 
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The free energy difference between two states of a system is computed by transform
ing one state into the other by changing a single coupling parameter in several steps. If 
the two states A and B are represented by Hamiltonians HA and HB, respectively, the 
intermediate state between them is given by a dimensionless coupling parameter, A., as 

H(A.) = (1 - A.)HA + A.HB, 1 ~ A. ~ 0 (1) 

This state is a hypothetical mixture of A and B. When A. = 0, H(A.) = HA, and when 
A. = 1, H(A.) = HB. Therefore, the conversion of state A into state B can be made 
smoothly by changing the value of A. in small increments, dA., such that the system is in 
equilibrium at all values of A.. The Gibbs free energy change due to the perturbation.of 
the Hamiltonian from H(A.) to H(A. + dA.) is given by 

~G = - kBT In < exp( - ~H(A.)/kBT) > 0 (2) 

where kB is the Boltzmann constant. The average of exp (- ~H(A.)/kB T) is computed 
over the unperturbed ensemble of the system. If the range of A. is divided into 
N windows, {A.;, i = 1, N}, the solute state is perturbed to A.j+ 1 and A.j-l states at each 
window A.j, and the free energy difference between states A and B is computed by 
summation over all the windows as 

(3) 

During the mutation of a molecule, it is necessary to reset its coordinates at every 
intermediate state, since the coordinates of the final state differ from those of the initial 
state. Therefore, the coordinates are reset using the technique of coordinate coupling 
outlined in our earlier work [32]. 

Computational details 

The partial atomic charge assignments for modified bases were calculated by ab 
initio quantum mechanical methods using QUEST [33] with an STO-3G basis set 
[34], in which quantum mechanically derived electrostatic potentials are fitted to 
a point charge model [35]. Their force field parameters were assigned from standard 
values in the AMBER set [36,37], by direct comparison with analogous fragments in 
the AMBER parameter library, where available. The other parameters that are not in 
the standard AMBER set were assigned from the MM2 force field set [38] and those 
bond lengths and angles from the microwave spectra data or X-ray crystallographic 
data. The atomic charges and van der Waals parameters employed for modified 
bases are listed in Tables 1 and 2. The initial structure of a duplex dodecamer, 
d(CGCGAATTCGCG), was built using a standard B-DNA geometry, and the 2-
substituted-Ade6 residue of modified duplexes was built using standard bond lengths 
and bond angles, if necessary, with the dihedral angles adjusted to form a hydrogen 
bond with the 02 ofThyl9. Phosphates were neutralized with 22 Na + counterions by 
placing them 4.0 A from the OPO bisector. The structure of a single-stranded trimer, 
d(ApApT), in which the middle adenine is modified, is the same as the corresponding 
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Table 1 Charges on the atoms of 2-substituted adenine residues 

Atom -H -F -CI -NH2 -OH -SH 

N9 - 0.088 - 0.021 - 0.029 - 0.019 - 0.004 - 0.047 
C8 0.266 0.225 0.239 0.211 0.210 0.243 
H8 0.059 0.066 0.067 0.061 0.066 0.061 
N7 - 0.539 - 0.524 - 0.526 - 0.533 - 0.525 - 0.543 
C5 - 0.076 - 0.015 - 0.017 0.029 0.Q15 0.009 
C6 0.774 0.660 0.671 0.594 0.604 0.647 
N6 - 0.778 - 0.699 - 0.708 - 0.679 - 0.672 - 0.712 
HN6A 0.321 0.304 0.309 0.297 0.297 0.309 
HN6B 0.339 0.326 0.330 0.316 0.317 0.321 
N1 - 0.770 - 0.766 - 0.731 - 0.747 - 0.767 - 0.725 
C2 0.617 0.888 0.822 0.918 0.941 0.685 
X2 - 0.026 - 0.217 - 0.261 - 0.794 - 0.554 - 0.210 
HX2A 0.308 0.332 0.132 
HX2B 0.321 
N3 - 0.684 - 0.714 - 0.672 - 0.700 - 0.703 - 0.648 
C4 0.530 0.432 0.451 0.362 0.388 0.423 

part of a duplex dodecamer. The initial geometries of 2-substituted-9-methyl-adenines 
were built by using the adenine geometry with the bond lengths, bond angles and 
dihedral angles identical to those of duplexes. The solutes were placed in a rectangular 
box surrounded by repeating cubes ofTIP3P water molecules [39]. Solvent molecules 
that were closer than 3.6 A to any solute atom or more than 10 A to the duplex 
dodecamer and the trimer and 12 A to 9-methyl-adenine derivatives along anyone of 
the rectangular coordinate axes were removed. The number of water molecules is 
approximately 3300, 980 and 740 for the duplex dodecamer, trimer and 9-methyl
adenine derivatives, respectively. The simulations were carried out with these periodic 
boundary conditions. 

Table 2 Nonbonded parameters of the substituents 

Atom Atom type R(A) E 

H2 HC 1.540 0.010 

F2 F 1.650 0.078 

Cl2 CI 2.030 0.240 

N2 N2 1.750 0.160 
HN2 H2 1.000 0.020 

02 OH 1.650 0.150 
H02 HO 1.000 0.020 

S2 SH 2.000 0.200 
HS2 HS 1.000 0.020 
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(a) (b) 

(e) (d) 

Fig. 2. Structures ofd(CGCGAATTCGCG) at (a) 0, (b) 20, (c) 40, (d) 60, (e) 80 and (f) lOOps 
of MD simulation. The structure at 0 ps is that after lOps of equilibration dynamics. 

The initial molecular mechanics, molecular dynamics and free energy perturbation 
calculations were performed with a fully vectorized version of AMBER (version 3.3 
[40a]) on a Cray Y-MP computer system at The Scripps Research Institute. Sub
sequent molecular mechanics, molecular dynamics and free energy calculations on 
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(el (f) 

Fig. 2. (continued). 

trimers in solution were performed using the program Galaxy 2.0 [40b] on IBM 
RS-6000j580 workstations. All calculations were made using the all-atom force field 
and, for the duplex dodecamer, harmonic constraints were added to hydrogen bonds 
involved in the Watson-Crick base pairing of the last two base pairs on one end. The 
force constant was 4 kcalj(moL.\2) for the CI-G24 base pair and 1 kcalj(mol A 2) R2 
for the G2-C23 base pair. Before starting the data collection, each system was 
minimized by the conjugate gradient method and equilibrated for 10 ps. The equili
bration step is separated into two parts. In the first 4 ps of equilibration, the solute 
atoms were restrained to the initial positions with a harmonic force of 1.0 kcaljmol, 
and then the restraints were removed and the system was equilibrated for another 
6 ps. The equilibration step was started by assigning a random velocity to each atom 
so that the velocity distribution conformed to the Maxwellian distribution corre
sponding to 10 K. This is followed by heating the system to 300 K with a temperature 
coupling time of 0.1 ps. 

Molecular dynamics simulation and free energy simulation were performed at 
constant temperature (300 K) and pressure (1 atm) with periodic boundaries for 
100 ps and 80 ps, respectively, following an initial 10 ps of equilibration. In MD 
simulation, the structures were stored every 0.1 ps for data analysis. In free energy 
simulation, 101 windows were employed with 0.4 ps of equilibration followed by 
0.4 ps of data collection at each window, unless noted. For each mutation, both 
forward (A -+ B) and reverse (B -+ A) perturbation calculations were carried out to 
estimate the convergence. In the case of trimers, the second run was carried out using 
the final coordinates from each mutation, namely, four free energy changes were 
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calculated for one perturbation system, because single-stranded trimers are more 
flexible and have various conformations in solution. The SHAKE routine [41], in 
which all bond lengths are held constant, was used with a timestep of 0.001 ps. 
A constant dielectric of 1 was used for all simulations. A cutoff distance of 8 A was 
used for solute-solvent and solvent-solvent non bonded interactions. All solute-solute 
nonbonded interactions were included. 

Computational results 

Molecular dynamics: The MD simulation for an unmodified duplex dodecamer, 
d(CGCGAATTCGCG), was carried out for 100 ps in order to examine the dynamical 
behavior of the B-form DNA helix structure under the condition described above. 
A sequence of structure keeps the double helix intact over the course of the simulation 
as shown in Fig. 2, although a large bending of the duplex is observed at 100 ps. While 
we sometimes observed the distortion of the whole structure leading to an unstable 
helix without the constraint for the terminal base pairs, more stable DNA structures 
were obtained with the constraint. However, the calculated dynamical structures 
fluctuate considerably as compared to a canonical B-form. Therefore, we analyzed the 
dynamical structures, i.e. backbone and glycosidic torsion angles, sugar puckering 
and helical parameters, in detail. 

Table 3 shows the conformational analysis of backbone torsional angles over 
a 100 ps MD simulation. E, the C3'-03' angle, remains the initial trans conformation 
in most cases, but a t -+ g- transition is observed in a significant number of cases. 
These transitions correlated well with those of g- -+ t of ~, the 03'-P angle. This 
correlation corresponds to earlier crystallographic studies, in which B, (E = t and 
~ = g-) and B" (E = g- and ~ = t) forms have been identified as B-form DNA [42,43]. 
Another phosphodiester torsion angle, Cl(P-05'), remains mainly g- with a few g+ or 
t conformations. The 05'-C5' angles (~) are mostly in the t conformation with a few 
transitions oft to g+. The C4'-C5' angles (y) remain in the g+ conformations for most 
of the residues, with a few residues in the t conformation. The glycosidic torsion 
angles, X" are all in anti-orientation in the range of 210-270° as shown in Table 4. In 
the middle region (AA TT), relatively high anti-values are observed. These torsion 
angles described above are almost all in the range of B-form DNA conformation [44], 
except for some transitions, and the local conformational distributions are almost 
constant during 100 ps of molecular dynamics, that is, in the equilibrium state. 

The average sugar puckerings are consistent with B-form DNA conformations 
[44,45] over 100 ps of molecular dynamics (Table 5). The predominant sugar confor
mation is C2'-endo and the conformation of 01'-endo is observed in a relatively 
high percentage among the other conformations. The C3'-endo conformation charac
teristic of an A-DNA is observed only in a few nucleotides. Although the sugar 
puckering is dynamically active, the proportion of conformations is almost constant 
during the molecular dynamics. No difference of the sugar conformation between 
pyrimidine and purine or between one half of the DNA structure and the other half 
was observed. 
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Table 3 Conformational analysis of backbone torsion anglesa 

Base No. I II III IV V Base No. I II III IV V 

E. C4' -C3' -03' -P 
Cyt 1 g g g g g Cyt 23 t t t t 
Gua 2 t t t t t Gua 22 g g g g 
Cyt 3 g g g g g Cyt 21 t 
Gua 4 t t Thy 20 
Ade 5 t Thy 19 
Ade 6 t Ade 18 t t 
Thy 7 g t Ade 17 g g 
Thy 8 t t g Gua 16 t t 
Cyt 9 g g g Cyt 15 t 
Gua 10 t t Gua 14 t t t t t 
Cyt 11 Cyt 13 g g g g g 

1;. C3'-03'-P-05' 
Cyt 1 t t t t t Cyt 23 g g g g g 
Gua 2 g g g g g Gua 22 t t t t t 
Cyt 3 t t t t t Cyt 21 g g g g g 
Gua 4 g g g g g Thy 20 g g g g g 
Ade 5 g g g g g Thy 19 g g g g g 
Ade 6 g g g g g Ade 18 g g g g g 
Thy 7 g g g g g Ade 17 t g g t t 
Thy 8 g g g g g Gua 16 g g g g g 
Cyt 9 g t t t t Cyt 15 g g g g g 
Gua 10 g g g g g Gua 14 g g g g g 
Cyt 11 g g g g g Cyt 13 

r:t. 03'-P-05'-C5' 
Gua 2 g g g g t Gua 24 g g g g g 
Cyt 3 g g g g g Cyt 23 g g g g g 
Gua 4 g+ g+ g+ g+ g+ Gua 22 g g g g g 
Ade 5 g g g g t Cyt 21 g g g g g 
Ade 6 g g g g g+ Thy 20 g g g g g 
Thy 7 g g g g g Thy 19 g g g g g 
Thy 8 t t g g g Ade 18 g g g g g 
Cyt 9 g g g g g Ade 17 g g g g g 
Gua 10 g g g g g Gua 16 g g g g g 
Cyt 11 g g g g g Cyt 15 g g g g g 
Gua 12 g t g+ g+ Gua 14 g+ g+ g+ g+ g+ 

p. P-05'-C5'-C4' 
Gua 2 Gua 24 
Cyt 3 t Cyt 23 g+ g+ 
Gua 4 t Gua 22 t t 
Ade 5 Cyt 21 
Ade 6 Thy 20 
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Table 3 (continued) 

Base No. I II III IV V Base No. II III IV V 

~. P-05'-C5'-C4' 
Thy 7 Thy 19 
Thy 8 g+ g+ g+ Ade 18 
Cyt 9 t t t Ade 17 
Gua 10 t t Gua 16 
Cyt 11 g+ Cyt 15 
Gua 12 t Gua 14 

y.05'-C5'-C4'-C3' 
Cyt 1 Gua 24 g+ g+ g+ g+ g+ 

Gua 2 g+ g+ g+ g+ g+ Cyt 23 g+ g+ g+ g+ g+ 

Cyt 3 g+ g+ g+ g+ g+ Gua 22 g+ g+ g+ g+ g+ 

Gua 4 t t t t t Cyt 21 g+ g+ g+ g+ g+ 

Ade 5 g+ g+ g+ g+ Thy 20 g+ g+ g+ g+ g+ 

Ade 6 g+ g+ g+ g+ g+ Thy 19 g+ g+ g+ g+ g+ 

Thy 7 g+ g+ g+ g+ g+ Ade 18 g+ g+ g+ g+ g+ 

Thy 8 t t t t t Ade 17 g+ g+ g+ g+ g+ 

Cyt 9 g+ g+ g+ g+ g+ Gua 16 g+ g+ g+ g+ g+ 

Gua 10 g+ g+ g+ g+ g+ Cyt 15 g+ g+ g+ g+ g+ 

Cyt 11 g+ g+ g+ g+ g+ Gua 14 t t t t t 
Gua 12 g+ t t t t Cyt 13 g+ g+ g+ g+ g+ 

O. C5' -C4' -C3' -03' 
Cyt 1 Gua 24 g+ g+ 

Gua 2 Cyt 23 g+ g+ g+ g+ g+ 

Cyt 3 Gua 22 t t t t t 
Gua 4 Cyt 21 g+ g+ g+ g+ g+ 

Ade 5 g+ g+ g+ g+ g+ Thy 20 g+ g+ g+ g+ g+ 

Ade 6 g+ g+ g+ g+ g+ Thy 19 g+ g+ t t t 
Thy 7 g+ g+ t g+ g+ Ade 18 t g+ g+ g+ g+ 

Thy 8 t t g+ t t Ade 17 g+ g+ t t 
Cyt 9 g+ t t Gua 16 t g+ g+ g+ 

Gua 10 t g+ Cyt 15 g+ g+ g+ g+ t 
Cyt 11 g+ g+ g+ g+ g+ Gua 14 t t t t 
Gua 12 g+ g+ g+ g+ t Cyt 13 t 

a The MD simulation was divided into five time ranges as follows. I: 0-20 ps; II: 20---40 ps; 
III: 40-60 ps; IV: 60-80 ps; V: 80-100 ps. The average conformation was found in each time 
range. The ranges of the three regions g+, t and g- are respectively 0-120°,120-240° and 
240-360°. 

The average intrastrand adjacent phosphorus atom distances every 20 ps are shown 
in Table 6. The distances fluctuate aroound the values observed in the crystal structure 
of the duplex [44], that is, 6.17-7.12 A. It is noted that the distance of the two pairs 
P4-P5 and P16-P15 is significantly larger throughout the molecular dynamics than 
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Table 4 Glycosidic torsion angles (0) 

Base No. Angle (rms) Base No. Angle (rms) 

X. 0 l' -C l' -N l-C2 (pyrimidine), 01' -C l' -N9-C4 (purine) 

Cyt 1 256.4 (29.1) Gua 24 239.7(13.5) 
Gua 2 248.7 (14.4) Cyt 23 223.9 (14.3) 
Cyt 3 264.7 (11.1) Gua 22 251.6 (14.3) 
Gua 4 229.0 (12.5) Cyt 21 218.5 (15.9) 
Ade 5 223.6 (19.5) Thy 20 211.6 (13.4) 
Ade 6 215.2 (18.0) Thy 19 230.5 (14.6) 
Thy 7 219.0 (19.4) Ade 18 219.9 (21.5) 
Thy 8 212.1 (16.8) Ade 17 244.8 (29.9) 
Cyt 9 268.2 (25.1) Gua 16 232.8 (20.1) 
Gua 10 233.4 (17.1) Cyt 15 225.6 (16.6) 
Cyt 11 217.8 (11.7) Gua 14 236.9 (17.2) 
Gua 12 223.8 (13. 7) Cyt 13 256.2 (31.2) 

those of the other pairs. This reflects the transformation of backbone torsion angles 
from the values in the standard B-DNA, namely, the transformation of (E,S,IX,y) to 
(g- ,t,g+ ,t) from (t,g- ,g- ,g+). On the other hand, the two pairs P7-P8 and P19-P18 
show values similar to that of a standard A-DNA, that is, 5.9 A. This is consistent with 
the sugar conformation of C3'-endo in Thy7 and Ade18. 

The averaged helical twist angles and the number of base pairs per unit turn are 
almost constant and in the range of values found in B-form DNA [44J, in which the 
ideal helix twist angle is 36.0° and the number of base pairs is 10.0, over the dynamics 
trajectory. Table 7 contains the average value of the helical twist angles at each 
base-pair step over 100 ps of molecular dynamics. The helical twist angles of the 
central region of the duplex exhibit smaller values than the ideal value, indicating that 

Table 5 Predominant sugar conformation 

Base No. I II III IV V Base No. I II III IV V 

Cyt 1 2 2 2 2 2 Gua 24 3 3 2 2 2 
Gua 2 2 2 2 2 2 Cyt 23 1 1 1 1 1 
Cyt 3 2 2 2 2 2 Gua 22 2 2 2 2 2 
Gua 4 2 2 2 2 2 Cyt 21 1 1 1 1 1 
Ade 5 2 1 1 1 2 Thy 20 1 1 1 1 1 
Ade 6 1 1 1 1 Thy 19 1 2 2 2 2 
Thy 7 3 2 2 3 Ade 18 2 2 3 3 3 
Thy 8 2 2 1 1 2 Ade 17 2 2 1 2 2 
Cyt 9 3 2 2 2 2 Gua 16 2 2 1 1 1 
Gua 10 2 2 2 2 2 Cyt 15 1 3 1 1 2 
Cyt 11 3 1 1 1 1 Gua 14 2 2 2 2 2 
Gua 12 3 3 3 3 2 Cyt 13 2 2 2 2 2 

1: 01'-endo; 2: C2'-endo; 3: C3'-endo. 
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Table 6 Intrastrand phosphorus atom distances (Aj 

Pair I II III IV V Pair I II III IV V 

P2-P3 7.11 7.18 7.13 7.03 7.11 P24-P23 6.81 6.86 6.97 6.92 6.91 
P3-P4 6.72 6.49 6.71 6.65 6.84 P23-P22 6.70 6.46 6.41 6.65 6.52 
P4-P5 7.61 7.64 7.64 7.65 7.60 P22-P21 6.94 6.68 6.77 6.59 6.72 
P5-P6 6.63 6.62 6.81 6.69 7.17 P21-P20 6.80 6.54 6.43 6.33 6.32 
P6-P7 6.64 6.66 6.23 6.38 6.49 P20-P19 6.87 6.91 7.17 7.12 7.04 
P7-P8 6.64 6.72 6.56 6.07 5.98 P19-P18 7.03 6.61 6.20 6.13 5.80 
P8-P9 7.61 7.20 6.65 6.19 6.07 P18-P17 6.86 6.71 6.54 6.61 6.60 
P9-P1O 6.54 6.64 6.85 6.89 6.79 P17-P16 7.08 6.91 6.55 6.63 6.12 
P1O-P11 7.20 6.90 6.96 7.07 7.04 P16-P15 6.57 6.56 6.91 6.83 7.05 
P11-PI2 5.80 6.57 6.66 6.63 6.93 P15-P14 7.61 7.64 7.45 7.63 7.65 

Mean 6.89 6.83 6.78 6.73 6.74 
Rms 0.23 0.27 0.22 0.26 0.28 

the recognition site, AA TT, tends to be unwound. Further, the result shows clearly 
that CpG steps have larger twist angles than GpC steps in all the cases, in contrast to 
Calladine's rules [46] and the crystal structure [47,48] of the dodecamer. The same 
conclusion is obtained from an earlier study [49], although the solvent water was not 
explicitly contained in the simulation. 

The hydrogen bonds of the Watson-Crick paired bases remained intact throughout 
the simulation as shown in Table 8, and the average distances for base pairing are 
consistent with standard hydrogen-bond distances NH ···0 = 1.95 A and NH ... N = 
1.99 A reported for X-ray crystal structures [44]. In addition, the distances and 

Table 7 Average helix twist angles and number of base pairs per turn 

Base pair step Helix twist angle (rms) 

0-20ps 20-40ps 40-60ps 6O-80ps 80-100 ps O-100ps 

CI-G24/G2-C23 38.8 (3.9) 41.9 (3.4) 44.8 (3.3) 44.4 (3.6) 43.1 (3.3) 42.6 (4.1) 
G2-C23/C3-G22 32.8 (2.4) 34.0 (2.4) 33.4 (2.4) 35.3 (2.2) 37.0(2.6) 34.5 (2.8) 
C3-G22/G4-C21 43.1 (2.8) 38.9 (3.2) 41.1 (3.2) 39.6 (3.5) 42.3 (3.4) 41.0 (2.8) 
G4-C21/ A5-T20 31.8 (4.5) 30.1 (3.0) 31.0 (3.0) 28.5 (2.6) 30.0 (3.6) 30.3 (3.6) 
A5-T20/A6-T19 33.8 (4.2) 32.4 (3.9) 30.5 (3.9) 29.5 (2.8) 28.2 (2.9) 30.8 (4.1) 
A6-T19/T7-AI8 35.6 (3.0) 33.3 (4.5) 25.1 (2.9) 30.7 (4.4) 31.0 (5.2) 31.1 (5.4) 
T7-AI8/T8-AI7 42.7 (2.6) 36.2 (3.7) 30.5 (3.8) 29.6(4.8) 36.0 (4.5) 35.0 (6.2) 
T8-AI7/C9-GI6 35.5 (3.7) 30.3 (3.5) 33.4 (4.1) 28.5 (4.3) 22.0 (6.0) 29.9 (6.4) 
C9-G16/G1O-CI5 36.1 (3.9) 42.7 (4.0) 42.7 (3.8) 44.6 (3.6) 44.2 (3.1) 42.1 (4.8) 
G1O-CI5/Cll-GI4 36.1 (2.9) 32.7 (3.6) 29.7 (2.7) 30.6 (2.8) 35.0 (2.9) 32.8 (3.9) 
C11-G 14/G 12-C13 34.0 (2.7) 42.7 (3.2) 37.1 (3.8) 42.2 (3.7) 43.7 (3.9) 39.9 (5.1) 

Mean 36.3 (3.4) 35.9 (3.5) 34.5 (3.4) 34.9 (3.6) 35.7 (3.9) 35.5 (4.7) 
No. of base pairs 

per turn 9.9 10.0 10.4 10.3 10.1 10.2 

574 



Stability of a duplex dodecamer d(CGCGAATTCGCG)2 

Table 8 Average base-pair hydrogen-bond distances 

Hydrogen bond 

Gua 06'-Cyt HN4A 
Gua HI '-Cyt N3 
Gua HN2A"-Cyt 02 
Gua 06b-Cyt HN4A 
Gua H1b-Cyt N3 
Gua HN2A b_Cyt 02 
Ade HN6A-Thy 04 
Ade N1-Thy H3 

• Gua-2,4,22,24. 
b Gua-1O,12,14,16. 

Length(A) (rms) 

2.01 (0.19) 
1.92 (0.09) 
1.94 (0.12) 
2.01 (0.17) 
1.93 (0.09) 
1.93 (0.12) 
2.09 (0.27) 
1.95 (0.17) 

fluctuations of four GC pairings with hydrogen-bond constraints are almost identical 
to those of another four GC pairings of the opposite side. The result indicates that 
these constraints do not significantly influence the dynamical behavior of base 
pairings. 

All the duplexes tested remain as B-DNA structure and base pairings are conserved 
during the course of the dynamics simulation. Therefore, we calculated the free energy 
differences between dodecamer duplexes containing 2-substituted-adenine and an 
intact duplex. 

Free energy differences: The calculated free energy changes of dodecamer duplexes, 
single-stranded trimers and 9-Me-adenine bases are summarized in Tables 9-11, 
respectively, and the variations of ~G with A are given in Figs. 3-6. These ~G's 

Table 9 Free energy changes in dodecamer duplexes 

System ~G (kcal/mol) Average ± SE 

(+) (-) 

Ade -+ NHrAde - 3.70 3.74 - 4.15 ± 0.43 
NHrAde -+ Ade 4.59 - 4.55 

NH2-Ade6, NHr Ade6, 
Ade18 -+NHr Ade18 - 4.46 4.44 - 3.95 ± 0.50 
NH2-Ade6, NH2-Ade6, 
NHr Ade18-+ Ade18 3.50 - 3.39 

Ade -+ F-Ade 0.18 - 0.18 0.26 ± 0.08 
F-Ade -+Ade - 0.31 0.36 

Ade -+ Cl-Ade 0.37 -0.32 0.25 ± 0.10 
Cl-Ade -+ Ade - 0.18 0.12 

Ade -+ OH-Ade - 2.78 2.82 - 2.86 ± 0.06 
OH-Ade -+Ade 2.96 - 2.88 
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Table 10 Free energy changes in trinucleotides 

System ~G (kcaljmol) 

( + ) ( - ) Average Weighted 
average 

Ade ---> NHz-Ade - 5.14 5.22 - 4.26 ± 0.46 - 3.76 ± 0.74 
- 3.29 3.43 
- 3.25 3.25 

NHz-Ade ---> Ade 5.69 - 5.70 
3.28 - 3.12 
4.94 - 4.84 

Ade --->F-Ade 0.34 - 0.32 0.16 ± 0.09 0.08 ± 0.11 
0.01 0.00 

F-Ade--->Ade 0.02 0.01 
-0.30 0.29 

Ade--->Cl-Ade 0.74 - 0.66 0.51 ± 0.18 0.42 ± 0.13 
- 0.33 0.37 

NHz-Ade ---> Ade - 0.62 0.71 
0.30 -0.32 

Ade --->OH-Ade - 4.72 4.77 - 4.84 ± 0.14 - 4.94 ± 0.17 
- 5.10 5.22 

NHz-Ade ---> Ade 4.54 - 4.45 
5.00 - 4.91 

represent only the free energy contribution due to the interaction of the perturbed 
group with the rest of the system. The perturbed group consists of a 2-substituted
adenine base and the charge distribution and force parameters for the sugar portion 
are identical to that of the unperturbed group. Therefore, the only interaction of 
2-substituted-adenine with the rest of the system without the sugar portion is 
monitored, and LlG comes only from the electrostatic and van der Waals interaction. 
LlG is not decomposed into the electrostatic contribution and the van der Waals 
contribution in the thermodynamic perturbation method. However, when the in
crement of the coupling parameter A at each window is small enough, that is, 
LlH(A)«kT, Eq. 2 can be reduced to 

LlG(A) = < LlH(A) > 0 = < LlHe1e(A) > 0 + < LlHvdW(A) > 0 (4) 

In fact, LlG(A) obtained from Eq. 4 is almost the same as that from Eq. 2 at each 
window. Thus, LlG(A) is approximately decomposed into the electrostatic contribu
tion and the van der Waals contribution using Eq. 4. The pattern of contribution of 
electrostatic and van der Waals interaction to LlG is very similar in the forward and 
reverse transformations in all cases. Therefore, only the pattern of reverse transforma
tion is shown in Figs. 3-6. 
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Table 11 Free energy changes in 9-Me-adenine bases 

System AG (kcal/mol) Average ± SE 

(+) (-) 

Ade -+ NHz-Ade -1.63 1.65 - 1.65 ± 0.01 
NHz-Ade -+ Ade 1.68 -1.63 

Ade -+ F-Ade -0.90 0.92 -1.09 ± 0.18 
F-Ade -+Ade 1.22 -1.30 

Ade -+ CI-Ade - 1.98 1.92 - 2.10 ± 0.15 
Cl-Ade -+ Ade 2.23 -2.27 

Ade -+ OH-Ade - 3.00 3.04 - 2.91 ± 0.11 
OH-Ade -+ Ade 2.81 - 2.80 

Simulation 1: The free energy change of the transformation of hydrogen to the NH2 
group in the 2-position of Ade6 is -4.15 kcal/mol for the duplex system, 
- 3.76 kcal/mol for the trimer system (please refer below) and -1.65 kcal/mol for the 

isolated base system. The difference in the free energy change, AAG, between the 
duplex and the trimer is - 0.39 kcal/mol. This result shows that the substitution of the 
2-NHz-adenine residue for the adenine residue makes the duplex structure only 
slightly stable as compared to the single-stranded structure. AAG between the trimer 
and the isolated base is -2.11 kcal/mol, indicating that 2-NHz-adenine in the trimer 
strongly interacts with the neighboring bases as compared to the unmodified adenine. 
For the duplex, AG decreases linearly with A. in both the forward and reverse 
simulations, although there is some discrepancy between the final values of the two 
cases. AG for the isolated base decreases continuously with an initial shoulder with 
respect to A. and the forward and reverse simulations show almost the same variation. 

In the case of the trimer system, AG decreases continuously with an initial shoulder 
as in the case of the isolated base, but the magnitude is three times that of the isolated 
base. This trend is observed in six simulations. The simulations are classified into two 
groups based on the AG values and the nature of the dynamical structures. In one 
group, AG is about 3 kcal/mol and the base-base interaction, including the stacking, 
is maintained throughout the simulation. In the other group, AG is about 6 kcal/mol 
and the stacking between the bases is disturbed and the transformed adenine residue 
interacts with the other residues and water molecules in a more flexible manner. The 
variation of AGele and AGvdW for the duplex with respect to A. is shown in Fig. 3e. 
AGvdW contributes negatively to AG mainly at lower values of A., whereas AGele 

contributes constantly over the entire value of A.. For the isolated base transformation, 
AGvdW decreases at lower values of A., but this effect is compensated by AGele (Fig. 3g). 
AGele increases as a function of A., resulting in the large solvation free energy. For the 
trimer system, the pattern of nonbonding contribution is different in each simulation 
(data not shown). In three simulations in which AG is about 5.0 kcal/mol, AGele is 
larger than that of the duplex and AGvdW is much smaller. In another set of three 
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Fig. 3. Transformation between adenine (A. = 0) and 2-NHr adenine (A. = J). (a)-(d): variation 
of .1G with A. for the transformation. (a) Dodecamer duplex, (-) H -+ NH2 and 
(- - -) NH2 -+ H; (b) the second transformation in Ade J 8 following (a), (-) H -+ NH2 and (- - -) 
NH2 -+ H; (c) single-stranded trimer, (-, ... and -' -) NH2 -+ H; (d) isolated base, (-) H -+ NH2 
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simulations, a significant contribution of i\GvdW is observed, while i\Ge1e is slightly 
larger. 

It is well known that single-stranded oligonucleotides can exist in several conforma
tional states and the conformation of single-stranded nucleic acids has been studied in 
many model systems [50-54]. Olsthoorn et al. [55] systematically studied the confor
mations of a series of oligodeoxy-adenosine nucleotides, (dA)n, n = 2,3,6,9,12, in 
solution by means of temperature-dependent circular dichroism. Based on the ther
modynamic results presented in the paper, it was estimated that a single-stranded 
trimer will predominantly exist in the stacked form and the percentage of the stacked 
form is determined to be 75.7% of the total population. The rest of the population is 
shown to exist in the unstacked form. These population results were used to average 
the free energy differences calculated by several runs for the trimer. For simulations 
where the stacking of the bases is maintained, a weight of 0.757 was used to compute 
the average free energy differences. For cases where the stacking was disrupted 
significantly, a weight of 0.243 was used for averaging the free energy differences. 

Simulation 2: This describes the transformation of Ade18 in the other chain to 
a 2-NHr adenine residue. The resultant duplex is a structure in which two 2-NHr 
adenines are substituted for two inner adenines of the unmodified duplex. i\G for the 
transformation is - 3.95 kcal/mol, which is almost the same as that of simulation 1. 
The variation of i\i\G and the contribution of non bonding interaction is very similar 
to that of simulation 1 (Figs. 3b and f). 
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Simulation 3: Simulation 3 describes the transformation of hydrogen at the 2-
position to fluorine. AG increases for the duplex and the trimer system, whereas it 
decreases for the isolated base system. The AG values for these simulations are 0.26, 
0.08 and -1.09 kcal/mol, respectively. AAG between the duplex and the trimer is 
0.18 kcal/mol, suggesting that the introduction of fluorine has little influence on the 
stability of the duplex. On the other hand, AAG between the trimer and the isolated 
base is 1.17 kcal/mol. The variations of the AG's with A for the above systems are 
shown in Figs. 4a-c, respectively. In the case of the duplex, AG increases when the 
value of A is above 0.5, whereas for the isolated base, it decreases almost linearly to 
a value of about -1.0 kcal/mol. In the trimer, AG tends to increase linearly in three of 
four simulations, although in one case it decreases rapidly in the range of A between 
0.8 and 1.0. In general, it is observed that the more the perturbed adenine is exposed to 
solvent water, the smaller the AG. AGele and AGvdW to the free energy change at each 
window in the duplex and the isolated base are shown in Figs. 4d and e, respectively. 
In the case of the duplex, the AGele contribution is positive throughout the trans
formation, whereas AGvdW is negative in the range of A{0-0.5) and then fluctuates 
around a value of 0.0 in the range of A{0.5-1.0). In contrast, AGele for the isolated base 
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Fig. 4. Transformation between adenine (J. = 0) and 2-F-adenine (J. = 1). (a)-(c): variation of LlG 
with J. for the transformation. (a) Dodecamer duplex, (-) H ---+ F and (- - -) F ---+ H; (b) single
stranded trimer, (- and···) H ---+ F and (--- and - - -) F ---+ H; (c) isolated base, (-) H ---+ F 
and (- - -) F ---+ H. (d), (e): contribution of (-) electrostatic and (- - -) van der Waals interaction to 
LlG of the F ---+ H transformation. (d) Dodecamer duplex; (e) isolated base. 
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system is negative throughout the transformation, and ~G is comparatively smaller. 
In the trimer, ~Gele is positive and ~GvdW is negative, although both are small in 
magnitude (data not shown). 

Simulation 4: This describes the transformation of 2-hydrogen into chlorine. ~G for 
this substitution is positive in the duplex and the trimer system, and negative for the 
isolated base system. The ~G values for these simulations are 0.25, 0.42 and 
-2.10 kcal/mol, respectively. ~~G between the duplex and the trimer is 
-D.17 kcaljmol. This suggests that the stability of the duplex does not change by the 

introduction of chlorine. ~G between the trimer and the isolated base is even larger 
(2.52 kcaljmol) than that of fluorine. The variations of the ~G's for these systems with 
A are shown in Figs. 5a--c, respectively. In the case of the duplex, ~G initially decreases 
to -0.6 to -0.8 kcaljmol and then increases to 0.2-0.3 kcaljmol, although the curve 
is somewhat different between the forward and reverse simulations. On the other 
hand, for the isolated base case it decreases almost linearly to a value of about 
- 2.0 kcaljmol in both the forward and reverse simulations. In the trimer, the 

simulations are divided into two groups. In one group, ~G increases linearly with the 
A value, and in the other it decreases. An examination of the structures reveals that in 
group one, the stacking between bases is preserved throughout the simulation, 
whereas in group two the stacking tends to be disturbed considerably. The ~Gele and 
~GvdW contributions to the free energy change at each window are shown in Figs. 4b 
and 5b, respectively. For the duplex, ~GvdW contributes largely to the initial decrease 
in ~G, whereas at higher values of A both ~Gele and ~GvdW contribute positively to 
the total ~G (Fig. 5d). In the isolated base, ~Gele contributes largely to the decrease in 
~G throughout the transformation, whereas ~GvdW is smaller except for A values 
below 0.1 (Fig. 5e). In the trimer case, ~Gele shows positive values and ~GvdW shows 
negative values, and the pattern of the group in which ~G is negative closely 
resembles the case of isolated base (data not shown). 

Simulation 5: The free energy change of the transformation of 2-H into a 2-0H 
group is - 2.86 kcaljmol for the duplex system, - 4.94 kcaljmol for the trimer system 
and -2.91 kcal/mol for the isolated base system. ~~G between the duplex and the 
trimer is 2.08 kcaljmol, which indicates that the introduction ofthe OH group makes 
the duplex unstable compared to the single-stranded state. ~~G between the trimer 
and the isolated base is - 2.03 kcaljmol. This indicates that the OH group introduced 
in single-stranded DNA has favorable interactions as compared to the unmodified 
DNA. Even in the case of trimer, the free energy change is almost the same between 
the simulations, although the simulations are classified into two groups from the 
aspect of dynamical structure as well as the other transformations. Figure 6d shows 
that the initial decrease in ~G for the duplex is due to the van der Waals interaction, 
although it is partially compensated for by the electrostatic interaction. On the other 
hand, the electrostatic interaction mainly contributes to the decrease in ~G at higher 
values of I. Although the electrostatic interaction is the main contributor as a whole, 
the van der Waals interaction also plays a significant role in the stability of OH
adenine. For the base simulation, the electrostatic contribution to the decrease in AG 
is much larger than the van der Waals one and the contribution rate increases 
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Fig. 5. (continued). 

proportionally with an increase in A (Fig. 6e). On the other hand, the contribution rate 
of the electrostatic interaction for the duplex is almost constant from 0.5 to 1.0 of A. In 
the trimer simulation, most of the decrease in L1G is due to the electrostatic interaction 
(data not shown). 

Discussion 

Molecular dynamics studies: The MD simulations of the DNA helix have been 
carried out with or without the explicit inclusion of solvent water by several groups 
[15-25]. Rao and Kollman [21] and Srinivasan et al. [23] reported the MD simula
tion on the same dodecamer duplex as in this study, that is, d(CGCGAATTCGCG), 
using the same AMBER force field; however, both their simulations were carried out 
in an in vacuo environment. Rao and Kollman found that the molecular dynamical 
structure during 84 ps of simulation stayed near a canonical B-form structure with 
reasonable H-bond and helical parameters. In addition, a significant bend in the DNA 
helix and opposite helix twist angles to that suggested by Calla dine's rules were 
observed. Srinivasan et al. indicated that a significant deviation in the direction of the 
canonical A-form occurred in the base-pair orientations, although the structures 
generated during 100 ps of simulation remained generally in the B-family. These 
studies suggest that the in vacuo MD calculations of DNA simulate the structure 
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variation around the B-form structure, but a significant deviation from the B-form 
appears in some properties and the structure alterations are not necessarily in accord 
with those observed in the crystal structure. 

In this study, the calculated dynamical structure maintains a stable double helix of 
DNA over 100 ps of MD simulation. We performed some procedures in addition to 
the usual one in order to obtain a stable dynamical trajectory. One was the positional 
restraint for the dodecamer duplex at the first half ofthe equilibration stage. Since the 
interaction between the duplex and the water added around the duplex is not 
necessarily adjusted well by the minimization procedure, the dynamical equilibration 
of the water structure is necessary before the start of molecular dynamics of the whole 
system. Another was the addition of a harmonic constraint for hydrogen bonds 
involved in Watson-Crick base pairing. This constraint is applied only to the last two 
base pairs on one end, not all the base pairs, so that the dynamical behavior of the 
perturbed residue is not influenced by the constraint. It is observed that the MD 
simulation with the constraint results in a more stable structure trajectory as com
pared to that with no constraint in which the DNA structure is sometimes distorted 
from a B-form structure. In addition, it can be observed that the local dynamical 
behavior of the two constrained base pairs is not influenced by the constraint as 
compared to that of two other base pairs on the opposite side. The constraint seems to 
prevent the process initiating the distorted state from the normal double-helix state of 
the duplex, although the reason is not clear. 
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Conformational parameters such as backbone and glycosidic torsional angles are 
essentially stable and the distribution ratio among the conformations is almost 
constant over 100 ps of molecular dynamics, although the transition of conformation 
is observed in some cases. These parameter values clearly indicate that the main 
conformations are those of a standard B-form. However, nonstandard torsion angles 
are observed with the transition of conformation, the so-called B" conformation 
[42,43] in which e and z are g- and t, respectively, in the native dodecamer crystal 
structure [44], although the positions of the BII conformation in the simulation do not 
necessarily correspond to those in the crystal structure. Since the BII conformation is 
often observed in experiment [42,43], the dynamical transition of B, to B" is reason
able. Another correlated dynamical transition is observed in the (cx;y) pair, that is, 
(g - ,g +) to (g + ,t). The conformation of (g + ,t) is not found in the native dodecamer 
crystal structure and is different not only from a standard B-form DNA but also from 
a standard A-form DNA. However, this conformational transition is consistent with 
the general idea about the correlated motion of the backbone suggested by Olson 
[56], which indicates that the correlated motion keeps the base pairing and double
helix structure of DNA stable. Further, NMR experiments [57] suggest that the DNA 
backbone possesses substantially greater motional freedom than the base-pair moiety, 
and even in single-crystal X-ray structures [58] the backbone linker is susceptible 
to perturbation by crystal packing forces. Thus, the transition of (cx,y) is not 
unreasonable. 

The sugar puckers, the helical twist angles and the phosphorus atom distances, 
which are parameters critical in differentiating the canonical B-form from the A-form, 
indicate that the dodecamer definitely remains in the B-form range over the entire 
MD trajectory. Since the mean and rms values of these parameters do not change 
much as the molecular dynamics proceeds, the dodecamer is conceived as being in the 
equilibrated state of the B-form range. We also observed that the hydrogen bonds of 
the Watson-Crick paired bases remained intact, with small values of rms throughout 
the simulation. However, it is observed that the helix structure is bent during the 
course of the run. In some of the simulations tested, we observed that the helices bend 
and then tend to straighten out. Therefore, this bending is not necessarily an irrevers
ible process. This result, however, indicates that there are structure changes which 
proceed in a timescale of over 100 ps. Although the 100 ps MD simulation samples 
only a part of all configuration space, it can sample well the local configuration space 
such as base pairings. Further, it is important to note that the various conformational 
parameters of the first half of the duplex structure show the same trend as the last half, 
indicating that the constraints for the hydrogen bonds of the two terminal base pairs 
do not significantly influence the molecular dynamical behavior of the duplex. 

The simulation including solvent molecules explicitly shows both similar aspects 
and a different one as compared to those without solvent molecules. We found that 
the pattern of the helical twist angles showed an opposite tendency to Calladine's rules 
as found by Rao and Kollman in the in vacuo simulation. A similar trend was also 
observed in the MD simulations for the same duplex using the GROMOS force field 
[25]. Therefore, it does not seem that this phenomenon is due to the type offorce field 
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used for the simulation. The large bending as in the in vacuo simulation is not 
observed in the simulation that includes solvent water molecules until past 80 ps, 
although there appear several kinks in the simulation. An examination of the struc
tures at 20 ps intervals in Fig. 1 reveals the presence of kinks at C3pG4 and C13pG 14 
throughout the simulation. These kinks are associated with the extension of the 
distance between the adjacent phosphorus atoms as shown by P4-P5 and P14-P15, 
respectively, in Table 6. Further, the extension is related to the unusual conformation 
of the backbone associated with nucleotides on either side of P4 and P14, that is, 
(e,z,a,g) is (g- ,t,g+ ,t). These relations suggest that the kinks are formed by the 
transformation of backbone torsion angles, since the sugar conformation remains as 
C2'-endo. On the other hand, it is observed that several kinks are formed temporally 
during the simulation. The temporal kinks at C9pGlO and A17pA18 appear to be 
associated with the correlated transition in e and z, namely, the transition to the 
Bn conformation from the BJ conformation which is a standard B-DNA conforma
tion. In contrast, the kink formed at C15pG16 may be related to the sugar conforma
tion of C3'-endo, which is consistent with the result of model building that the DNA 
helix bends at the junction joining A- and B-DNA [44]. These results. indicate that 
small kinks are easily formed by the transition of backbone torsion angles and sugar 
conformations. When the correlated transition of (e,z) as well as that of (a,g) is brought 
out, the kink becomes long-lived. Nerdal et al. [57] have proposed a solution 
structure for d(CGCGAATTCGCG) based on the refinement of NMR-derived dis
tance geometry structures by NOESY spectrum bank-calculation. The proposed 
solution structure is not the same as the crystal structure and displays a number of 
kinks and an overall bending of the duplex. The presence of a kink at C3pG4 is 
indicated in the experiment, which is consistent with our result. It should be noticed 
that this kink is similar to that reported for the EcoRI restriction site DNA bound to 
its endonuclease [8]. It may be conceivable that the duplex in solution forms the 
conformation suitable for binding to the endonuclease with some probability. The 
MD structure at 100 ps is further bent. This bending appears to be associated with the 
opening between the C3-G22 base pair and the G4-C21 base pair toward the minor 
groove in addition to the C3pG4 kink. 

Free energy studies: The transformation of 2-hydrogen to an NH2 group results in 
free energy changes of -4.15, - 3.76 and -1.65 kcaljmol for the duplex, the trimer 
and the isolated base system, respectively. As described earlier, the average free energy 
differences in the trimer system have been obtained by weighing the runs based on the 
stacking properties. Although two hydrogen-bonding hydrogens are added by this 
transformation, the decrease in the free energy of the isolated base in water is not as 
large as expected. This may be attributed to a decrease in the dipole moment from 
2.29 D (9-Me-adenine) to 1.23 D (2-NHz-9-Me-adenine). It is interesting that the 
electrostatic contribution for AG is positive rather than negative at lower values of A. 
This suggests that a change in water structure is necessary to attain the preferential 
electrostatic interaction between the NH2 group and the water molecules. In contrast, 
the free energy change of the trimer is larger and almost the same as that of the 
dodecamer. In this case, there is a large variation between the six simulations because 
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of the existence of multiple configuration. It is observed that i\G is larger ( - 3.36, 
- 3.20 and - 3.25 kcal/mol) when the stacking structure is preserved in the trimer 

and smaller (- 5.18, - 5.70 and -4.89 kcal/mol) when the stacking structure is 
distorted and other favorable interactions are formed between the perturbed adenine 
residue and the other residues or water molecules. The larger i\G difference between 
the latter and the isolated base shows that 2-NH2-adenine also interacts strongly with 
the other residues in a single-stranded state. In the duplex structure, the NH2 group 
forms a hydrogen bond with the 02 of Thy19 without a change in intact structure. 
This leads to favorable electrostatic interaction between NHz-Ade6 and Thy19 
throughout the transformation. We compared the interaction energy of the minimized 
structure of the modified duplex containing NH2-adenine with that of the intact 
duplex. In the energy-minimized structure, the electrostatic interaction energy be
tween the base pair is 12.0 kcal/mol, larger than that in intact Ade-Thy base pairs 
(about 8 kcal/mol), but much smaller than that in intact Gua-Cyt base pairs (about 
18 kcal/mol). The van der Waals interaction contributes significantly to the decrease 
in free energy, which arises mainly from the interaction of NHz-Ade6 with Thy7, 
Thy19 and Thy20. The total interaction energy in the energy-minimized structure is 
-15.86 kcal/mol, about -11 kcal/mol and about - 21 kcal/mol for the NH2-Ade

Thy base pair, Ade-Thy base pairs and Gua-Cyt base pairs, respectively. 
The transformation of both Ade6 and Ade18 to 2-NH2-adenine brings about 

almost twice as much a decrease in i\G as the single mutation, that is, 8.10 kcal/mol. 
The change in the interaction energy by the transformation shows the same tendency 
as that of one residue transformation of Ade6, except for the slight decrease in 
interaction energy between residues 6 and 18. This reflects that there is no stacking 
between residues 6 and 18 and the distance between two 2-NH2 groups is longer than 
that between two 6-NH2 groups. The difference in the free energy change of two 
2-NH2 group transformations between the duplex and the trimer is -0.19 kcal/mol, 
indicating that the duplex becomes slightly unstable with the substitution as com
pared to the single-stranded state in spite of the increase in the number of hydrogen 
bonds between the base pairs. Brennan and Gumport [59] reported the thermal 
stabilities of d(pGGAATTCC) and d(pGGA2,6APTTCC) in which the 2,6AP shows 
a 2-NHz-adenine residue. It can be calculated from the data that i\i\G is approxi
mately - 0.3 kcal/mol. There is a difference of 0.11 kcal/mol between the calculated 
and experimental i\i\G values. However, taking into account the uncertainty of the 
single-stranded state due to the existence of multiple configuration and the difference 
of the target oligomer and the condition of the system such as pH and salt concentra
tion, this difference appears to be relatively small and acceptable for semiquantitative 
discussion. 

The introduction of F and CI groups into the Ade6 residue makes the duplex 
slightly unstable as compared to the single-stranded state, as indicated by the i\dG 
values of 0.18 and -0.17 kcal/mol, respectively. It should be noted that in the trimer 
system, i\G is considerably less as the stacking structure is disturbed, but it is larger in 
the isolated base system. This may reflect that the F and CI groups do not interact 
favorably with the other residues in the trimer as opposed to the NH2 group. The 
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variations in the solvation free energies among 9-Me-adenine, 2-F-9-Me-adenine and 
2-CI-9-Me-adenine, which are 0.0, -1.09 and - 2.29 kcaljmol, respectively, show 
good correspondence with the dipole moments of these molecules, which are 2.29, 3.09 
and 4.37 D, respectively. The increase in the dipole moment seems to induce a signifi
cant increase in the electrostatic interaction between water and the modified base as 
shown in Figs. 4e and 5e, respectively. On the contrary, the free energy change in the 
duplex is due to the attractive van der Waals interaction and the repulsive electro
static interaction between F -Ade6/CI-Ade6 and the rest of the system. The electro
static interaction energy between F-Ade6/CI-Ade6 and Thy19 in the transformed 
duplex is smaller (( -6.61 kcal/mol)/( -5.47 kcal/mol)) than that in the unmodified 
duplex ( - 7.96 kcaljmol). This decrease is considered to be mainly due to the negative 
charge interactions between the F ofF-Ade6/CI ofCI-Ade6 and the 02 of Thy19. In 
addition, an increase in electrostatic interaction energy is observed between F
Ade6/CI-Ade6 and the sugar part of Thy20 by 0.64/1.40 kcaljmol. On the other hand, 
favorable van der Waals interactions are induced between F-Ade6/CI-Ade6 and a few 
bases such as Thy7, Thy19 and Thy20. Consequently, part of the repulsive electro
static interaction is compensated by the attractive van der Waals interaction. However, 
the interaction energy of the modified duplex is still larger than that of the unmodified 
duplex by 1.48 kcaljmol for the F duplex and 3.00 kcaljmol for the CI duplex. 

The decrease in free energy by the transformation of 2-H to the OH group in the 
isolated base system (- 2.91 kcaljmol) is larger than that of the NHz group 
(-1.65 kcaljmol). This is consistent with the fact that 2-0H-9-Me-adenine has a lar
ger dipole moment (1.80 D) and an OH group forms a stronger hydrogen bond with 
water molecules. In fact, the main contribution to the free energy change comes from 
the electrostatic interaction as shown in Fig. 6e. It should be noted that the electro
static interaction at lower values of A is positive as in the case of the H ~ NHz 
transformation. In other words, a change in the water structure is necessary for the 
preferential electrostatic interaction, that is, hydrogen-bond formation between the 
OH group and the water molecules. Further, one has to take into account the 
keto-enol tautomerism of the base. In general, the naturally occurring bases display 
predominantly keto tautomeric forms. Since the keto form of 2-0H-9-Me-adenine, 
namely, 9-Me-isoguanine, resembles a guanine, 2-0H-9-Me-adenine is to occur 
predominantly as the keto form rather than the enol form in solution. Therefore, the 
free energy change from 9-Me-adenine to 2-0H-9-Me-adenine/9-Me-isoguanine is 
assumed to be smaller than - 2.91 kcaljmol. In the trimer system, a large decrease in 
free energy is also observed due to the electrostatic contribution. This is thought to 
come from the electrostatic interactions between the OH group and the other groups, 
which stabilize the single-stranded state more than the double-stranded state. It 
should be noted that this free energy change is not influenced by the variation of the 
trimer conformation compared to other transformations studied as shown in Fig. 6b. 
In the duplex system, the main contribution comes from the electrostatic interaction 
between OH-Ade6 and Thy19, and the interaction energy is more positive than that of 
NHz-Ade by 2.0 kcaljmol, but more negative than that of unmodified Ade by 
2.1 kcaljmol. However, the contribution to ~G at lower values of I (0-4) is dominated 
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by van der Waals interactions as shown in Fig. 6a. The OH-Ade6 forms attractive van 
der Waals interaction with Thy7, Ade1S, Thy19 and Thy20. The OH group does not 
necessarily form a hydrogen bond with the 02 of Thy19 at lower values of I, since the 
electrostatic interaction between them is not strong yet. The H of the OH group tends 
to rotate to a different direction from that of 02 in order to attain the appropriate van 
der Waals interaction. Further, the distance between the two 0 atoms of the OH 
group and the 02 of Thy19 is slightly shorter in order to form the hydrogen bond for 
keeping the base pair intact. The keto form cannot· form the base-pairing with 
thymine, since only one hydrogen bond is formed, if any. ~~G is 2.0S kcaljmol, which 
shows that the OH duplex is much more unstable than the unmodified duplex. 
Further, taking the existence of the keto form into consideration, the stability of the 
duplex in water may become worse. Recently, Benner and co-workers [60,61] have 
developed a method for incorporating a new Watson-Crick base pair into duplex 
DNA and RNA by DNA and RNA polymerases. They reported the formation of base 
pairing between 2-0H-Ade and Thy in 13-mer duplex DNA using the above method. 
Thus, our study of base-pairing between 2-0H-Ade and Thy is relevant in addressing 
the stabilities of these modified base pairs. 

We used the standard error for the estimation of errors in the simulation. This 
evaluation would be valid when the errors come from statistical variation. It is 
possible, however, that systematic errors are caused by the biased sampling of 
configuration space and the time lag between Hamiltonian change and configuration 
change. The convergence offree energy calculations may be estimated by the compari
son between the forward and reverse simulations except for the mutation of flexible 
molecules such as the trimer system. The discrepancy between the two simulations is 
below 0.40 kcal/mol except for that of the H --+ NH2 transformation in the duplex 
system, which is 0.S5 kcaljmol for a mean free energy change of -4.15 kcaljmol. 
These discrepancies are considered to be acceptable for the semiquantitative compari
son among the free energy changes examined. In the trimer system, the ~G value is 
not necessarily in agreement between the simulations, since both the initial and final 
states are supposed to have multiple minima which show very different configurations 
from each other. In such a case, it is difficult to attain convergence, unless a very long 
simulation is carried out, which is impractical in the present computer environment. 
In order to reduce this difficulty, we performed the simulations using single-stranded 
trimer, not dodecamer, and the six or four different structures as the initial configura
tions. The simulation results are classified into two groups. In the first group, the base 
stacking structure is maintained during the simulation, and in the second group the 
base stacking structure is disturbed. Thus, the mean value of four to six simulations 
may approximate to the true value, since the system is assumed to transfer between 
the two groups described above. Although a more strict estimate ofthe convergence as 
well as the improvement of force field parameters may be necessary to obtain 
quantitatively accurate free energy differences, this study strongly suggests that 
molecular dynamics and free energy perturbation can give us profound insight into 
the dynamical property and stability of DNA, which is more flexible than globular 
proteins. 
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Table 12 Free energy differences for 2-Ade analogues 

System L\L\G (keal/mol) 

NH2-Adenine (6) 
NH2-Adenine (6,18) 
F-Adenine 
CI-Adenine 
OH-Adenine 

Standard Weighted 
average average 

0.11 ± 0.46 
0.42 ± 0.46 
0.10 ± 0.09 

- 0.26 ± 0.18 
1.98 ± 0.15 

- 0.39 ± 0.74 
- 0.19 ± 0.74 

0.18 ± 0.11 
- 0.17 ± 0.13 

2.08 ± 0.17 

The relative stabilities of the modified DNA duplexes in solvent water are sum
marized in Table 12. The calculated stability increases in the following order: OH 
duplex < F duplex < unmodified duplex < CI duplex < NH2 duplex. Taking into 
consideration the uncertainty due to the existence of multiple configuration in the 
trimer system, except for the OH duplex, the stability should be estimated to be almost 
equal. The dodecamer duplex used in this study is known to be recognized specifically 
through the recognition site (GAATTC) and cleaved the phosphodiester bond be
tween the guanine and adenine residues by the EcoRI endonuclease. It has been 
reported [10,11] that the modification of adenine residues in the recognition site 
influences the cleavage reaction by the endonuclease. The introduction of an NH2 
group into the 2-position of the inner adenine residue of d(pGGAATTCC) causes 
a 4.6-fold decrease in kcal and a 1.8-fold increase in Km, whereas the change from the 
6-position to the 2-position of the NH2 group in d(pGGAATTCC) and d(CTGAAT
TCAG) results in a 3-fold decrease and a 1.3-fold increase, respectively, in kcal and 
a 4-fold and a 12-fold increase, respectively, in Km. In addition, the modified duplex, in 
which an NH2 group is introduced into the 2-position of the outer adenine residue of 
d(CTGAATTCAG), is not a substrate but a competitive inhibitor for the endonu
clease. On the other hand, the duplex obtained by changing the NH2 from the 
6-position to the 2-position is neither a substrate nor an inhibitor. These results 
suggest that the introduction of an NH2 group into adenine residues of the recogni
tion site influences the catalytic step and not the binding step for the endonuclease 
cleavage reaction. This is reasonable, since the 2-NH2 group is not supposed to 
interact with the endonuclease directly as shown by the X-ray structure of the 
DNA--endonuclease complex [8,9]. Further, it does not seem that the inhibition of the 
catalytic step is induced by the function of the NH2 group itself in the 2-position, 
because the substitution of 2-NHz-purine, in which there is a 2-NH2 group instead of 
a 6-NH2 group, which interacts with the endonuclease, results in the inhibition of the 
binding step rather than the catalytic step. It has been suggested that the accurate 
discrimination between the canonical recognition site and its closely related sites by 
EcoRI endonuclease is dependent not only on the complementary interaction be
tween DNA and the endonuclease mainly through the protein-base contacts [8,9] and 
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the protein-phosphate contacts, [8,62-64], but also on the conformational change 
from the enzyme-substrate complex to the transition state complex [8,65,66]. In the 
case of the 2-NHr adenine duplex, the DNA conformation change seems to be 
associated with a decrease in cleavage rate, since the contact mode between the duplex 
and the endonuclease is not considered to change by the modification. This study 
suggests that the stability of the duplex, namely, the equilibration between the 
double-stranded state and the single-stranded state, is not influenced significantly by 
the introduction of a 2-NH2 group. The local denaturation in the recognition site of 
the duplex rather than the complete one appears to be important for the conforma
tional change to the transition state. This is also supported by the experimental results 
[66] that the oligodeoxynucleotides containing a mismatch within the EcoRI recogni
tion site are rather good substrates for the endonuclease and, in some cases, they are 
cleaved more efficiently than those containing the canonical sequence. We are in the 
process of studying the dynamic behavior of modified duplexes and the result will be 
published elsewhere. 
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