page mecmlxxxiii)

The TEXbook

The fine print in the upper right-hand

corner of each page is a draft of intended

index entries; it won’t appear in the real book.

Some index entries will be in typewriter type
and/or preceded by \ or enclosed in (...), etc;

such typographic distinctions aren’t shown here.

An index entry often extends for several pages;

the actual scope will be determined later.

Please note things that should be indexed but aren’t.

(page 1) |_

Knuth, Donald Ervin
E E : : Bibby, Duane Robert

DONALD E. KNUTH Stanford University

]

Llustrations by
DUANE BIBBY

Al
ADDISON-WESLEY
PUBLISHING COMPANY

Reading, Massachusetts
Menlo Park, California

New York

Don Mills, Ontario
Wokingham, England
Amsterdam - Bonn

Sydney - Singapore - Tokyo
Madrid - San Juan

(page ii) |_ _|

Knuth, Donald Ervin
copyright

This manual describes TEX Version 3.0. Some of the advanced features mentioned here are
absent from earlier versions.

The quotation on page 61 is copyright (© 1970 by Sesame Street, Inc., and used by permission
of the Children’s Television Workshop.

TEX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison—Wesley Publishing Company.

Library of Congress cataloging in publication data

Knuth, Donald Ervin, 1938-
The TeXbook.

(Computers & Typesetting ; A)

Includes index.

1. TeX (Computer system). 2. Computerized
typesetting. 3. Mathematics printing. I. Title.
ITI. Series: Knuth, Donald Ervin, 1938-

Computers & typesetting ; A.

7253.4.T47K58 1986 686.2'2544 85-30845
ISBN 0-201-13447-0

ISBN 0-201-13448-9 (soft)

Incorporates the final corrections made in 1996.

Internet page http://www-cs-faculty.stanford.edu/ knuth/abcde.html contains current in-
formation about this book and related books.

Copyright (© 1984, 1986 by the American Mathematical Society

This book is published jointly by the American Mathematical Society and Addison—Wesley
Publishing Company. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without the prior written permission of the
publishers. Printed in the United States of America.

ISBN 0-201-13447-0
1516 17 18 19 20 21 22-D0O-010099989796

(page iii) |_ _|

Knuth, Jill Carter

To Jill:
For your books and brochures

(page iv) |_

(page v) |_ _|

P r efa C e dangerous bend

GENTLE READER: This is a handbook about TEX, a new typesetting system
intended for the creation of beautiful books—and especially for books
that contain a lot of mathematics. By preparing a manuscript in TEX format,
you will be telling a computer exactly how the manuscript is to be transformed
into pages whose typographic quality is comparable to that of the world’s finest
printers; yet you won’t need to do much more work than would be involved if
you were simply typing the manuscript on an ordinary typewriter. In fact, your
total work will probably be significantly less, if you consider the time it ordinarily
takes to revise a typewritten manuscript, since computer text files are so easy
to change and to reprocess. (If such claims sound too good to be true, keep in
mind that they were made by TEX’s designer, on a day when TEX happened to
be working, so the statements may be biased; but read on anyway.)
This manual is intended for people who have never used TEX before,
as well as for experienced TEX hackers. In other words, it’s supposed to be a
panacea that satisfies everybody, at the risk of satisfying nobody. Everything you
need to know about TEX is explained here somewhere, and so are a lot of things
that most users don’t care about. If you are preparing a simple manuscript, you
won’t need to learn much about TEX at all; on the other hand, some things that
go into the printing of technical books are inherently difficult, and if you wish to
achieve more complex effects you will want to penetrate some of TEX’s darker
corners. In order to make it possible for many types of users to read this manual
effectively, a special sign is used to designate material that is for wizards only:
When the symbol

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don’t read the paragraph unless you need to. Brave and
experienced drivers at the controls of TEX will gradually enter more and more
of these hazardous areas, but for most applications the details won’t matter.
All that you really ought to know, before reading on, is how to get a
file of text into your computer using a standard editing program. This manual
explains what that file ought to look like so that TEX will understand it, but basic
computer usage is not explained here. Some previous experience with technical
typing will be quite helpful if you plan to do heavily mathematical work with
TEX, although it is not absolutely necessary. TEX will do most of the necessary

vi

Preface

formatting of equations automatically; but users with more experience will be
able to obtain better results, since there are so many ways to deal with formulas.
Some of the paragraphs in this manual are so esoteric that they are rated

L

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with TEX before you
attempt to fathom such doubly dangerous depths of the system; in fact, most
people will never need to know TEX in this much detail, even if they use it every
day. After all, it’s possible to drive a car without knowing how the engine works.
Yet the whole story is here in case you're curious. (About TEX, not cars.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use TEX,
you’ll find that some parts of it are very easy, while other things will take some
getting used to. A day or so later, after you have successfully typeset a few
pages, you’ll be a different person; the concepts that used to bother you will now
seem natural, and you’ll be able to picture the final result in your mind before it
comes out of the machine. But you’ll probably run into challenges of a different
kind. After another week your perspective will change again, and you’ll grow in
yet another way; and so on. As years go by, you might become involved with
many different kinds of typesetting; and you’ll find that your usage of TEX will
keep changing as your experience builds. That’s the way it is with any powerful
tool: There’s always more to learn, and there are always better ways to do what
you’ve done before. At every stage in the development you’ll want a slightly
different sort of manual. You may even want to write one yourself. By paying
attention to the dangerous bend signs in this book you’ll be better able to focus
on the level that interests you at a particular time.

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while, so you might actually enjoy
reading it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this manual is that it doesn’t al-
ways tell the truth. When certain concepts of TEX are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’t strictly
true. In general, the later chapters contain more reliable information than the

JOKES
truth

Preface

earlier ones do. The author feels that this technique of deliberate lying will ac-
tually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the “dangerous bend”
areas. If you can’t solve a problem, you can always look up the answer. But
please, try first to solve it by yourself; then you’ll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

The TEX language described in this book is similar to the author’s first
attempt at a document formatting language, but the new system differs from
the old one in literally thousands of details. Both languages have been called
TEX; but henceforth the old language should be called TEX78, and its use should
rapidly fade away. Let’s keep the name TEX for the language described here,
since it is so much better, and since it is not going to change any more.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of the TEX language, based on their experiences with
preliminary versions of the system. My work at Stanford has been generously
supported by the National Science Foundation, the Office of Naval Research, the
IBM Corporation, and the System Development Foundation. I also wish to thank
the American Mathematical Society for its encouragement, for establishing the
TEX Users Group, and for publishing the TUGboat newsletter (see Appendix J).

Stanford, California — D. E. K.
June 1983

‘Tis pleasant, sure, to see one’s name in print;
A book’s a book, although there’s nothing in 't.

— BYRON, English Bards and Scotch Reviewers (1809)

A question arose as to whether we were covering the field
that it was intended we should fill with this manual.

— RICHARD R. DONNELLEY, Proceedings, United Typothetse of America (1897)

vii

EXERCISES

TeX78

National Science Foundation
Office of Naval Research

IBM Corporation

System Development Foundation
American Mathematical Society
TUGDboat

Knuth, Don

BYRON

DONNELLEY

(page viii) |_

© 0 N O ks W N =

NN NN R e e e e e e e e
W N B O © WO ;A W N R O

-

Contents

The Name of the Game

Book Printing versus Ordinary Typing
Controlling TEX .

Fonts of Type .

Grouping

Running TEX .

How TEX Reads What You Type
The Characters You Type

TEX’s Roman Fonts

Dimensions

Boxes

Glue .

Modes

How TEX Breaks Paragraphs into Lines
How TEX Makes Lines into Pages
Typing Math Formulas .

More about Math

Fine Points of Mathematics Typing
Displayed Equations

Definitions (also called Macros)
Making Boxes

Alignment

Output Routines

13
19
23
37
43
o1
57
63
69
85
91
109
127
139
161
185
199
221
231
251

Contents of this manual, table

24
25
26

o -~ O Q 24 82 OQ m »

Summary of Vertical Mode
Summary of Horizontal Mode .
Summary of Math Mode

Recovery from Errors

Appendices

Answers to All the Exercises
Basic Control Sequences
Character Codes

Dirty Tricks .

Example Formats

Font Tables .

Generating Boxes from Formulas
Hyphenation

Index

Joining the TEX Community

Contents

267
285
289
295

305
339
367
373
403
427
441
449
457
483

ix

-

1

The Name of
the Game

Chapter 1: The Name of the Game

English words like ‘technology’ stem from a Greek root beginning with the letters
Tex ...; and this same Greek word means art as well as technology. Hence the
name TEX, which is an uppercase form of Tey.

Insiders pronounce the x of TEX as a Greek chi, not as an ‘x’, so that
TEX rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words like
loch or German words like ach; it’s a Spanish ‘j’ and a Russian ‘kh’. When you
say it correctly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TEX
is primarily concerned with high-quality technical manuscripts: Its emphasis is
on art and technology, as in the underlying Greek word. If you merely want to
produce a passably good document—something acceptable and basically read-
able but not really beautiful—a simpler system will usually suffice. With TEX
the goal is to produce the finest quality; this requires more attention to detail,
but you will not find it much harder to go the extra distance, and you’ll be able
to take special pride in the finished product.

On the other hand, it’s important to notice another thing about TEX’s
name: The ‘E’ is out of kilter. This displaced ‘E’ is a reminder that TEX is about
typesetting, and it distinguishes TEX from other system names. In fact, TEX
(pronounced tecks) is the admirable Text EXecutive processor developed by
Honeywell Information Systems. Since these two system names are pronounced
quite differently, they should also be spelled differently. The correct way to refer
to TEX in a computer file, or when using some other medium that doesn’t allow
lowering of the ‘E’, is to type ‘TeX’. Then there will be no confusion with similar
names, and people will be primed to pronounce everything properly.

» EXERCISE 1.1
After you have mastered the material in this book, what will you be: A TEXpert,
or a TEXnician?

They do certainly give
very strange and new-fangled names to diseases.

— PLATO, The Republic, Book 3 (c. 375 B.C.)

Technique! The very word is like the shriek
Of outraged Art. It is the idiot name
Given to effort by those who are too weak,
Too weary, or too dull to play the game.

— LEONARD BACON, Sophia Trenton (1920)

TeX (actually TEX), meaning of
tau

epsilon

chi

beauty

logo

TEX

Honeywell Information Systems
Bemer, Robert, see TEX, ASCII
TeX

PLATO

BACON

-

2

Book Printing
versus

Ordinary Typing

Chapter 2: Book Printing versus Ordinary Typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit ‘1’ and the lowercase letter ‘I’ When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made; your eyes and your
fingers need to learn to make a few more distinctions.

In the first place, there are two kinds of quotation marks in books,
but only one kind on the typewriter. Even your computer terminal, which has
more characters than an ordinary typewriter, probably has only a non-oriented
double-quote mark ("), because the standard ASCII code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely ¢ and ’; the second of these is
useful also as an apostrophe. American keyboards usually contain a left-quote
character that shows up as something like *, and an apostrophe or right-quote
that looks like ' or ~

To produce double-quote marks with TEX, you simply type two single-
quote marks of the appropriate kind. For example, to get the phrase

“I understand.”
(including the quotation marks) you should type
¢‘I understand.’’

to your computer.

A typewriter-like style of type will be used throughout this manual to
indicate TEX constructions that you might type on your terminal, so that the
symbols actually typed are readily distinguishable from the output TEX would
produce and from the comments in the manual itself. Here are the symbols to
be used in the examples:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789"#$%&Q*+-=, . :;7!
OS> N/

If your computer terminal doesn’t happen to have all of these, don’t despair;
TEX can make do with the ones you have. An additional symbol

W}

is used to stand for a blank space, in case it is important to emphasize that a
blank space is being typed; thus, what you really type in the example above is

¢ ‘I understand.’’

Without such a symbol you would have difficulty seeing the invisible parts of
certain constructions. But we won’t be using ‘,’ very often, because spaces are
usually visible enough.

quotation marks
ASCII
apostrophe
blank space

Chapter 2: Book Printing versus Ordinary Typing

Book printing differs significantly from ordinary typing with respect to
dashes, hyphens, and minus signs. In good math books, these symbols are all
different; in fact there usually are at least four different symbols:

a hyphen (-);

an en-dash (—);
an em-dash (—);
a minus sign (—).

Hyphens are used for compound words like ‘daughter-in-law’ and ‘X-rated’. En-
dashes are used for number ranges like ‘pages 13-34’, and also in contexts like
‘exercise 1.2.6-52’. Em-dashes are used for punctuation in sentences—they are
what we often call simply dashes. And minus signs are used in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);

for an en-dash, type two hyphens (--);

for an em-dash, type three hyphens (---);

for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn’t worry about it now.)

» EXERCISE 2.1
Explain how to type the following sentence to TEX: Alice said, “I always use an
en-dash instead of a hyphen when specifying page numbers like ‘480491’ in a
bibliography.”

» EXERCISE 2.2
What do you think happens when you type four hyphens in a row?

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the
‘t” and the ‘i’ of ‘find’. Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter combinations such
as £f, fi, f1, £fi, and ££f1. (The reason is that words like ‘find’ don’t look
very good in most styles of type unless a ligature is substituted for the letters
that clash. It’s somewhat surprising how often the traditional ligatures appear
in English; other combinations are important in other languages.)

» EXERCISE 2.3
Think of an English word that contains two ligatures.

The good news is that you do not have to concern yourself with liga-
tures: TEX is perfectly capable of handling such things by itself, using the same
mechanism that converts ‘==’ into ‘—’. In fact, TEX will also look for combi-
nations of adjacent letters (like ‘A’ next to ‘V’) that ought to be moved closer

together for better appearance; this is called kerning.

dashes
hyphens
minus signs
En-dash
Em-dash
bibliography
ligatures
kerning

Chapter 2: Book Printing versus Ordinary Typing

To summarize this chapter: When using TEX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
automatically take care of other niceties like ligatures and kerning.

@ (Are you sure you should be reading this paragraph? The “dangerous bend”

sign here is meant to warn you about material that ought to be skipped on first
reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

@ If your keyboard does not contain a left-quote symbol, you can type \1lgq,
followed by a space if the next character is a letter, or followed by a \ if the
next character is a space. Similarly, \rq yields a right-quote character. Is that clear?

\1g\1lq I junderstand.\rq\rq\,

@ In case you need to type quotes within quotes, for example a single quote

followed by a double quote, you can’t simply type ’’’ because TEX will
interpret this as 7’ (namely, double quote followed by single quote). If you have already
read Chapter 5, you might expect that the solution will be to use grouping—namely,
to type something like {’}’’. But it turns out that this doesn’t produce the desired
result, because there is usually less space following a single right quote than there is
following a double right quote: What you get is ", which is indeed a single quote
followed by a double quote (if you look at it closely enough), but it looks almost
like three equally spaced single quotes. On the other hand, you certainly won’t want
to type ’.’’, because that space is much too large—it’s just as large as the space
between words—and TEX might even start a new line at such a space when making up

a paragraph! The solution is to type ’\thinspace’’, which produces ’” as desired.
@ » EXERCISE 2.4
OK, now you know how to produce ”’ and ’”; how do you get “‘ and ‘“7?

@ » EXERCISE 2.5

Why do you think the author introduced the control sequence \thinspace to
solve the adjacent-quotes problem, instead of recommending the trickier construction
’$\,$’’ (which also works)?

In modern Wit all printed Trash, is
Set off with num’rous Breaks and Dashes—

— JONATHAN SWIFT, On Poetry: A Rapsody (1733)

Some compositors still object to work
in offices where type-composing machines are introduced.

— WILLIAM STANLEY JEVONS, Political Economy (1878)

dangerous bend

Iq

rq

quotes within quotes
thinspace

SWIFT
JEVONS

-

3

Controlling
TeX

Chapter 3: Controlling TgX 7

Your keyboard has very few keys compared to the large number of symbols
that you may want to specify. In order to make a limited keyboard sufficiently
versatile, one of the characters that you can type is reserved for special use,
and it is called the escape character. Whenever you want to type something
that controls the format of your manuscript, or something that doesn’t use the
keyboard in the ordinary way, you should type the escape character followed by
an indication of what you want to do.

Note: Some computer terminals have a key marked ‘ESC’, but that is not
your escape character! It is a key that sends a special message to the operating
system, so don’t confuse it with what this manual calls “escape.”

TEX allows any character to be used for escapes, but the “backslash”
character ‘\’ is usually adopted for this purpose, since backslashes are reasonably
convenient to type and they are rarely needed in ordinary text. Things work out
best when different TEX users do things consistently, so we shall escape via
backslashes in all the examples of this manual.

Immediately after typing ‘\’ (i.e., immediately after an escape character)
you type a coded command telling TEX what you have in mind. Such commands
are called control sequences. For example, you might type

\input MS

which (as we will see later) causes TEX to begin reading a file called ‘MS.tex’;
the string of characters ‘\input’ is a control sequence. Here’s another example:

George P\’olya and Gabor Szeg\"o.

TEX converts this to ‘George Polya and Gabor Szego.” There are two control
sequences, \’ and \", here; these control sequences have been used to place
accents over some of the letters.

Control sequences come in two flavors. The first kind, like \input, is
called a control word; it consists of an escape character followed by one or more
letters, followed by a space or by something besides a letter. (TEX has to know
where the control sequence ends, so you must put a space after a control word
if the next character is a letter. For example, if you type ‘\inputMS’, TEX will
naturally interpret this as a control word with seven letters.) In case you're
wondering what a “letter” is, the answer is that TEX normally regards the 52
symbols A...Z and a. ..z as letters. The digits 0. ..9 are not considered to be
letters, so they don’t appear in control sequences of the first kind.

A control sequence of the other kind, like \?, is called a control symbol;
it consists of the escape character followed by a single nonletter. In this case you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have exactly one symbol after
the escape character.

» EXERCISE 3.1
What are the control sequences in ‘\I’m \exercise3.1\\!’?

escape character

backslash

control sequences

markup commands, see control sequences
input

Polya

Szego

acute

umlaut

”»

accents

control word
letter

control symbol

8 Chapter 3: Controlling TgX

» EXERCISE 3.2 space
We've seen that the input P\’ olya yields ‘Pélya’. Can you guess how the French return;
words ‘mathématique’ and ‘centimetre’ should be specified? jtaby,
carriage-return, see jreturng
When a space comes after a control word (an all-letter control sequence), logo

it is ignored by TEX; i.e., it is not considered to be a “real” space belonging to Tex

the manuscript that is being typeset. But when a space comes after a control
symbol, it’s truly a space.

Now the question arises, what do you do if you actually want a space
to appear after a control word? We will see later that TEX treats two or more
consecutive spaces as a single space, so the answer is not going to be “type two
spaces.” The correct answer is to type “control space,” namely

\u

(the escape character followed by a blank space); TEX will treat this as a space
that is not to be ignored. Notice that control-space is a control sequence of the
second kind, i.e., a control symbol, since there is a single nonletter () following
the escape character. Two consecutive spaces are considered to be equivalent to
a single space, so further spaces immediately following \, will be ignored. But if
you want to enter, say, three consecutive spaces into a manuscript you can type
‘\u\u\L’. Incidentally, typists are often taught to put two spaces at the ends of
sentences; but we will see later that TEX has its own way to produce extra space
in such cases. Thus you needn’t be consistent in the number of spaces you type.

@ Nonprinting control characters like (return) might follow an escape character,

and these lead to distinct control sequences according to the rules. TgEX is
initially set up to treat \(return) and \(tab) the same as _ (control space); these
special control sequences should probably not be redefined, because you can’t see the
difference between them when you look at them in a file.

It is usually unnecessary for you to use “control space,” since control
sequences aren’t often needed at the ends of words. But here’s an example that
might shed some light on the matter: This manual itself has been typeset by
TEX, and one of the things that occurs fairly often is the tricky logo ‘TEX’, which
requires backspacing and lowering the E. There’s a special control word

\TeX

that produces the half-dozen or so instructions necessary to typeset ‘TEX’. When
a phrase like ‘TEX ignores spaces after control words.’ is desired, the manuscript
renders it as follows:

\TeX\ ignores spaces after control words.

Notice the extra \ following \TeX; this produces the control space that is neces-
sary because TEX ignores spaces after control words. Without this extra \, the
result would have been

TgXignores spaces after control words.

Chapter 3: Controlling TEX 9

On the other hand, you can’t simply put \ after \TeX in all contexts. For
example, consider the phrase

the logo ‘\TeX’.

In this case an extra backslash doesn’t work at all; in fact, you get a curious
result if you type

the logo ‘\TeX\’.

Can you guess what happens? Answer: The \’ is a control sequence denoting
an acute accent, as in our P\’olya example above; the effect is therefore to put
an accent over the next nonblank character, which happens to be a period. In
other words, you get an accented period, and the result is

the logo ‘TEX:

Computers are good at following instructions, but not at reading your mind.
TEX understands about 900 control sequences as part of its built-in
vocabulary, and all of them are explained in this manual somewhere. But you
needn’t worry about learning so many different things, because you won’t really
be needing very many of them unless you are faced with unusually complicated
copy. Furthermore, the ones you do need to learn actually fall into relatively
few categories, so they can be assimilated without great difficulty. For example,
many of the control sequences are simply the names of special characters used
in math formulas; you type ‘\pi’ to get ‘m’, ‘\Pi’ to get ‘II’, ‘\aleph’ to get ‘N’
‘\infty’ to get ‘00’, ‘\1e’ to get ‘<’) ‘\ge’ to get ‘>’, ‘\ne’ to get ‘#’, ‘\oplus’ to
get ‘@, ‘\otimes’ to get ‘®’. Appendix F contains several tables of such symbols.
@ There’s no built-in relationship between uppercase and lowercase letters in

control sequence names. For example, ‘\pi’ and ‘\Pi’ and ‘\PI’ and ‘\pI’ are
four different control words.

The 900 or so control sequences that were just mentioned actually aren’t
the whole story, because it’s easy to define more. For example, if you want to
substitute your own favorite names for math symbols, so that you can remember
them better, you're free to go right ahead and do it; Chapter 20 explains how.

About 300 of TEX’s control sequences are called primitive; these are the
low-level atomic operations that are not decomposable into simpler functions.
All other control sequences are defined, ultimately, in terms of the primitive
ones. For example, \input is a primitive operation, but \’ and \" are not; the
latter are defined in terms of an \accent primitive.

People hardly ever use TEX’s primitive control sequences in their man-
uscripts, because the primitives are ... well ... so primitive. You have to type
a lot of instructions when you are trying to make TEX do low-level things; this
takes time and invites mistakes. It is generally better to make use of higher-level
control sequences that state what functions are desired, instead of typing out
the way to achieve each function each time. The higher-level control sequences

pi

Pi

aleph
infty

le

ge

ne

oplus
otimes
uppercase
lowercase
primitive
input

”»

accent

10 Chapter 3: Controlling TpX

need to be defined only once in terms of primitives. For example, \TeX is a con- exercise
trol sequence that means “typeset the TEX logo”; \’ is a control sequence that :ﬁ;)r‘:;pace
means “put an acute accent over the next character”; and both of these con- kern
trol sequences might require different combinations of primitives when the style log file
X plain TEX
of type changes. If TEX’s logo were to change, the author would simply have basic control sequences

to change one definition, and the changes would appear automatically wherever
they were needed. By contrast, an enormous amount of work would be necessary
to change the logo if it were specified as a sequence of primitives each time.

At a still higher level, there are control sequences that govern the overall
format of a document. For example, in the present book the author typed
‘\exercise’ just before stating each exercise; this \exercise command was
programmed to make TEX do all of the following things:

= compute the exercise number (e.g., ‘3.2’ for the second exercise in Chap-
ter 3);

» typeset ‘» EXERCISE 3.2’ with the appropriate typefaces, on a line by
itself, and with the triangle sticking out in the left margin;

» leave a little extra space just before that line, or begin a new page at
that line if appropriate;

» prohibit beginning a new page just after that line;

» suppress indentation on the following line.

It is obviously advantageous to avoid typing all of these individual instructions
each time. And since the manual is entirely described in terms of high-level
control sequences, it could be printed in a radically different format simply by
changing a dozen or so definitions.

@ How can a person distinguish a TEX primitive from a control sequence that

has been defined at a higher level? There are two ways: (1) The index to this
manual lists all of the control sequences that are discussed, and each primitive is marked
with an asterisk. (2) You can display the meaning of a control sequence while running
TEX. If you type ‘\show\cs’ where \cs is any control sequence, TEX will respond
with its current meaning. For example, ‘\show\input’ results in > \input=\input.’,
because \input is primitive. On the other hand, ‘\show\thinspace’ yields

> \thinspace=macro:
->\kern .16667em .

This means that \thinspace has been defined as an abbreviation for ‘\kern .16667em ’.
By typing ‘\show\kern’ you can verify that \kern is primitive. The results of \show
appear on your terminal and in the log file that you get after running TEX.

@ » EXERCISE 3.3
Which of the control sequences \y and \(return) is primitive?

In the following chapters we shall frequently discuss “plain TEX” for-
mat, which is a set of about 600 basic control sequences that are defined in
Appendix B. These control sequences, together with the 300 or so primitives,

Chapter 3: Controlling TgX

are usually present when TEX begins to process a manuscript; that is why TEX
claims to know roughly 900 control sequences when it starts. We shall see how
plain TEX can be used to create documents in a flexible format that meets many
people’s needs, using some typefaces that come with the TEX system. However,
you should keep in mind that plain TEX is only one of countless formats that
can be designed on top of TEX’s primitives; if you want some other format, it
will usually be possible to adapt TEX so that it will handle whatever you have in
mind. The best way to learn is probably to start with plain TEX and to change
its definitions, little by little, as you gain more experience.

@ Appendix E contains examples of formats that can be added to Appendix B

for special applications; for example, there is a set of definitions suitable for
business correspondence. A complete specification of the format used to typeset this
manual also appears in Appendix E. Thus, if your goal is to learn how to design TEX
formats, you will probably want to study Appendix E while mastering Appendix B.
After you have become skilled in the lore of control-sequence definition, you will prob-
ably have developed some formats that other people will want to use; you should then
write a supplement to this manual, explaining your style rules.

The main point of these remarks, as far as novice TEX users are con-
cerned, is that it is indeed possible to define nonstandard TEX control sequences.
When this manual says that something is part of “plain TEX,” it means that TEX
doesn’t insist on doing things exactly that way; a person could change the rules
by changing one or more of the definitions in Appendix B. But you can safely
rely on the control sequences of plain TEX until you become an experienced

TgEXnical typist.

@@» EXERCISE 3.4
How many different control sequences of length 2 (including the escape char-
acter) are possible? How many of length 37

Syllables govern the world.
— JOHN SELDEN, Table Talk (1689)

| claim not to have controlled events,
but confess plainly that events have controlled me.

— ABRAHAM LINCOLN (1864)

11

formats
SELDEN
LINCOLN

Fonts
of Type

Chapter 4: Fonts of Type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize something. TEX deals with sets of up
to 256 characters called “fonts” of type, and control sequences are used to select
a particular font. For example, you could specify the last few words of the first
sentence above in the following way, using the plain TEX format of Appendix B:

to be \bf bold \rm or to \sl emphasize \rm something.

Plain TEX provides the following control sequences for changing fonts:

\rm switches to the normal “roman” typeface: Roman

\s1 switches to a slanted roman typeface: Slanted

\it switches to italic style: Ttalic

\tt switches to a typewriter-like face: Typewriter
\bf switches to an extended boldface style: Bold

At the beginning of a run you get roman type (\rm) unless you specify otherwise.

Notice that two of these faces have an “oblique” slope for emphasis:
Slanted type is essentially the same as roman, but the letters are slightly skewed,
while the letters in italic type are drawn in a different style. (You can perhaps
best appreciate the difference between the roman and italic styles by contemplat-
ing letters that are in an unslanted italic face.) Typographic conventions are
presently in a state of transition, because new technology has made it possible
to do things that used to be prohibitively expensive; people are wrestling with
the question of how much to use their new-found typographic freedom. Slanted
roman type was introduced in the 1930s, but it first became widely used as
an alternative to the conventional italic during the late 1970s. It can be bene-
ficial in mathematical texts, since slanted letters are distinguishable from the
italic letters in math formulas. The double use of italic type for two different
purposes—for example, when statements of theorems are italicized as well as the
names of variables in those theorems—has led to some confusion, which can now
be avoided with slanted type. People are not generally agreed about the relative
merits of slanted versus italic, but slanted type is rapidly becoming a favorite
for the titles of books and journals in bibliographies.

Special fonts are effective for emphasis, but not for sustained reading;
your eyes would tire if long portions of this manual were entirely set in a bold
or slanted or italic face. Therefore roman type accounts for the bulk of most
typeset material. But it’s a nuisance to say ‘\rm’ every time you want to go
back to the roman style, so TEX provides an easier way to do it, using “curly
brace” symbols: You can switch fonts inside the special symbols { and }, without
affecting the fonts outside. For example, the displayed phrase at the beginning
of this chapter is usually rendered

to be {\bf bold} or to {\sl emphasize} something.

This is a special case of the general idea of “grouping” that we shall discuss in
the next chapter. It’s best to forget about the first way of changing fonts, and

13

typeface
bold

fonts

rm

sl

it

tt

bf
typewriter type
face

roman type
oblique
Slanted type
italic type
curly brace
brace

grouping

14 Chapter 4: Fonts of Type

to use grouping instead; then your TEX manuscripts will look more natural, and Dieter
9 k ¢ ? /
you’ll probably never* have to type ‘\rm’. Lealic correction
punctuation
» EXERCISE 4.1 nullfont

Explain how to type the bibliographic reference ‘Ulrich Dieter, Journal fiir die
reine und angewandte Mathematik 201 (1959), 37—70."” [Use grouping.]

We have glossed over an important aspect of quality in the preceding
discussion. Look, for example, at the italicized and slanted words in this sentence.
Since italic and slanted styles slope to the right, the d’s stick into the spaces that
separate these words from the roman type that follows; as a result, the spaces
appear to be too skimpy, although they are correct at the base of the letters.
To equalize the effective white space, TEX allows you to put the special control
sequence ‘\/’ just before switching back to unslanted letters. When you type

{\it italicized\/} and {\sl slanted\/} words

you get italicized and slanted words that look better. The ‘\/’ tells TEX to add an
“italic correction” to the previous letter, depending on that letter; this correction
is about four times as much for an ‘f’ as for a ‘c’, in a typical italic font.

Sometimes the italic correction is not desirable, because other factors
take up the visual slack. The standard rule of thumb is to use \/ just before
switching from slanted or italic to roman or bold, unless the next character is a
period or comma. For example, type

{\it italics\/} for {\it emphasis}.

Old manuals of style say that the punctuation after a word should be in the same
font as that word; but an italic semicolon often looks wrong, so this convention
is changing. When an italicized word occurs just before a semicolon, the author
recommends typing ‘{\it word\/};’.

» EXERCISE 4.2
Ezxplain how to typeset a roman word in the midst of an italicized sentence.

@ Every letter of every font has an italic correction, which you can bring to life

by typing \/. The correction is usually zero in unslanted styles, but there are
exceptions: To typeset a bold ‘f” in quotes, you should say a bold ‘{\bf £\/}’, lest
you get a bold ‘f".

@@» EXERCISE 4.3
Define a control sequence \ic such that ‘\ic c’ puts the italic correction of
character c¢ into TEX’s register \dimenO.

@ The primitive control sequence \nullfont stands for a font that has no char-
acters. This font is always present, in case you haven’t specified any others.

* Well ..., hardly ever.

Chapter 4: Fonts of Type

Fonts vary in size as well as in shape. For example, the font you are
now reading is called a “10-point” font, because certain features of its design are
10 points apart, when measured in printers’ units. (We will study the point
system later; for now, it should suffice to point out that the parentheses around
this sentence are exactly 10 points tall-—and the em-dash is just 10 points wide.)
The “dangerous bend” sections of this manual are set in 9-point type, the foot-
notes in 8-point, subscripts in 7-point or 6-point, sub-subscripts in 5-point.

Each font used in a TEX manuscript is associated with a control se-
quence; for example, the 10-point font in this paragraph is called \tenrm, and
the corresponding 9-point font is called \ninerm. The slanted fonts that match
\tenrm and \ninerm are called \tensl and \ninesl. These control sequences
are not built into TEX, nor are they the actual names of the fonts; TEX users are
just supposed to make up convenient names, whenever new fonts are introduced
into a manuscript. Such control sequences are used to change typefaces.

When fonts of different sizes are used simultaneously, TEX will line the
letters up according to their “baselines.” For example, if you type

\tenrm smaller \ninerm and smaller
\eightrm and smaller \sevenrm and smaller
\sixrm and smaller \fiverm and smaller \tenrm

the result is smaller and smaller and smaller and smaller and smaller and smatier. Of course
this is something that authors and readers aren’t accustomed to, because printers
couldn’t do such things with traditional lead types. Perhaps poets who wish
to speak in a still sman voice Will cause future books to make use of frequent font
variations, but nowadays it’s only an occasional font freak (ike the author of this manual)
who likes such experiments. One should not get too carried away by the prospect
of font switching unless there is good reason.

An alert reader might well be confused at this point because we started
out this chapter by saying that ‘\rm’ is the command that switches to roman
type, but later on we said that ‘\tenrm’ is the way to do it. The truth is that
both ways work. But it has become customary to set things up so that \rm means
“switch to roman type in the current size” while \tenrm means “switch to roman
type in the 10-point size.” In plain TEX format, nothing but 10-point fonts are
provided, so \rm will always get you \tenrm; but in more complicated formats the
meaning of \rm will change in different parts of the manuscript. For example, in
the format used by the author to typeset this manual, there’s a control sequence
‘\tenpoint’ that causes \rm to mean \tenrm, \sl to mean \tensl, and so on,
while ‘\ninepoint’ changes the definitions so that \rm means \ninerm, etc.
There’s another control sequence used to introduce the quotations at the end of
each chapter; when the quotations are typed, \rm and \sl temporarily stand for
8-point unslanted sans-serif type and 8-point slanted sans-serif type, respectively.
This device of constantly redefining the abbreviations \rm and \s1, behind the
scenes, frees the typist from the need to remember what size or style of type is
currently being used.

15

points
dangerous bend
subscripts
tenrm

ninerm

tensl

ninesl

baseline
tenpoint
ninepoint

16 Chapter 4: Fonts of Type

» EXERCISE 4.4 Computer Modern
Why do you think the author chose the names ‘\tenpoint’ and ‘\tenrm’, etc., ?(inntfonts
instead of ‘\10point’ and ‘\10rm’? design size
@ » EXERCISE 4.5 ?rfagniﬁcation

Suppose that you have typed a manuscript using slanted type for emphasis, reduction

but your editor suddenly tells you to change all the slanted to italic. What’s an easy
way to do this?

@ Each font has an external name that identifies it with respect to all other fonts

in a particular library. For example, the font in this sentence is called ‘cmr9’,
which is an abbreviation for “Computer Modern Roman 9 point.” In order to prepare
TEX for using this font, the command

\font\ninerm=cmr9

appears in Appendix E. In general you say ‘\font\cs=(external font name)’ to load
the information about a particular font into TEX’s memory; afterwards the control
sequence \cs will select that font for typesetting. Plain TEX makes only sixteen fonts
available initially (see Appendix B and Appendix F), but you can use \font to access
anything that exists in your system’s font library.

@ It is often possible to use a font at several different sizes, by magnifying or

shrinking the character images. Each font has a so-called design size, which
reflects the size it normally has by default; for example, the design size of cmr9 is
9 points. But on many systems there is also a range of sizes at which you can use
a particular font, by scaling its dimensions up or down. To load a scaled font into
TEX’s memory, you simply say ‘\font\cs=(external font name) at (desired size)’. For
example, the command

\font\magnifiedfiverm=cmr5 at 10pt

brings in 5-point Computer Modern Roman at twice its normal size. (Caution: Before
using this ‘at’ feature, you should check to make sure that your typesetter supports
the font at the size in question; TEX will accept any (desired size) that is positive and
less than 2048 points, but the final output will not be right unless the scaled font really
is available on your printing device.)

g% What’s the difference between cmrb5 at 10pt and the normal 10-point font,

cmr10? Plenty; a well-designed font will be drawn differently at different point
sizes, and the letters will often have different relative heights and widths, in order to
enhance readability.

Ten point type is different from magnified five-point type.

It is usually best to scale fonts only slightly with respect to their design size, unless
the final product is going to be photographically reduced after TEX has finished with
it, or unless you are trying for an unusual effect.

@ Another way to magnify a font is to specify a scale factor that is relative to
the design size. For example, the command

\font\magnifiedfiverm=cmr5 scaled 2000

Chapter 4: Fonts of Type

is another way to bring in the font cmr5 at double size. The scale factor is specified
as an integer that represents a magnification ratio times 1000. Thus, a scale factor of
1200 specifies magnification by 1.2, etc.

@ » EXERCISE 4.6
State two ways to load font cmr10 into TEX’s memory at half its normal size.

@ At many computer centers it has proved convenient to supply fonts at magni-

fications that grow in geometric ratios—something like well-tempered tuning
on a piano. The idea is to have all fonts available at their true size as well as at
magnifications 1.2 and 1.44 (which is 1.2 x 1.2); perhaps also at magnification 1.728
(= 1.2 x 1.2 x 1.2) and even higher. Then you can magnify an entire document by 1.2
or 1.44 and still stay within the set of available fonts. Plain TEX provides the abbre-
viations \magstepO for a scale factor of 1000, \magstep1l for a scaled factor of 1200,
\magstep2 for 1440, and so on up to \magstep5. You say, for example,

\font\bigtenrm=cmri0 scaled\magstep2
to load font cmr10 at 1.2 x 1.2 times its normal size.
“This is cmr10 at normal size (\magstep0).”

“This is cmr10 scaled once by 1.2 (\magstep1).”
“This is cmr10 scaled twice by 1.2 (\magstep2).”

(Notice that a little magnification goes a long way.) There’s also \magstephalf, which
magnifies by /1.2, i.e., halfway between steps 0 and 1.

@ Chapter 10 explains how to apply magnification to an entire document, over
and above any magnification that has been specified when fonts are loaded.
For example, if you have loaded a font that is scaled by \magstepl and if you also
specify \magnification=\magstep2, the actual font used for printing will be scaled by
\magstep3. Similarly, if you load a font scaled by \magstephalf and if you also say
\magnification=\magstephalf, the printed results will be scaled by \magstepl.

Type faces—Ilike people’s faces—have distinctive features
indicating aspects of character.

— MARSHALL LEE, Bookmaking (1965)

This was the Noblest Roman of them all.
— WILLIAM SHAKESPEARE, The Tragedie of Julius Caesar (1599)

17

cmrb

piano

magstep
magstephalf
magnification
LEE
SHAKESPEARE

-

5

Grouping

Chapter 5: Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so you
need to indicate somehow where that part begins and where it ends. For this
purpose TEX gives special interpretation to two “grouping characters,” which
(like the escape character) are treated differently from the normal symbols that
you type. We assume in this manual that { and } are the grouping characters,
since they are the ones used in plain TEX.

We saw examples of grouping in the previous chapter, where it was men-
tioned that font changes inside a group do not affect the fonts in force outside.
The same principle applies to almost anything else that is defined inside a group,
as we will see later; for example, if you define a control sequence within some
group, that definition will disappear when the group ends. In this way you
can conveniently instruct TEX to do something unusual, by changing its normal
conventions temporarily inside of a group; since the changes are invisible from
outside the group, there is no need to worry about messing up the rest of a
manuscript by forgetting to restore the normal conventions when the unusual
construction has been finished. Computer scientists have a name for this aspect
of grouping, because it’s an important aspect of programming languages in gen-
eral; they call it “block structure,” and definitions that are in force only within
a group are said to be “local” to that group.

You might want to use grouping even when you don’t care about block
structure, just to have better control over spacing. For example, let’s consider
once more the control sequence \TeX that produces the logo “TEX’ in this manual:
We observed in Chapter 3 that a blank space after this control sequence will be
gobbled up unless one types ‘\TeX\ ’, yet it is a mistake to say ‘\TeX\’ when the
following character is not a blank space. Well, in all cases it would be correct to
specify the simple group

{\Tex}

whether or not the following character is a space, because the } stops TEX from
absorbing an optional space into \TeX. This might come in handy when you’re
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TeX{}

using an empty group for the same purpose: The ‘{}’ here is a group of no
characters, so it produces no output, but it does have the effect of stopping TEX
from skipping blanks.

» EXERCISE 5.1
Sometimes you run into a rare word like ‘shelfful’ that looks better as ‘shelfful’
without the ‘ff’ ligature. How can you fool TEX into thinking that there aren’t
two consecutive f’s in such a word?

@ » EXERCISE 5.2
Explain how to get three blank spaces in a row without using ‘\.,’.

19

grouping characters
curly braces, see braces
block structure

local

TeX

space

empty group

Ibrace rbrace

ligature

control space

20

Chapter 5: Grouping

But TEX also uses grouping for another, quite different, purpose, namely
to determine how much of your text is to be governed by certain control se-
quences. For example, if you want to center something on a line you can type

\centerline{This information should be centered.}

using the control sequence \centerline defined in plain TEX format.
Grouping is used in quite a few of TEX’s more intricate instructions;

and it’s possible to have groups within groups within groups, as you can see by

glancing at Appendix B. Complex grouping is generally unnecessary, however,

in ordinary manuscripts, so you needn’t worry about it. Just don’t forget to

finish each group that you've started, because a lost ‘}’ might cause trouble.
Here’s an example of two groups, one nested inside the other:

\centerline{This information should be {\it centered}.}
As you might expect, TEX will produce a centered line that also contains italics:
This information should be centered.

But let’s look at the example more closely: ‘\centerline’ appears outside the
curly braces, while ‘\it’ appears inside. Why are the two cases different? And
how can a beginner learn to remember which is which? Answer: \centerline
is a control sequence that applies only to the very next thing that follows, so
you want to put braces around the text that is to be centered (unless that text
consists of a single symbol or control sequence). For example, to center the TEX
logo on a line, it would suffice to type ‘\centerline\TeX’, but to center the
phrase ‘TEX has groups’ you need braces: ‘\centerline{\TeX\ has groups}’.
On the other hand, \it is a control sequence that simply means “change the
current font”; it acts without looking ahead, so it affects everything that follows,
at least potentially. The braces surround \it in order to confine the font change
to a local region.

In other words, the two sets of braces in this example actually have
different functions: One serves to treat several words of the text as if they were
a single object, while the other provides local block structure.

» EXERCISE 5.3
What do you think happens if you type the following:
\centerline{This information should be {centered}.}
\centerline So should this.

» EXERCISE 5.4
And how about this one?

\centerline{This information should be \it centered.}
@ » EXERCISE 5.5

Define a control sequence \ital so that a user could type ‘\ital{text}’ in-
stead of ‘{\it text\/}’. Discuss the pros and cons of \ital versus \it.

centerline
nested

Chapter 5: Grouping

@@ Subsequent chapters describe many primitive operations of TEX for which
the locality of grouping is important. For example, if one of TEX’s internal
parameters is changed within a group, the previous contents of that parameter will
be restored when the group ends. Sometimes, however, it’s desirable to make a def-
inition that transcends its current group. This effect can be obtained by prefixing
‘\global’ to the definition. For example, TEX keeps the current page number in a
register called \count0, and the routine that outputs a page wants to increase the page
number. Output routines are always protected by enclosing them in groups, so that
they do not inadvertently mess up the rest of TEX; but the change to \count0 would
disappear if it were kept local to the output group. The command

\global\advance\countO by 1

solves the problem; it increases \countO and makes this value stick around at the end
of the output routine. In general, \global makes the immediately following definition
pertain to all existing groups, not just to the innermost one.

@@» EXERCISE 5.6

If you think you understand local and global definitions, here’s a little test to
make sure: Suppose \c stands for ‘\count1=’; \g stands for ‘\global\count1=’, and \s
stands for ‘\showthe\count1’. What values will be shown?

{\c1\s\g2{\s\c3\s\g4\s\c5\s}\s\c6\s}\s

@ Another way to obtain block structure with TEX is to use the primitives

\begingroup and \endgroup. These control sequences make it easy to be-
gin a group within one control sequence and end it within another. The text that TEX
actually executes, after control sequences have been expanded, must have properly
nested groups, i.e., groups that don’t overlap. For example,

{ \begingroup } \endgroup

is not legitimate.

@@» EXERCISE 5.7
Define control sequences \beginthe(block name) and \endthe(block name)
that provide a “named” block structure. In other words,

\beginthe{beguine}\beginthe{waltz}\endthe{waltz}\endthe{beguine}
should be permissible, but not

\beginthe{beguine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}.

| have had recourse to varieties of type,
and to braces.

— JAMES MUIRHEAD, The Institutes of Gaius (1880)

An encounter group is a gathering, for a few hours or a few days,
of twelve or eighteen personable, responsible, certifiably normal
and temporarily smelly people.

— JANE HOWARD, Please Touch (1970)

21

global

page number
Output routines
advance
begingroup
endgroup
nested groups
MUIRHEAD
HOWARD

22222222 [N

6

Running
TeX

Chapter 6: Running TpX 23

The best way to learn how to use TEX is to use it. Thus, it’s high time for you
to sit down at a computer terminal and interact with the TEX system, trying
things out to see what happens. Here are some small but complete examples
suggested for your first encounter.

Caution: This chapter is rather a long one. Why don’t you stop reading
now, and come back fresh tomorrow?

OK, let’s suppose that you're rested and excited about having a trial run
of TEX. Step-by-step instructions for using it appear in this chapter. First do
this: Go to the lab where the graphic output device is, since you will be wanting
to see the output that you get—it won’t really be satisfactory to run TEX from
a remote location, where you can’t hold the generated documents in your own
hands. Then log in; and start TEX. (You may have to ask somebody how to
do this on your local computer. Usually the operating system prompts you for
a command and you type ‘tex’ or ‘run tex’ or something like that.)

When you're successful, TEX will welcome you with a message such as

This is TeX, Version 3.141 (preloaded format=plain 89.7.15)
%k x

The ‘**’ is TEX’s way of asking you for an input file name.

Now type ‘\relax’ (including the backslash), and (return) (or whatever
is used to mean “end-of-line” on your terminal). TEX is all geared up for action,
ready to read a long manuscript; but you're saying that it’s all right to take
things easy, since this is going to be a real simple run. In fact, \relax is a
control sequence that means “do nothing.”

The machine will type another asterisk at you. This time type something
like ‘Hello?’ and wait for another asterisk. Finally type ‘\end’, and stand back
to see what happens.

TEX should respond with ‘[1]’ (meaning that it has finished page 1 of
your output); then the program will halt, probably with some indication that
it has created a file called ‘texput.dvi’. (TEX uses the name texput for its
output when you haven’t specified any better name in your first line of input;
and dvi stands for “device independent,” since texput.dvi is capable of being
printed on almost any kind of typographic output device.)

Now you’re going to need some help again from your friendly local com-
puter hackers. They will tell you how to produce hardcopy from texput.dvi.
And when you see the hardcopy—Oh, glorious day!—you will see a magnificent
‘Hello?’ and the page number ‘1’ at the bottom. Congratulations on your first
masterpiece of fine printing.

The point is, you understand now how to get something through the
whole cycle. It only remains to do the same thing with a somewhat longer
document. So our next experiment will be to work from a file instead of typing
the input online.

Running the program
Hk

relax

return

asterisk

end

l

texput

dvi

device independent

24 Chapter 6: Running TgX

Use your favorite text editor to create a file called story.tex that con- story.tex

tains the following 18 lines of text (no more, no less): 5;;:113

1 \hrule contertine

2 \vskip lin Thor

3 \centerline{\bf A SHORT STORY} c

4 \vskip 6pt \l?éﬁf“ats

5 \centerline{\sl by A. U. Thor} eject

6 \vskip .5cm rule

. . . paragraphs

7 Once upon a time, in a distant blank line

8 galaxy called \"O\"o\c c, empty line

9 there lived a computer

10 named R.~J. Drofnats.

11

12 Mr. Drofnats---or ‘‘R. J.,’’ as

13 he preferred to be called---

14 was happiest when he was at work

15 typesetting beautiful documents.

16 \vskip lin

17 \hrule

18 \vfill\eject

(Don’t type the numbers at the left of these lines, of course; they are present only
for reference.) This example is a bit long, and more than a bit silly; but it’s no
trick for a good typist like you and it will give you some worthwhile experience,
so do it. For your own good. And think about what you’re typing, as you go;
the example introduces a few important features of TEX that you can learn as
you're making the file.

Here is a brief explanation of what you have just typed: Lines 1 and 17
put a horizontal rule (a thin line) across the page. Lines 2 and 16 skip past one
inch of space; ‘\vskip’ means “vertical skip,” and this extra space will separate
the horizontal rules from the rest of the copy. Lines 3 and 5 produce the title and
the author name, centered, in boldface and in slanted type. Lines 4 and 6 put
extra white space between those lines and their successors. (We shall discuss
units of measure like ‘6pt’ and ‘.5cm’ in Chapter 10.)

The main bulk of the story appears on lines 7-15, and it consists of
two paragraphs. The fact that line 11 is blank informs TEX that line 10 is the
end of the first paragraph; and the ‘\vskip’ on line 16 implies that the second
paragraph ends on line 15, because vertical skips don’t appear in paragraphs.
Incidentally, this example seems to be quite full of TEX commands; but it is
atypical in that respect, because it is so short and because it is supposed to
be teaching things. Messy constructions like \vskip and \centerline can be
expected at the very beginning of a manuscript, unless you're using a canned
format, but they don’t last long; most of the time you will find yourself typing
straight text, with relatively few control sequences.

Chapter 6: Running TEX

And now comes the good news, if you haven’t used computer typesetting
before: You don’t have to worry about where to break lines in a paragraph (i.e.,
where to stop at the right margin and to begin a new line), because TEX will
do that for you. Your manuscript file can contain long lines or short lines, or
both; it doesn’t matter. This is especially helpful when you make changes, since
you don’t have to retype anything except the words that changed. Every time
you begin a new line in your manuscript file it is essentially the same as typing
a space. When TEX has read an entire paragraph—in this case lines 7 to 11—it
will try to break up the text so that each line of output, except the last, contains
about the same amount of copy; and it will hyphenate words if necessary to keep
the spacing consistent, but only as a last resort.

Line 8 contains the strange concoction

\"O\"O\C c

and you already know that \" stands for an umlaut accent. The \c stands for a
“cedilla,” so you will get ‘O6¢’ as the name of that distant galaxy.

The remaining text is simply a review of the conventions that we dis-
cussed long ago for dashes and quotation marks, except that the ‘~’ signs in
lines 10 and 12 are a new wrinkle. These are called ties, because they tie words
together; i.e., TEX is supposed to treat ‘~’ as a normal space but not to break
between lines there. A good typist will use ties within names, as shown in our
example; further discussion of ties appears in Chapter 14.

Finally, line 18 tells TEX to ‘\vfill’; i.e., to fill the rest of the page with
white space; and to ‘\eject’ the page, i.e., to send it to the output file.

Now you're ready for Experiment 2: Get TEX going again. This time
when the machine says ‘**’ you should answer ‘story’, since that is the name
of the file where your input resides. (The file could also be called by its full
name ‘story.tex’, but TEX automatically supplies the suffix ‘. tex’ if no suffix
has been specified.)

You might wonder why the first prompt was ‘**’, while the subsequent
ones are ‘*’; the reason is simply that the first thing you type to TEX is slightly
different from the rest: If the first character of your response to ‘**’ is not a
backslash, TEX automatically inserts ‘\input’. Thus you can usually run TEX
by merely naming your input file. (Previous TEX systems required you to start
by typing ‘\input story’ instead of ‘story’, and you can still do that; but most
TEX users prefer to put all of their commands into a file instead of typing them
online, so TEX now spares them the nuisance of starting out with \input each
time.) Recall that in Experiment 1 you typed ‘\relax’; that started with a
backslash, so \input was not implied.

g% There’s actually another difference between ‘*x’ and ‘*’: If the first character

after ** is an ampersand (‘&’), TEX will replace its memory with a precom-
puted format file before proceeding. Thus, for example, you can type ‘&plain \input
story’ or even ‘&plain story’ in response to ‘**’ if you are running some version of
TEX that might not have the plain format preloaded.

25

umlaut
cedilla
ties

tilde

vfill

eject

file names
*%k

*

input

ampersand

format file
preloaded formats

26

Chapter 6: Running TEX

@ Incidentally, many systems allow you to invoke TEX by typing a one-liner like

‘tex story’ instead of waiting for the ‘**’; similarly, ‘tex \relax’ works for
Experiment 1, and ‘tex &plain story’ loads the plain format before inputting the
story file. You might want to try this, to see if it works on your computer, or you
might ask somebody if there’s a similar shortcut.

As TEX begins to read your story file, it types ‘(story.tex’, possibly
with a version number for more precise identification, depending on your local
operating system. Then it types ‘[1]’, meaning that page 1 is done; and ‘)’,
meaning that the file has been entirely input.

TEX will now prompt you with ‘*’, because the file did not contain
‘\end’. Enter \end into the computer now, and you should get a file story.dvi
containing a typeset version of Thor’s story. As in Experiment 1, you can proceed
to convert story.dvi into hardcopy; go ahead and do that now. The typeset
output won’t be shown here, but you can see the results by doing the experiment
personally. Please do so before reading on.

» EXERCISE 6.1
Statistics show that only 7.43 of 10 people who read this manual actually type
the story.tex file as recommended, but that those people learn TEX best. So
why don’t you join them?

» EXERCISE 6.2
Look closely at the output of Experiment 2, and compare it to story.tex: If you
followed the instructions carefully, you will notice a typographical error. What
is it, and why did it sneak in?

With Experiment 2 under your belt, you know how to make a document
from a file. The remaining experiments in this chapter are intended to help
you cope with the inevitable anomalies that you will run into later; we will
intentionally do things that will cause TEX to “squeak.”

But before going on, it’s best to fix the error revealed by the previous
output (see exercise 6.2): Line 13 of the story.tex file should be changed to

he preferred to be called---J, error has been fixed!

The ‘%’ sign here is a feature of plain TEX that we haven’t discussed before: It ef-
fectively terminates a line of your input file, without introducing the blank space
that TEX ordinarily inserts when moving to the next line of input. Furthermore,
TEX ignores everything that you type following a %, up to the end of that line
in the file; you can therefore put comments into your manuscript, knowing that
the comments are for your eyes only.

Experiment 3 will be to make TEX work harder, by asking it to set
the story in narrower and narrower columns. Here’s how: After starting the
program, type

\hsize=4in \input story

end
percent
comments

Chapter 6: Running TpX 27

in response to the ‘*x’. This means, “Set the story in a 4-inch column.” More
precisely, \hsize is a primitive of TEX that specifies the horizontal size, i.e., the
width of each normal line in the output when a paragraph is being typeset; and
\input is a primitive that causes TEX to read the specified file. Thus, you are
instructing the machine to change the normal setting of \hsize that was defined
by plain TgX, and then to process story.tex under this modification.

TEX should respond by typing something like ‘(story.tex [1])’ as
before, followed by ‘*’. Now you should type

\hsize=3in \input story
and, after TEX says ‘(story.tex [2])’ asking for more, type three more lines

\hsize=2.5in \input story
\hsize=2in \input story
\end

to complete this four-page experiment.

Don’t be alarmed when TEX screams ‘Overfull \hbox’ several times
as it works at the 2-inch size; that’s what was supposed to go wrong during
Experiment 3. There simply is no good way to break the given paragraphs into
lines that are exactly two inches wide, without making the spaces between words
come out too large or too small. Plain TEX has been set up to ensure rather
strict tolerances on all of the lines it produces:

you don’t get spaces between words narrower than this, and
you don’t get spaces between words wider than this.

If there’s no way to meet these restrictions, you get an overfull box. And with
the overfull box you also get (1) a warning message, printed on your terminal,
and (2) a big black bar inserted at the right of the offending box, in your output.
(Look at page 4 of the output from Experiment 3; the overfull boxes should stick
out like sore thumbs. On the other hand, pages 1-3 should be perfect.)

Of course you don’t want overfull boxes in your output, so TEX provides
several ways to remove them; that will be the subject of our Experiment 4. But
first let’s look more closely at the results of Experiment 3, since TEX reported
some potentially valuable information when it was forced to make those boxes
too full; you should learn how to read this data:

Overfull \hbox (0.98807pt too wide) in paragraph at lines 7--11

\tenrm tant galaxy called []0""70""Xc, there lived|

Overfull \hbox (0.4325pt too wide) in paragraph at lines 7--11

\tenrm a com-puter named R. J. Drof-nats. |

hsize
input
overfull box

Overfull \hbox (5.32132pt too wide) in paragraph at lines 12--16

\tenrm he pre-ferred to be called---was hap-|

Each overfull box is correlated with its location in your input file (e.g., the first
two were generated when processing the paragraph on lines 7-11 of story.tex),
and you also learn by how much the copy sticks out (e.g., 0.98807 points).

28 Chapter 6: Running TgX

Notice that TEX also shows the contents of the overfull boxes in ab- i
breviated form. For example, the last one has the words ‘he preferred to be f;;nf‘?lce“pt
called—was hap-’, set in font \tenrm (10-point roman type); the first one has hyphenation
a somewhat curious rendering of ‘Od¢’, because the accents appear in strange ﬁfg;i;onary hyphens
places within that font. In general, when you see ‘[]’ in one of these messages,
it stands either for the paragraph indentation or for some sort of complex con-
struction; in this particular case it stands for an umlaut that has been raised up

to cover an ‘O’.

@ » EXERCISE 6.3
Can you explain the ‘|’ that appears after ‘lived’ in that message?

@@» EXERCISE 6.4
Why is there a space before the ‘|’ in ‘Drof-nats. |’?

You don’t have to take out pencil and paper in order to write down the
overfull box messages that you get before they disappear from view, since TEX
always writes a “transcript” or “log file” that records what happened during each
session. For example, you should now have a file called story.log containing
the transcript of Experiment 3, as well as a file called texput.log containing
the transcript of Experiment 1. (The transcript of Experiment 2 was probably
overwritten when you did number 3.) Take a look at story.log now; you will
see that the overfull box messages are accompanied not only by the abbreviated
box contents, but also by some strange-looking data about hboxes and glue and
kerns and such things. This data gives a precise description of what’s in that
overfull box; TEX wizards will find such listings important, if they are called
upon to diagnose some mysterious error, and you too may want to understand
TEX’s internal code some day.

The abbreviated forms of overfull boxes show the hyphenations that
TEX tried before it resorted to overfilling. The hyphenation algorithm, which is
described in Appendix H, is excellent but not perfect; for example, you can see
from the messages in story.log that TEX finds the hyphen in ‘pre-ferred’, and
it can even hyphenate ‘Drof-nats’. Yet it discovers no hyphen in ‘galaxy’, and
every once in a while an overfull box problem can be cured simply by giving TEX
a hint about how to hyphenate some word more completely. (We will see later
that there are two ways to do this, either by inserting discretionary hyphens
each time as in ‘gal\-axy’, or by saying ‘\hyphenation{gal-axy} once at the
beginning of your manuscript.)

In the present example, hyphenation is not a problem, since TEX found
and tried all the hyphens that could possibly have helped. The only way to get
rid of the overfull boxes is to change the tolerance, i.e., to allow wider spaces
between words. Indeed, the tolerance that plain TEX uses for wide lines is
completely inappropriate for 2-inch columns; such narrow columns simply can’t
be achieved without loosening the constraints, unless you rewrite the copy to fit.

TEX assigns a numerical value called “badness” to each line that it sets,
in order to assess the quality of the spacing. The exact rules for badness are

Chapter 6: Running TpX 29

different for different fonts, and they will be discussed in Chapter 14; but here tolerance
is the way badness works for the roman font of plain TEX: hibadness

underfull box
C o 1 idth
The badness of this line is 100. o umn wi

measure, see hsize

very tight)

(
The badness of this line is 12. (somewhat tight) raggedright
The badness of this line is 0. (perfect)
The badness of this line is 12. (somewhat loose)
The badness of this line is 200. (loose)
The badness of this line is 1000. (bad)
The badness of this line is 5000. (awful)

Plain TEX normally stipulates that no line’s badness should exceed 200; but in
our case, the task would be impossible since

‘tant galaxy called Oé(;, there’ has badness 1521;
‘he preferred to be called—was’ has badness 568.

So we turn now to Experiment 4, in which spacing variations that are more
appropriate to narrow columns will be used.
Run TEX again, and begin this time by saying

\hsize=2in \tolerance=1600 \input story

so that lines with badness up to 1600 will be tolerated. Hurray! There are no
overfull boxes this time. (But you do get a message about an underfull box,
since TEX reports all boxes whose badness exceeds a certain threshold called
\hbadness; plain TEX sets \hbadness=1000.) Now make TEX work still harder
by trying

\hsize=1.5in \input story

(thus leaving the tolerance at 1600 but making the column width still skimpier).
Alas, overfull boxes return; so try typing

\tolerance=10000 \input story

in order to see what happens. TEX treats 10000 as if it were “infinite” tolerance,
allowing arbitrarily wide space; thus, a tolerance of 10000 will never produce an
overfull box, unless something strange occurs like an unhyphenatable word that
is wider than the column itself.

The underfull box that TEX produces in the 1.5-inch case is really bad;
with such narrow limits, an occasional wide space is unavoidable. But try

\raggedright \input story

for a change. (This tells TEX not to worry about keeping the right margin
straight, and to keep the spacing uniform within each line.) Finally, type

\hsize=.75in \input story

followed by ‘\end’, to complete Experiment 4. This makes the columns almost
impossibly narrow.

30 Chapter 6: Running TgX

@ The output from this experiment will give you some feeling for the problem breaking a paragraph
of breaking a paragraph into approximately equal lines. When the lines are hfuzz

. . X . . . dash

relatively wide, TEX will almost always find a good solution. But otherwise you will error messages

have to figure out some compromise, and several options are possible. Suppose you want
to ensure that no lines have badness exceeding 500. Then you could set \tolerance to
some high number, and \hbadness=500; TEX would not produce overfull boxes, but it
would warn you about the underfull ones. Or you could set \tolerance=500; then TEX
might produce overfull boxes. If you really want to take corrective action, the second
alternative is better, because you can look at an overfull box to see how much sticks
out; it becomes graphically clear what remedies are possible. On the other hand, if you
don’t have time to fix bad spacing—if you just want to know how bad it is—then the
first alternative is better, although it may require more computer time.

@ » EXERCISE 6.5

When \raggedright has been specified, badness reflects the amount of space
at the right margin, instead of the spacing between words. Devise an experiment by
which you can easily determine what badness TEX assigns to each line, when the story
is set ragged-right in 1.5-inch columns.

@ A parameter called \hfuzz allows you to ignore boxes that are only slightly
overfull. For example, if you say \hfuzz=1pt, a box must stick out more than
one point before it is considered erroneous. Plain TEX sets \hfuzz=0. 1pt.

@@» EXERCISE 6.6

Inspection of the output from Experiment 4, especially page 3, shows that
with narrow columns it would be better to allow white space to appear before and
after a dash, whenever other spaces in the same line are being stretched. Define a
\dash macro that does this.

You were warned that this is a long chapter. But take heart: There’s
only one more experiment to do, and then you will know enough about TEX to
run it fearlessly by yourself forever after. The only thing you are still missing
is some information about how to cope with error messages—i.e., not just with
warnings about things like overfull boxes, but with cases where TEX actually
stops and asks you what to do next.

Error messages can be terrifying when you aren’t prepared for them;
but they can be fun when you have the right attitude. Just remember that you
really haven’t hurt the computer’s feelings, and that nobody will hold the errors
against you. Then you’ll find that running TEX might actually be a creative
experience instead of something to dread.

The first step in Experiment 5 is to plant two intentional mistakes in
the story.tex file. Change line 3 to

\centerline{\bf A SHORT \ERROR STORY}

and change ‘\vskip’ to ‘\vship’ on line 2.

Now run TgX again; but instead of ‘story’ type ‘sorry’. The computer
should respond by saying that it can’t find file sorry.tex, and it will ask you
to try again. Just hit (return) this time; you’ll see that you had better give the

Chapter 6: Running TpX 31

name of a real file. So type ‘story’ and wait for TEX to find one of the faux pas
in that file.
Ah yes, the machine will soon stop,* after typing something like this:

! Undefined control sequence.
1.2 \vship
1in

?

TEX begins its error messages with ‘!’, and it shows what it was reading at the
time of the error by displaying two lines of context. The top line of the pair
(in this case ‘\vship’) shows what TEX has looked at so far, and where it came
from (‘1.2, i.e., line number 2); the bottom line (in this case ‘1in’) shows what
TEX has yet to read.

The ‘?’ that appears after the context display means that TEX wants
advice about what to do next. If you've never seen an error message before, or
if you’ve forgotten what sort of response is expected, you can type ‘?’ now (go
ahead and try it!); TEX will respond as follows:

Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

1 or ... or 9 to ignore the next 1 to 9 tokens of input,

H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:

1. Simply type (return). TEX will resume its processing, after attempting
to recover from the error as best it can.

¢

2. Type ‘S’. TEX will proceed without pausing for instructions if further
errors arise. Subsequent error messages will flash by on your terminal,
possibly faster than you can read them, and they will appear in your
log file where you can scrutinize them at your leisure. Thus, ‘S’ is sort
of like typing (return) to every message.

3. Type ‘R’. This is like ‘S’ but even stronger, since it tells TEX not to stop
for any reason, not even if a file name can’t be found.

4. Type ‘Q’. This is like ‘R’ but even more so, since it tells TEX not only to
proceed without stopping but also to suppress all further output to your
terminal. Tt is a fast, but somewhat reckless, way to proceed (intended
for running TEX with no operator in attendance).

5. Type ‘I’, followed by some text that you want to insert. TEX will read
this line of text before encountering what it would ordinarily see next.
Lines inserted in this way are not assumed to end with a blank space.

Some installations of TEX do not allow interaction. In such cases all you can do is
look at the error messages in your log file, where they will appear together with the
“help” information.

?

inserting text online

online interaction, see interaction
interacting with TeX

32

Chapter 6: Running TEX

6. Type a small number (less than 100). TEX will delete this many charac-
ters and control sequences from whatever it is about to read next, and
it will pause again to give you another chance to look things over.

7. Type ‘H’. This is what you should do now and whenever you are faced
with an error message that you haven’t seen for a while. TpX has two
messages built in for each perceived error: a formal one and an informal
one. The formal message is printed first (e.g., ‘! Undefined control
sequence.’); the informal one is printed if you request more help by
typing ‘H’, and it also appears in your log file if you are scrolling error
messages. The informal message tries to complement the formal one by
explaining what TEX thinks the trouble is, and often by suggesting a
strategy for recouping your losses.

8. Type ‘X’. This stands for “exit.” It causes TEX to stop working on your
job, after putting the finishing touches on your log file and on any pages
that have already been output to your dvi file. The current (incomplete)
page will not be output.

9. Type ‘E’. This is like ‘X’, but it also prepares the computer to edit the
file that TEX is currently reading, at the current position, so that you
can conveniently make a change before trying again.

After you type ‘H’ (or ‘h’, which also works), youll get a message that tries
to explain that the control sequence just read by TEX (i.e., \vship) has never
been assigned a meaning, and that you should either insert the correct control
sequence or you should go on as if the offending one had not appeared.

In this case, therefore, your best bet is to type

T\vskip

(and (return)), with no space after the ‘I’; this effectively replaces \vship by
\vskip. (Do it.)

If you had simply typed (return) instead of inserting anything, TEX
would have gone ahead and read ‘1in’, which it would have regarded as part of
a paragraph to be typeset. Alternatively, you could have typed ‘3’; that would
have deleted ‘1in’ from TEX’s input. Or you could have typed ‘X’ or ‘E’ in order
to correct the spelling error in your file. But it’s usually best to try to detect
as many errors as you can, each time you run TgEX, since that increases your
productivity while decreasing your computer bills. Chapter 27 explains more
about the art of steering TEX through troubled text.

g% » EXERCISE 6.7
What would have happened if you had typed ‘6’ after the \vship error?

@ You can control the level of interaction by giving commands in your file as well

as online: The TEX primitives \scrollmode, \nonstopmode, and \batchmode
correspond respectively to typing ‘S’, ‘R’, or ‘Q’ in response to an error message, and
\errorstopmode puts you back into the normal level of interaction. (Such changes are
global, whether or not they appear inside a group.) Furthermore, many installations

deleting tokens
help messages
scrollmode
nonstopmode
batchmode
errorstopmode

Chapter 6: Running TpX 33

have implemented a way to interrupt TEX while it is running; such an interruption
causes the program to revert to \errorstopmode, after which it pauses and waits for
further instructions.

What happens next in Experiment 5?7 TEX will hiccup on the other
bug that we planted in the file. This time, however, the error message is more
elaborate, since the context appears on six lines instead of two:

! Undefined control sequence.
<argument> \bf A SHORT \ERROR
STORY
\centerline #1->\1line {\hss #1
\hss }
1.3 \centerline{\bf A SHORT \ERROR STORY}

?

You get multiline error messages like this when the error is detected while TEX is
processing some higher-level commands—in this case, while it is trying to carry
out \centerline, which is not a primitive operation (it is defined in plain TEX).
At first, such error messages will appear to be complete nonsense to you, because
much of what you see is low-level TEX code that you never wrote. But you can
overcome this hangup by getting a feeling for the way TEX operates.

First notice that the context information always appears in pairs of lines.
As before, the top line shows what TEX has just read (‘\bf A SHORT \ERROR’),
then comes what it is about to read (‘STORY’). The next pair of lines shows the
context of the first two; it indicates what TEX was doing just before it began to
read the others. In this case, we see that TEX has just read ‘#1’, which is a special
code that tells the machine to “read the first argument that is governed by the
current control sequence”; i.e., “now read the stuff that \centerline is supposed
to center on a line.” The definition in Appendix B says that \centerline, when
applied to some text, is supposed to be carried out by sticking that text in place
of the ‘#1’ in ‘\1ine{\hss#1\hss}’. So TEX is in the midst of this expansion of
\centerline, as well as being in the midst of the text that is to be centered.

The bottom line shows how far TEX has gotten until now in the story
file. (Actually the bottom line is blank in this example; what appears to be the
bottom line is really the first of two lines of context, and it indicates that TEX
has read everything including the ‘}’ in line 3 of the file.) Thus, the context in
this error message gives us a glimpse of how TEX went about its business. First,
it saw \centerline at the beginning of line 3. Then it looked at the definition
of \centerline and noticed that \centerline takes an “argument,” i.e., that
\centerline applies to the next character or control sequence or group that
follows. So TEX read on, and filed ‘\bf A SHORT \ERROR STORY’ away as the
argument to \centerline. Then it began to read the expansion, as defined in
Appendix B. When it reached the #1, it began to read the argument it had saved.
And when it reached \ERROR, it complained about an undefined control sequence.

interrupt
argument
centerline

34 Chapter 6: Running TgX

@ » EXERCISE 6.8 editing
Why didn’t TEX complain about \ERROR being undefined when \ERROR was errorcontextlines
first encountered, i.e., before reading ‘STORY} on line 37

When you get a multiline error message like this, the best clues about
the source of the trouble are usually on the bottom line (since that is what
you typed) and on the top line (since that is what triggered the error message).
Somewhere in there you can usually spot the problem.

Where should you go from here? If you type ‘H’ now, you’ll just get the
same help message about undefined control sequences that you saw before. If you
respond by typing (return), TEX will go on and finish the run, producing output
virtually identical to that in Experiment 2. In other words, the conventional
responses won’t teach you anything new. So type ‘E’ now; this terminates the
run and prepares the way for you to fix the erroneous file. (On some systems,
TEX will actually start up the standard text editor, and you’ll be positioned at
the right place to delete ‘\ERROR’. On other systems, TEX will simply tell you to
edit line 3 of file story.tex.)

When you edit story.tex again, you’ll notice that line 2 still contains
\vship; the fact that you told TEX to insert \vskip doesn’t mean that your file
has changed in any way. In general, you should correct all errors in the input
file that were spotted by TEX during a run; the log file provides a handy way to
remember what those errors were.

Well, this has indeed been a long chapter, so let’s summarize what has
been accomplished. By doing the five experiments you have learned at first
hand (1) how to get a job printed via TEX; (2) how to make a file that contains
a complete TEX manuscript; (3) how to change the plain TEX format to achieve
columns with different widths; and (4) how to avoid panic when TEX issues
stern warnings.

So you could now stop reading this book and go on to print a bunch
of documents. It is better, however, to continue bearing with the author (after
perhaps taking another rest), since you’re just at the threshold of being able
to do a lot more. And you ought to read Chapter 7 at least, because it warns
you about certain symbols that you must not type unless you want TEX to do
something special. While reading the remaining chapters it will, of course, be
best for you to continue making trial runs, using experiments of your own design.

@@ If you use TEX format packages designed by others, your error messages
may involve many inscrutable two-line levels of macro context. By setting

\errorcontextlines=0 at the beginning of your file, you can reduce the amount of
information that is reported; TEX will show only the top and bottom pairs of context
lines together with up to \errorcontextlines additional two-line items. (If anything
has thereby been omitted, you’ll also see ‘...”.) Chances are good that you can
spot the source of an error even when most of a large context has been suppressed; if
not, you can say ‘I\errorcontextlines=100\oops’ and try again. (That will usually
give you an undefined control sequence error and plenty of context.) Plain TEX sets
\errorcontextlines=5.

Chapter 6: Running TgX 35

ARISTOTLE
HABAKKUK
COWPER

What we have to learn to do we learn by doing.
— ARISTOTLE, Ethica Nicomachea Il (c. 325 B.C.)

He may run who reads.

— HABAKKUK 2:2 (c. 600 B.C.)

He that runs may read.

— WILLIAM COWPER, Tirocinium (1785)

66666666 N B

[

How TgX Reads
What You Type

Chapter 7: How TgX Reads What You Type

We observed in the previous chapter that an input manuscript is expressed in
terms of “lines,” but that these lines of input are essentially independent of the
lines of output that will appear on the finished pages. Thus you can stop typing
a line of input at any place that’s convenient for you, as you prepare or edit a
file. A few other related rules have also been mentioned:

= A (return) is like a space.
= Two spaces in a row count as one space.

» A Dblank line denotes the end of a paragraph.

Strictly speaking, these rules are contradictory: A blank line is obtained by
typing (return) twice in a row, and this is different from typing two spaces in a
row. Some day you might want to know the real rules. In this chapter and the
next, we shall study the very first stage in the transition from input to output.

In the first place, it’s wise to have a precise idea of what your keyboard
sends to the machine. There are 256 characters that TEX might encounter at
each step, in a file or in a line of text typed directly on your terminal. These
256 characters are classified into 16 categories numbered 0 to 15:

Category Meaning
0 Escape character (\ in this manual)
1 Beginning of group ({ in this manual)
2 End of group (} in this manual)
3 Math shift ($ in this manual)
4 Alignment tab (& in this manual)
5 End of line ({return) in this manual)
6 Parameter (# in this manual)
7 Superscript (" in this manual)
8 Subscript (_ in this manual)
9 Ignored character ((null) in this manual)
10 Space (U in this manual)
11 Letter (A,...,Zand a, ..., 2)
12 Other character (none of the above or below)
13 Active character (* in this manual)
14 Comment character (% in this manual)
15 Invalid character ({delete) in this manual)

It’s not necessary for you to learn these code numbers; the point is only that
TEX responds to 16 different types of characters. At first this manual led you to
believe that there were just two types—the escape character and the others—
and then you were told about two more types, the grouping symbols { and }.
In Chapter 6 you learned two more: ~ and %. Now you know that there are
really 16. This is the whole truth of the matter; no more types remain to be
revealed. The category code for any character can be changed at any time, but
it is usually wise to stick to a particular scheme.

escape character
begin-group character
end-group character
math mode character
alignment tab
parameter
superscript

subscript

ignored character
space

letter

other character
active character
comment character
invalid character
category codes, table
reserved character
special character table
null

delete

38

Chapter 7: How TgX Reads What You Type

The main thing to bear in mind is that each TEX format reserves certain
characters for its own special purposes. For example, when you are using plain
TEX format (Appendix B), you need to know that the ten characters

\N{}Ys$&# "~ _%"

cannot be used in the ordinary way when you are typing; each of them will cause
TEX to do something special, as explained elsewhere in this book. If you really
need these symbols as part of your manuscript, plain TEX makes it possible for
you to type

\$ for $, \% for %, \& for &, \# for #, _ for _;

the _ symbol is useful for compound_identifiers in computer programs. In math-
ematics formulas you can use \{ and \} for { and }, while \backslash produces
a reverse slash; for example,

‘$\{a \backslash b\}$’ yields ‘{a\b}.

Furthermore \~ produces a circumflex accent (e.g., ‘\"e’ yields ‘¢’); and \~ yields
a tilde accent (e.g., ‘\"n’ yields ‘@’).

» EXERCISE 7.1
What horrible errors appear in the following sentence?

Procter & Gamble’s stock climbed to $2, a 107% gain.

» EXERCISE 7.2
Can you imagine why the designer of plain TEX decided not to make ‘\\’ the
control sequence for reverse slashes?

@ When TgEX reads a line of text from a file, or a line of text that you entered

directly on your terminal, it converts that text into a list of “tokens.” A
token is either (a) a single character with an attached category code, or (b) a control
sequence. For example, if the normal conventions of plain TEX are in force, the text
‘{\hskip 36 pt}’ is converted into a list of eight tokens:

{1 312 612 L0 P11t}

The subscripts here are the category codes, as listed earlier: 1 for “beginning of group,”
12 for “other character,” and so on. The doesn’t get a subscript, because it
represents a control sequence token instead of a character token. Notice that the space
after \hskip does not get into the token list, because it follows a control word.

g% It is important to understand the idea of token lists, if you want to gain a

thorough understanding of TEX, and it is convenient to learn the concept by
thinking of TEX as if it were a living organism. The individual lines of input in your
files are seen only by TEX’s “eyes” and “mouth”; but after that text has been gobbled
up, it is sent to TEX’s “stomach” in the form of a token list, and the digestive processes
that do the actual typesetting are based entirely on tokens. As far as the stomach is
concerned, the input flows in as a stream of tokens, somewhat as if your TEX manuscript
had been typed all on one extremely long line.

special characters
backslash

left brace

right brace

dollar sign
ampersand

hash mark

hat

underline

percent

tilde
single-character control sequences
identifiers
computer programs
backslash

reverse slash
Procter

Gamble
backslash

tokens

control word

Chapter 7: How TgX Reads What You Type

@ You should remember two chief things about TEX’s tokens: (1) A control

sequence is considered to be a single object that is no longer composed of a
sequence of symbols. Therefore long control sequence names are no harder for TEX to
deal with than short ones, after they have been replaced by tokens. Furthermore, spaces
are not ignored after control sequences inside a token list; the ignore-space rule applies
only in an input file, during the time that strings of characters are being tokenized.
(2) Once a category code has been attached to a character token, the attachment is
permanent. For example, if character ‘{’ were suddenly declared to be of category 12
instead of category 1, the characters ‘{;’ already inside token lists of TEX would still
remain of category 1; only newly made lists would contain ‘{12’ tokens. In other words,
individual characters receive a fixed interpretation as soon as they have been read from
a file, based on the category they have at the time of reading. Control sequences
are different, since they can change their interpretation at any time. TEX’s digestive
processes always know exactly what a character token signifies, because the category
code appears in the token itself; but when the digestive processes encounter a control
sequence token, they must look up the current definition of that control sequence in
order to figure out what it means.

@@» EXERCISE 7.3

Some of the category codes 0 to 15 will never appear as subscripts in character
tokens, because they disappear in TEX’s mouth. For example, characters of category 0
(escapes) never get to be tokens. Which categories can actually reach TEX’s stomach?

@ There’s a program called INITEX that is used to install TEX, starting from

scratch; INITEX is like TEX except that it can do even more things. It can
compress hyphenation patterns into special tables that facilitate rapid hyphenation, and
it can produce format files like ‘plain.fmt’ from ‘plain.tex’. But INITEX needs extra
space to carry out such tasks, so it generally has less memory available for typesetting
than you would expect to find in a production version of TEX.

@ When INITEX begins, it knows nothing but TEX’s primitives. All 256 charac-

ters are initially of category 12, except that (return) has category 5, (space)
has category 10, (null) has category 9, (delete) has category 15, the 52 letters A...Z and
a...z have category 11, % and \ have the respective categories 14 and 0. It follows that
INITEX is initially incapable of carrying out some of TEX’s primitives that depend on
grouping; you can’t use \def or \hbox until there are characters of categories 1 and 2.
The format in Appendix B begins with \catcode commands to provide characters of
the necessary categories; e.g.,

\catcode‘\{=1

assigns category 1 to the { symbol. The \catcode operation is like many other primi-
tives of TEX that we shall study later; by modifying internal quantities like the category
codes, you can adapt TEX to a wide variety of applications.

@@» EXERCISE 7.4
Suppose that the commands
\catcode‘\<=1 \catcode‘\>=2

appear near the beginning of a group that begins with ‘{’; these specifications instruct
TEX to treat < and > as group delimiters. According to TEX’s rules of locality, the

39

INITEX
hyphenation
format
return

space

null

delete
backslash
percent
catcode

40 Chapter 7: How TgX Reads What You Type

characters < and > will revert to their previous categories when the group ends. But group
. . >9 string

should the group end with } or with B ash
@ Although control sequences are treated as single objects, TEX does provide e

a way to break them into lists of character tokens: If you write \string\cs, endcsname
where \cs is any control sequence, you get the list of characters for that control se- kern

5 F le. \string\TeX d £ tok S\ T X active character

quence’s name. For example, \string\TeX produces four tokens: \i2, Ti2, ei2, Xi2. expandafter
Each character in this token list automatically gets category code 12 (“other”), in- ifundefined
cluding the backslash that \string inserts to represent an escape character. However, ficipb‘;‘;har
category 10 will be assigned to the character ‘’ (blank space) if a space character romannumeral

somehow sneaks into the name of a control sequence.

@ Conversely, you can go from a list of character tokens to a control sequence by

saying ‘\csname(tokens)\endcsname’. The tokens that appear in this construc-
tion between \csname and \endcsname may include other control sequences, as long as
those control sequences ultimately expand into characters instead of TEX primitives; the
final characters can be of any category, not necessarily letters. For example, ‘\csname
TeX\endcsname’ is essentially the same as ‘\TeX’; but ‘\csname\TeX\endcsname’ is il-
legal, because \TeX expands into tokens containing the \kern primitive. Furthermore,
‘\csname\string\TeX\endcsname’ will produce the unusual control sequence ‘\\TeX’,
i.e., the token , which you can’t ordinarily write.

@@» EXERCISE 7.5

Experiment with TEX to see what \string does when it is followed by an
active character like . (Active characters behave like control sequences, but they are
not prefixed by an escape.) What is an easy way to conduct such experiments online?
What control sequence could you put after \string to obtain the single character
token \12?

g%@» EXERCISE 7.6
What tokens does ‘\expandafter\string\csname a\string\ b\endcsname’
produce? (There are three spaces before the b. Chapter 20 explains \expandafter.)

@@» EXERCISE 7.7

When \csname is used to define a control sequence for the first time, that
control sequence is made equivalent to \relax until it is redefined. Use this fact to
design a macro \ifundefined#1 such that, for example,

\ifundefined{TeX}(true text)\else(false text)\fi

expands to the (true text) if \TeX hasn’t previously been defined, or if \TeX has been
\let equal to \relax; it should expand to the (false text) otherwise.

g% In the examples so far, \string has converted control sequences into lists of

tokens that begin with \12. But this backslash token isn’t really hardwired into
TEX; there’s a parameter called \escapechar that specifies what character should be
used when control sequences are output as text. The value of \escapechar is normally
TEX’s internal code for backslash, but it can be changed if another convention is desired.

@ TEX has two other token-producing operations similar to the \string com-
mand. If you write \number(number), you get the decimal equivalent of the
(number); and if you write \romannumeral (number), you get the number expressed in

Chapter 7: How TgX Reads What You Type

lowercase roman numerals. For example, ‘\romannumeral24’ produces ‘xxiv’, a list of
four tokens each having category 12. The \number operation is redundant when it is
applied to an explicit constant (e.g., ‘\number24’ produces ‘24’); but it does suppress
leading zeros, and it can also be used with numbers that are in TEX’s internal registers
or parameters. For example, ‘\number-0015" produces ‘-15’; and if register \count5
holds the value 316, then ‘\number\count5’ produces ‘316’.

@ The twin operations \uppercase{(token list)} and \lowercase{(token list)}

go through a given token list and convert all of the character tokens to their
“uppercase” or “lowercase” equivalents. Here’s how: Each of the 256 possible charac-
ters has two associated values called the \uccode and the \lccode; these values are
changeable just as a \catcode is. Conversion to uppercase means that a character
is replaced by its \uccode value, unless the \uccode value is zero (when no change
is made). Conversion to lowercase is similar, using the \lccode. The category codes
aren’t changed. When INITEX begins, all \uccode and \lccode values are zero except
that the letters a to z and A to Z have \uccode values A to Z and \1lccode values a to z.

@ TEX performs the \uppercase and \lowercase transformations in its stomach,
but the \string and \number and \romannumeral and \csname operations are
carried out en route to the stomach (like macro expansion), as explained in Chapter 20.

@@» EXERCISE 7.8
What token list results from ‘\uppercase{a\lowercase{bC}}’?

@@» EXERCISE 7.9

TEX has an internal integer parameter called \year that is set equal to the cur-
rent year number at the beginning of every job. Explain how to use \year, together with
\romannumeral and \uppercase, to print a copyright notice like ‘© MCMLXXXVT
for all jobs run in 1986.

@@» EXERCISE 7.10

Define a control sequence \appendroman with three parameters such that
\appendroman#1#2#3 defines control sequence #1 to expand to a control sequence whose
name is the name of control sequence #2 followed by the value of the positive integer
#3 expressed in roman numerals. For example, suppose \count20 equals 30; then
‘\appendroman\a\TeX{\count20}’ should have the same effect as ‘\def\a{\TeXxxx}’.

Some bookes are to bee tasted,
others to bee swallowed,
and some few to bee chewed and disgested.

— FRANCIS BACON, Essayes (1597)

‘Tis the good reader that makes the good book.
— RALPH WALDO EMERSON, Society & Solitude (1870)

41

roman numerals
uppercase
lowercase
uccode

Iccode
INITEX
letters

year

tricky macros
BACON
EMERSON

((((((((N B

0

The Characters
You Type

Chapter 8: The Characters You Type

A lot of different keyboards are used with TEX, but few keyboards can produce
256 different symbols. Furthermore, as we have seen, some of the characters that
you can type on your keyboard are reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there are 256
characters per font. So how can you refer to the characters that aren’t on your
keyboard, or that have been pre-empted for formatting?

One answer is to use control sequences. For example, the plain format
of Appendix B, which defines % to be a special kind of symbol so that you can
use it for comments, defines the control sequence \% to mean a percent sign.

To get access to any character whatsoever, you can type

\char (number)

where (number) is any number from 0 to 255 (optionally followed by a space);
you will get the corresponding character from the current font. That’s how
Appendix B handles \%; it defines ‘\%’ to be an abbreviation for ‘\char37’, since
37 is the character code for a percent sign.

The codes that TEX uses internally to represent characters are based on
“ASCII,” the American Standard Code for Information Interchange. Appendix C
gives full details of this code, which assigns numbers to certain control functions
as well as to ordinary letters and punctuation marks. For example, (space) = 32
and (return) = 13. There are 94 standard visible symbols, and they have been
assigned code numbers from 33 to 126, inclusive.

It turns out that ‘b’ is character number 98 in ASCII. So you can typeset
the word bubble in a strange way by putting

\char98 u\char98\char98 le

into your manuscript, if the b-key on your keyboard is broken. (An optional
space is ignored after constants like ‘98’. Of course you need the \, c, h, a, and r
keys to type ‘\char’, so let’s hope that they are always working.)

TEX always uses the internal character code of Appendix C for the standard

ASCII characters, regardless of what external coding scheme actually appears
in the files being read. Thus, b is 98 inside of TEX even when your computer normally
deals with EBCDIC or some other non-ASCII scheme; the TEX software has been set
up to convert text files to internal code, and to convert back to the external code when
writing text files. Device-independent (dvi) output files use TEX’s internal code. In
this way, TEX is able to give identical results on all computers.

@ Character code tables like those in Appendix C often give the code numbers in

octal notation, i.e., the radix-8 number system, in which the digits are 0, 1, 2,
3, 4, 5, 6, and 7.* Sometimes hexadecimal notation is also used, in which case the digits
are 0, 1,2, 3,4,5,6,7,8,9,A B, C,D, E, and F. For example, the octal code for ‘b’ is

* The author of this manual likes to use italic digits for octal numbers, and type-
writer type for hexadecimal numbers, in order to provide a typographic clue to the
underlying radix whenever possible.

43

keyboard

terminal keyboard
percent sign

ASCII

internal character codes
character codes
space

return

char

EBCDIC

dvi

octal notation
hexadecimal notation

44 Chapter 8: The Characters You Type

142, and its hexadecimal code is 62. A (number) in TEX’s language can begin with a ?, number
in which case it is regarded as octal, or with a ", when it is regarded as hexadecimal. apostrophe
. .. doublequote

Thus, \char’142 and \char"62 are equivalent to \char98. The legitimate character left quote

codes in octal notation run from ‘0 to ‘377; in hexadecimal, they run from “0 to "FF. reverse apostrophe
chardef

@ But TEX actually provides another kind of (number) that makes it unnecessary def | 1

for you to know ASCII at alll The token ‘12 (left quote), when followed by Zgicgl:r;gsmbb; d
any character token or by any control sequence token whose name is a single character, manfnt
stands for TEX’s internal code for the character in question. For example, \char ‘b and manual

\char ‘\b are also equivalent to \char98. If you look in Appendix B to see how \} is
defined, you’ll notice that the definition is

\def\%{\char ‘\%}
instead of \char37 as claimed above.

@ » EXERCISE 8.1
What would be wrong with \def\%{\char ‘%}?

@@ The preface to this manual points out that the author tells little white lies
from time to time. Well, if you actually check Appendix B you’ll find that

\chardef\%=‘\%

is the true definition of \%. Since format designers often want to associate a spe-
cial character with a special control sequence name, TEX provides the construction
“\chardef (control sequence)=(number)’ for numbers between 0 and 255, as an efficient
alternative to ‘\def(control sequence){\char(number)}’.

Although you can use \char to access any character in the current font,
you can’t use it in the middle of a control sequence. For example, if you type

\\char98

TEX reads this as the control sequence \\ followed by c, h, a, etc., not as the
control sequence \b.

You will hardly ever need to use \char when typing a manuscript, since
the characters you want will probably be available as predefined control se-
quences; \char is primarily intended for the designers of book formats like those
in the appendices. But some day you may require a special symbol, and you
may have to hunt through a font catalog until you find it. Once you find it,
you can use it by simply selecting the appropriate font and then specifying the
character number with \char. For example, the “dangerous bend” sign used in
this manual appears as character number 127 of font manfnt, and that font is
selected by the control sequence \manual. The macros in Appendix E therefore
display dangerous bends by saying ‘{\manual\char127}’.

We have observed that the ASCII character set includes only 94 printable
symbols; but TEX works internally with 256 different character codes, from 0
to 255, each of which is assigned to one of the sixteen categories described in
Chapter 7. If your keyboard has additional symbols, or if it doesn’t have the
standard 94, the people who installed your local TEX system can tell you the

Chapter 8: The Characters You Type

correspondence between what you type and the character number that TEX
receives. Some people are fortunate enough to have keys marked ‘¢’ and ‘<’ and
‘2’; it is possible to install TEX so that it will recognize these handy symbols
and make the typing of mathematics more pleasant. But if you do not have such
keys, you can get by with the control sequences \ne, \le, and \ge.

TgEX has a standard way to refer to the invisible characters of ASCII: Code 0

can be typed as the sequence of three characters ~~@, code 1 can be typed
~~A, and so on up to code 31, which is ~~_ (see Appendix C). If the character following
~~ has an internal code between 64 and 127, TEX subtracts 64 from the code; if the
code is between 0 and 63, TEX adds 64. Hence code 127 can be typed ~°7, and
the dangerous bend sign can be obtained by saying {\manual~~?7}. However, you must
change the category code of character 127 before using it, since this character ordinarily
has category 15 (invalid); say, e.g., \catcode ‘\""?=12. The ~~ notation is different from
\char, because ~~ combinations are like single characters; for example, it would not
be permissible to say \catcode‘\char127, but ~~ symbols can even be used as letters
within control words.

@ One of the overfull box messages in Chapter 6 illustrates the fact that TEX
sometimes uses the funny ~~ convention in its output: The umlaut character

in that example appears as ~~7, and the cedilla appears as ~~X, because ‘"’ and ¢’

occur in positions 177 and ‘30 of the \tenrm font.

@ There’s also a special convention in which ~~ is followed by two “lowercase
hexadecimal digits,” 0-9 or a—f. With this convention, all 256 characters are

obtainable in a uniform way, from ~~00 to ~~ff. Character 127 is ~"7f.

@ Most of the ~~ codes are unimportant except in unusual applications. But

~"M is particularly noteworthy because it is code 13, the ASCII (return) that
TEX normally places at the right end of every line of your input file. By changing the
category of "M you can obtain useful special effects, as we shall see later.

@ The control code ~"I is also of potential interest, since it’s the ASCII (tab).
Plain TEX makes (tab) act like a blank space.

?2 People who install TEX systems for use with non-American alphabets can
make TEX conform to any desired standard. For example, suppose you have a
Norwegian keyboard containing the letter &, which comes in as code 241 (say). Your lo-
cal format package should define \catcode ‘®=11; then you could have control sequences
like \szrtrykk. Your TEX input files could be made readable by American installa-
tions of TEX that don’t have your keyboard, by substituting ~~f1 for character 241.
(For example, the stated control sequence would appear as \s~~filrtrykk in the file;
your American friends should also be provided with the format that you used, with
its \catcode‘~"f1=11.) Of course you should also arrange your fonts so that TEX’s
character 241 will print as &; and you should change TEX’s hyphenation algorithm so
that it will do correct Norwegian hyphenation. The main point is that such changes are
not extremely difficult; nothing in the design of TEX limits it to the American alphabet.
Fine printing is obtained by fine tuning to the language or languages being used.

@ European languages can also be accommodated effectively with only a limited
character set. For example, let’s consider Norwegian again, but suppose that

45

ne
le

ge

not-equal
less-or-equal
greater-or-equal
invalid

double hat

hat hat

tenrm

return

hat hat M

tab

Norwegian keyboard
Scandinavian letters
foreign languages
keyboards, non-ASCII

46 Chapter 8: The Characters You Type

you want to use a keyboard without an @ character. You can arrange the font metric file font metric file

so that TEX will interpret ae, o/, aa, AE, 0/, and AA as ligatures that produce @, g, a, control word

E, @, and A, respectively; and you could put the characters & and A into positions 128 lciir:sml symbel

and 129 of the font. By setting \catcode /=11 you would be able to use the ligature states

o/ in control sequences like ‘\ho/yre’. TEX’s hyphenation method is not confused by i?)i‘:gz

ligatures; so you could use this scheme to operate essentially as suggested before, but space

with two keystrokes occasionally replacing one. (Your typists would have to watch return

out for the occasional times when the adjacent characters aa, ae, and o/ should not be i::crr Orle Zg;irg; co
treated as ligatures; also, ‘\/’ would be a control word, not a control symbol.) null control sequence

csname endcsname

@ The rest of this chapter is devoted to TEX’s reading rules, which define the

conversion from text to tokens. For example, the fact that TEX ignores spaces
after control words is a consequence of the rules below, which imply among other things
that spaces after control words never become space tokens. The rules are intended to
work the way you would expect them to, so you may not wish to bother reading them;
but when you are communicating with a computer, it is nice to understand what the
machine thinks it is doing, and here’s your chance.

@@ The input to TEX is a sequence of “lines.” Whenever TEX is reading a line of
text from a file, or a line of text that you entered directly on your terminal,
the computer’s reading apparatus is in one of three so-called states:

State N Beginning a new line;
State M Middle of a line;
State S Skipping blanks.

At the beginning of every line it’s in state N; but most of the time it’s in state M,
and after a control word or a space it’s in state S. Incidentally, “states” are different
from the “modes” that we will be studying later; the current state refers to TEX’s
eyes and mouth as they take in characters of new text, but the current mode refers
to the condition of TEX’s gastro-intestinal tract. Most of the things that TEX does
when it converts characters to tokens are independent of the current state, but there
are differences when spaces or end-of-line characters are detected (categories 10 and 5).

@@ TEX deletes any (space) characters (number 32) that occur at the right end
of an input line. Then it inserts a (return) character (number 13) at the right
end of the line, except that it places nothing additional at the end of a line that you
inserted with ‘I’ during error recovery. Note that (return) is considered to be an actual
character that is part of the line; you can obtain special effects by changing its catcode.

@@ If TEX sees an escape character (category 0) in any state, it scans the entire

control sequence name as follows. (a) If there are no more characters in the
line, the name is empty (like \csname\endcsname). Otherwise (b) if the next character
is not of category 11 (letter), the name consists of that single symbol. Otherwise (c) the
name consists of all letters beginning with the current one and ending just before the
first nonletter, or at the end of the line. This name becomes a control sequence token.
TEX goes into state S in case (c), or in case (b) with respect to a character of category 10
(space); otherwise TEX goes into state M.

@ If TEX sees a superscript character (category 7) in any state, and if that charac-
ter is followed by another identical character, and if those two equal characters

Chapter 8: The Characters You Type

are followed by a character of code ¢ < 128, then they are deleted and 64 is added to
or subtracted from the code c¢. (Thus, ~"A is replaced by a single character whose
code is 1, etc., as explained earlier.) However, if the two superscript characters are im-
mediately followed by two of the lowercase hexadecimal digits 0123456789abcdef, the
four-character sequence is replaced by a single character having the specified hexadec-
imal code. The replacement is carried out also if such a trio or quartet of characters is
encountered during steps (b) or (c) of the control-sequence-name scanning procedure
described above. After the replacement is made, TEX begins again as if the new char-
acter had been present all the time. If a superscript character is not the first of such a
trio or quartet, it is handled by the following rule.

?2 If TEX sees a character of categories 1, 2, 3, 4, 6, 8, 11, 12, or 13, or a character
of category 7 that is not the first of a special sequence as just described, it

converts the character to a token by attaching the category code, and goes into state M.

This is the normal case; almost every nonblank character is handled by this rule.

@ If TEX sees an end-of-line character (category 5), it throws away any other

information that might remain on the current line. Then if TEX is in state IV
(new line), the end-of-line character is converted to the control sequence token "
(end of paragraph); if TEX is in state M (mid-line), the end-of-line character is con-
verted to a token for character 32 (‘1) of category 10 (space); and if TEX is in state S
(skipping blanks), the end-of-line character is simply dropped.

@@ If TEX sees a character to be ignored (category 9), it simply bypasses that
character as if it weren’t there, and remains in the same state.

@ If TEX sees a character of category 10 (space), the action depends on the

current state. If TEX is in state N or S, the character is simply passed by, and
TEX remains in the same state. Otherwise TEX is in state M; the character is converted
to a token of category 10 whose character code is 32, and TEX enters state S. The
character code in a space token is always 32.

@@ If TEX sees a comment character (category 14), it throws away that character
and any other information that might remain on the current line.

@@ Finally, if TEX sees an invalid character (category 15), it bypasses that char-
acter, prints an error message, and remains in the same state.

@@ If TEX has nothing more to read on the current line, it goes to the next line
and enters state N. However, if \endinput has been specified for a file being
\input, or if an \input file has ended, TEX returns to whatever it was reading when
the \input command was originally given. (Further details of \input and \endinput
are discussed in Chapter 20.)

@@» EXERCISE 8.2

Test your understanding of TEX’s reading rules by answering the following
quickie questions: (a) What is the difference between categories 5 and 147 (b) What is
the difference between categories 3 and 47 (¢) What is the difference between categories
11 and 127 (d) Are spaces ignored after active characters? (e) When a line ends with a
comment character like %, are spaces ignored at the beginning of the next line? (f) Can
an ignored character appear in the midst of a control sequence name?

47

par
space
endinput
input

48 Chapter 8: The Characters You Type

@@» EXERCISE 8.3 null

Look again at the error message that appears on page 31. When TEX reported ?ﬁ?ﬁechar
that \vship was an undefined control sequence, it printed two lines of context, showing verbatim
that it was in the midst of reading line 2 of the story file. At the time of that error lq
message, what state was TEX in? What character was it about to read next? rq

@@» EXERCISE 8.4
Given the category codes of plain TEX format, what tokens are produced from
the input line ¢ $x°2$~ \TeX ~"62°°67

@@» EXERCISE 8.5

Consider an input file that contains exactly three lines; the first line says ‘Hi!’,
while the other two lines are completely blank. What tokens are produced when TEX
reads this file, using the category codes of plain TEX format?

@@» EXERCISE 8.6

Assume that the category codes of plain TEX are in force, except that the char-
acters “~A, ""B, “~C, “"M belong respectively to categories 0, 7, 10, and 11. What tokens
are produced from the (rather ridiculous) input line ‘~~B~"BM~"A~"B~"C~"M~"@\M,’?
(Remember that this line is followed by (return), which is ~~M; and recall that ~~@
denotes the (null) character, which has category 9 when INITEX begins.)

@ The special character inserted at the end of each line needn’t be (return); TEX

actually inserts the current value of an integer parameter called \endlinechar,
which normally equals 13 but it can be changed like any other parameter. If the value
of \endlinechar is negative or greater than 255, no character is appended, and the
effect is as if every line ends with % (i.e., with a comment character).

@ Since it is possible to change the category codes, TEX might actually use

several different categories for the same character on a single line. For example,
Appendices D and E contain several ways to coerce TEX to process text “verbatim,”
so that the author could prepare this manual without great difficulty. (Try to imagine
typesetting a TEX manual; backslashes and other special characters need to switch back
and forth between their normal categories and category 12!) Some care is needed to
get the timing right, but you can make TEX behave in a variety of different ways by
judiciously changing the categories. On the other hand, it is best not to play with the
category codes very often, because you must remember that characters never change
their categories once they have become tokens. For example, when the arguments to a
macro are first scanned, they are placed into a token list, so their categories are fixed
once and for all at that time. The author has intentionally kept the category codes
numeric instead of mnemonic, in order to discourage people from making extensive use
of \catcode changes except in unusual circumstances.

@@» EXERCISE 8.7
Appendix B defines \1q and \rq to be abbreviations for ¢ and ’ (single left
and right quotes, respectively). Explain why the definitions

\chardef\1q=96 \chardef\rq=39

would not be as good.

Chapter 8: The Characters You Type

for life's not a paragraph

And death i think is no parenthesis.
— e. e. cummings, since feeling is first (1926)

This coded character set is to facilitate
the general interchange of information
among information processing systems,

communication systems, and

associated equipment.

... An 8-bit set was considered

but the need for more than 128 codes

in general applications was not yet evident.

— ASA SUBCOMMITTEE X3.2, American Standard
Code for Information Interchange (1963)

49

cummings
ASCII

<<<<<<<<< [N

9

TeX's Roman Fonts

Chapter 9: TgpX’s Roman Fonts 51

When you’re typing a manuscript for TEX, you need to know what symbols letters
are available. The plain TEX format of Appendix B is based on the Computer gilglizstuation
Modern fonts, which provide the characters needed to typeset a wide variety ligatures

of documents. It’s time now to discuss what a person can do with plain TEX g‘;?;‘fh ligatures

when typing straight text. We've already touched on some of the slightly subtle Semicolon

things—for example, dashes and quotation marks were considered in Chapter 2, g;‘fiflfl‘:;ozxfg;gation point

and certain kinds of accents appeared in the examples of Chapters 3 and 6. The Question mark
purpose of this chapter is to give a more systematic summary of the possibilities, g?;iig?;scs
by putting all the facts together. Apostrophe
Let’s begin with the rules for the normal roman font (\rm or \tenrm); Ee"erse apostrophe
. K . X . X amza, see apostrophe
plain TEX will use this font for everything unless you specify otherwise. Most of Ain, see reverse apostrophe
the ordinary symbols that you need are readily available and you can type them gg}t‘en
in the ordinary way: There’s nothing special about Asterisk
At sign
the letters A to Z and a to z Virgule, see slash
.. Solidus, see slash
the dlgltS 0to9 Shilling sign, see slash
common punctuationmarks : ; ' ?2 () [] ¢’ -%/ ., @ E,ﬁsi};d
. Full stop, see period
except that TEX recognizes certain combinations as ligatures: Comma
Plus sign
ff yields ff; ffi yields fHi; € yields “; 1€ yields i; Equals sign
. . . . dollar si
fi yields fi; f£1 yields fi; 72 yields 7 7°¢ yields ;. Sﬁafg f:gg;: see hash mark
3 . _ 3 N . _—— . number sign, see hash mark
f1 yields fl; yields —; yields —; puraber 8¢
You can also type + and =, to get the corresponding symbols + and =; but it’s sg;zﬁstaign
much better to use such characters only in math mode, i.e., enclosed between backslash
.two $ signs, sincg that t.ells TEX to insert the proper spacir.lg for mathemat- E;?f;iraces, see braces
ics. Math mode is explained later; for now, it’s just a good idea to remember hat, see circumflex

that formulas and text should be segregated. A non-mathematical hyphen and leffi‘;;nhizx

a non-mathematical slash should be specified by typing ‘-’ and ‘/’ outside of tilde
mathematics mode, but subtraction and division should be specified by typing
‘~>and ‘/’ between $ signs.
The previous paragraph covers 80 of the 94 visible characters of standard
ASCII; so your keyboard probably contains at least 14 more symbols, and you
should learn to watch out for the remaining ones, since they are special. Four of
these are preémpted by plain TEX; if your manuscript requires the symbols

$ # yA &
you should remember to type them as
\$ \# \} \&
respectively. Plain TEX also reserves the six symbols
\ { } - - -
but you probably don’t mind losing these, since they don’t appear in normal
copy. Braces and backslashes are available via control sequences in math mode.

52

Chapter 9: TgX’s Roman Fonts

There are four remaining special characters in the standard ASCII set:
" I < >

Again, you don’t really want them when you’re typesetting text. (Double-quote
marks should be replaced either by ¢ ¢ or by ’?; vertical lines and relation signs
are needed only in math mode.)

Scholarly publications in English often refer to other languages, so plain
TEX makes it possible to typeset the most commonly used accents:

Type to get

\‘o) (grave accent)

\’0 6 (acute accent)

\"o) (circumflex or “hat”)
\"o 0 (umlaut or dieresis)
\~o 0 (tilde or “squiggle”)
\=0] (macron or “bar”)
\.o o (dot accent)

\u o o (breve accent)

\v o) (hacek or “check”)
\H o 6 (long Hungarian umlaut)
\t oo 6o (tie-after accent)

Within the font, such accents are designed to appear at the right height for the
letter ‘0’; but you can use them over any letter, and TEX will raise an accent that
is supposed to be taller. Notice that spaces are needed in the last four cases, to
separate the control sequences from the letters that follow. You could, however,
type ‘\H{o}’ in order to avoid putting a space in the midst of a word.

Plain TEX also provides three accents that go underneath:

Type to get

\¢c o) (cedilla accent)

\d o 0 (dot-under accent)
\b o) (bar-under accent)

And there are a few special letters:

Type to get

\oe,\OE e, (E (French ligature OE)

\ae,\AE 2z, (Latin and Scandinavian ligature AE)
\aa,\AA 4,A (Scandinavian A-with-circle)

\o,\0 3,0 (Scandinavian O-with-slash)

\1,\L LL (Polish suppressed-L)

\ss N (German “es-zet” or sharp S)

The \rm font contains also the dotless letters ‘1" and ‘)’, which you can obtain by
typing ‘\i’” and ‘\j’. These are needed because ‘i’ and ‘j’ should lose their dots

double-quote mark
vertical line, see norm
norm symbol

less than sign

greater than sign
accents

¢

grave accent
5

acute accent
esc hat
circumflex accent
hat accent

»

umlaut accent
dieresis

esc tilde

tilde accent
squiggle accent
macron accent
bar accent

dot accent

v

hacek accent

check accent

u

breve accent

H

Hungarian umlaut

t

tie-after accent
embellished letters, see accents
c

cedilla accent

d

dot-under accent
emphatics, see dot-under
b

bar-under accent
Scandinavian letters
sharp S

es-zet

German

Polish

Norwegian

Danish

Swedish

Icelandic
suppressed-L
diphthongs, see &, oe
dotless letters

i

J

Chapter 9: TgX’s Roman Fonts

when they gain an accent. For example, the right way to obtain ‘minus’ is to
type ‘m\=\1 n\u us’ or ‘m\={\i}tn\u{ul}s’.

This completes our summary of the \rm font. Exactly the same conven-
tions apply to \bf, \sl, and \it, so you don’t have to do things differently when
you're using a different typeface. For example, \bf\"o yields 6 and \it\& yields
&. Isn’t that nice?

@ However, \tt is slightly different. You will be glad to know that £f, fi, and so

on are not treated as ligatures when you’re using typewriter type; nor do you
get ligatures from dashes and quote marks. That’s fine, because ordinary dashes and
ordinary double-quotes are appropriate when you're trying to imitate a typewriter.
Most of the accents are available too. But \H, \., \1, and \L cannot be used—the
typewriter font contains other symbols in their place. Indeed, you are suddenly allowed
to type ", |, <, and >; see Appendix F. All of the letters, spaces, and other symbols in
\tt have the same width.

» EXERCISE 9.1
What’s the non-naive way to type ‘naive’?

» EXERCISE 9.2
List some English words that contain accented letters.

» EXERCISE 9.3
How would you type ‘Z&sop’s (Euvres en francais’ ?

» EXERCISE 9.4
Explain what to type in order to get this sentence: Commentarii Academize
scientiarum imperialis petropolitanae became Akademiia Nauk SSSR, Doklady.

» EXERCISE 9.5
And how would you specify the names Ernesto Cesaro, P4l Erdds, @ystein Ore,
Stanistaw Swierczkowski, Sergei Iur’ev, Muhammad ibn Musa al-Khwarizmi?

@ » EXERCISE 9.6
Devise a way to typeset Pal Erd8s in typewriter type.

The following symbols come out looking exactly the same whether you
are using \rm, \s1, \bf, \it, or \tt:

Type to get

\dag { (dagger or obelisk)

\ddag 1 (double dagger or diesis)
\S § (section number sign)

\P 9 (paragraph sign or pilcrow)

(They appear in just one style because plain TEX gets them from the math
symbols font. Lots of other symbols are needed for mathematics; we shall study
them later. See Appendix B for a few more non-math symbols.)

typewriter type
doublequote
vertical line

less than sign
greater than sign
Cesaro

Erdés

Ore

Swiercz...

Tur’ev
al-Khwarizmi
dagger

double dagger
obelisk

obelus, see obelisk
diesis

section number sign
paragraph sign
pilcrow, see paragraph sign

54 Chapter 9: TEX’s Roman Fonts

» EXERCISE 9.7 dollar sign
In plain TEX’s italic font, the ‘$’ sign comes out as ‘£’. This gives you a way Eé;tjlsdhsrt)gr‘;?fg“g“
to refer to pounds sterling, but you might want an italic dollar sign. Can you sterling
think of a way to typeset a reference to the book Furope on $15.00 a day? icﬁiight

@ Appendix B shows that plain TEX handles most of the accents by using TEX’s gfg;}rll languages

\accent primitive. For example, \’#1 is equivalent to {\accent19 #1}, where
#1 is the argument being accented. The general rule is that \accent(number) puts an
accent over the next character; the (number) tells where that accent appears in the
current font. The accent is assumed to be properly positioned for a character whose
height equals the x-height of the current font; taller or shorter characters cause the
accent to be raised or lowered, taking due account of the slantedness of the fonts of
accenter and accentee. The width of the final construction is the width of the character
being accented, regardless of the width of the accent. Mode-independent commands like
font changes may appear between the accent number and the character to be accented,
but grouping operations must not intervene. If it turns out that no suitable character
is present, the accent will appear by itself as if you had said \char(number) instead of
\accent(number). For example, \’{} produces ".

@@» EXERCISE 9.8

Why do you think plain TEX defines \’#1 to be ‘{\accent19 #1} instead of
simply letting \’ be an abbreviation for ‘\accent19 ’? (Why the extra braces, and
why the argument #17)

@ It’s important to remember that these conventions we have discussed for ac-

cents and special letters are not built into TEX itself; they belong only to the
plain TEX format, which uses the Computer Modern fonts. Quite different conventions
will be appropriate when other fonts are involved; format designers should provide rules
for how to obtain accents and special characters in their particular systems. Plain TEX
works well enough when accents are infrequent, but the conventions of this chapter
are by no means recommended for large-scale applications of TEX to other languages.
For example, a well-designed TEX font for French might well treat accents as liga-
tures, so that one could e’crire de cette manie‘re nai"ve en franc/ais without
backslashes. (See the remarks about Norwegian in Chapter 8.)

Chapter 9: TgX’s Roman Fonts

Let’s doo'’t after the high Roman fashion.
— WILLIAM SHAKESPEARE, The Tragedie of Anthony and Cleopatra (1606)

English is a straightforward, frank, honest, open-hearted, no-nonsense language,
which has little truck with such devilish devious devices as accents;

indeed U.S. editors and printers are often thrown into a dither

when a foreign word insinuates itself into the language.

However there is one word on which Americans seem to have closed ranks,
printing it confidently, courageously, and almost invariably

complete with accent—the cheese presented to us as Miinster.

Unfortunately, Munster doesn’'t take an accent.
— WAVERLEY ROOT, in the International Herald Tribune (1982)

55

SHAKESPEARE
Munster

ROOT

pppppp

Dimensions

Chapter 10: Dimensions

Sometimes you want to tell TEX how big to make a space, or how wide to make
a line. For example, the short story of Chapter 6 used the instruction ‘\vskip
.5cm’ to skip vertically by half a centimeter, and we also said ‘\hsize=4in’ to
specify a horizontal size of 4 inches. It’s time now to consider the various ways
such dimensions can be communicated to TEX.

“Points” and “picas” are the traditional units of measure for printers
and compositors in English-speaking countries, so TEX understands points and
picas. TEX also understands inches and metric units, as well as the continental
European versions of points and picas. Each unit of measure is given a two-letter
abbreviation, as follows:

pt point (baselines in this manual are 12 pt apart)
pc pica (1pc = 12pt)
in inch (1in = 72.27pt)
bp big point (72bp = 1in)
cm centimeter (2.54 cm = 1in)
mm millimeter (10 mm = 1cm)
dd didot point (1157 dd = 1238 pt)
cc cicero (1cc =12dd)
sp scaled point (65536 sp = 1 pt)
The output of TEX is firmly grounded in the metric system, using the conversion

factors shown here as exact ratios.

» EXERCISE 10.1
How many points are there in 254 centimeters?

When you want to express some physical dimension to TEX, type it as

(optional sign)(number)(unit of measure)
or
(optional sign)(digit string) . (digit string)(unit of measure)

where an (optional sign) is either a ‘+’ or a ‘-’ or nothing at all, and where a
(digit string) consists of zero or more consecutive decimal digits. The ‘.’ can
also be a ‘,’. For example, here are six typical dimensions:

3 in 29 pc
-.013837in + 42,1 dd
0.mm 123456789sp

A plus sign is redundant, but some people occasionally like extra redundancy
once in a while. Blank spaces are optional before the signs and the numbers and
the units of measure, and you can also put an optional space after the dimension;
but you should not put spaces within the digits of a number or between the letters
of the unit of measure.

» EXERCISE 10.2
Arrange those six “typical dimensions” into order, from smallest to largest.

57

dimensions
Points

picas

units of measure, table
pt

point

pc

pica

in

inch

bp

big point
cm
centimeter
mm
millimeter
dd

didot point
Didot, F. A.
cc

cicero

sp

scaled point
optional sign
digit string

58 Chapter 10: Dimensions

@ » EXERCISE 10.3 ruler
Two of the following three dimensions are legitimate according to TEX’s rules. mad:ii,ne‘independence
Which two are they? What do they mean? Why is the other one incorrect? ;?;:Hii] legal dimension
) TTpt
"Ccc
-,sp

The following “rulers” have been typeset by TEX so that you can get
some idea of how different units compare to each other. If no distortion has been
introduced during the camera work and printing processes that have taken place
after TEX did its work, these rulers are highly accurate.

T T T [T T T [T T T [T T T "]4in

[T T T T T T T T T T T T T 1300t
T T T [T T T T T T 1300dd
T 1 L B T LI L T 110cm

@ » EXERCISE 10.4
(To be worked after you know about boxes and glue and have read Chapter 21.)
Explain how to typeset such a 10 cm ruler, using TEX.

TEX represents all dimensions internally as an integer multiple of the tiny

units called sp. Since the wavelength of visible light is approximately 100 sp,
rounding errors of a few sp make no difference to the eye. However, TEX does all
of its arithmetic very carefully so that identical results will be obtained on different
computers. Different implementations of TEX will produce the same line breaks and
the same page breaks when presented with the same document, because the integer
arithmetic will be the same.

@ The units have been defined here so that precise conversion to sp is efficient

on a wide variety of machines. In order to achieve this, TEX’s “pt” has been
made slightly larger than the official printer’s point, which was defined to equal exactly
.013837in by the American Typefounders Association in 1886 [cf. National Bureau of
Standards Circular 570 (1956)]. In fact, one classical point is exactly .99999999 pt, so
the “error” is essentially one part in 10%. This is more than two orders of magnitude
less than the amount by which the inch itself changed during 1959, when it shrank to
2.54 cm from its former value of (1/0.3937) cm; so there is no point in worrying about
the difference. The new definition 72.27 pt = 1in is not only better for calculation, it is
also easier to remember.

TEX will not deal with dimensions whose absolute value is 23 sp or more. In
other words, the maximum legal dimension is slightly less than 16384 pt. This
is a distance of about 18.892 feet (5.7583 meters), so it won’t cramp your style.

Chapter 10: Dimensions

In a language manual like this it is convenient to use “angle brackets”
in abbreviations for various constructions like (number) and (optional sign) and
(digit string). Henceforth we shall use the term (dimen) to stand for a legitimate
TEX dimension. For example,

\hsize=(dimen)

will be the general way to define the column width that TEX is supposed to use.
The idea is that (dimen) can be replaced by any quantity like ‘4in’ that satisfies
TEX’s grammatical rules for dimensions; abbreviations in angle brackets make it
easy to state such laws of grammar.

When a dimension is zero, you have to specify a unit of measure even
though the unit is irrelevant. Don’t just say ‘0’; say ‘Opt’ or ‘Oin’ or something.

The 10-point size of type that you are now reading is normal in text-
books, but you probably will often find yourself wanting a larger font. Plain TEX
makes it easy to do this by providing magnified output. If you say

\magnification=1200

at the beginning of your manuscript, everything will be enlarged by 20%; i.e., it
will come out at 1.2 times the normal size. Similarly, ‘\magnification=2000’
doubles everything; this actually quadruples the area of each letter, since heights
and widths are both doubled. To magnify a document by the factor f, you say
\magnification=(number), where the (number) is 1000 times f. This instruc-
tion must be given before the first page of output has been completed. You
cannot apply two different magnifications to the same document.

Magnification has obvious advantages: You’ll have less eyestrain when
you're proofreading; you can easily make transparencies for lectures; and you
can photo-reduce magnified output, in order to minimize the deficiencies of a
low-resolution printer. Conversely, you might even want ‘\magnification=500’
in order to create a pocket-size version of some book. But there’s a slight catch:
You can’t use magnification unless your printing device happens to have the
fonts that you need at the magnification you desire. In other words, you need
to find out what sizes are available before you can magnify. Most installations
of TEX make it possible to print all the fonts of plain TEX if you magnify by
\magstepO, 1, 2, 3, and perhaps 4 or even 5 (see Chapter 4); but the use of large
fonts can be expensive because a lot of system memory space is often required
to store the shapes.

» EXERCISE 10.5
Try printing the short story of Chapter 6 at 1.2, 1.44, and 1.728 times the normal
size. What should you type to get TEX to do this?

@ When you say \magnification=2000, an operation like ‘\vskip.5cm’ will ac-
tually skip 1.0cm of space in the final document. If you want to specify a
dimension in terms of the final size, TEX allows you to say ‘true’ just before pt, pc, in,

59

angle brackets
dimen

magnified output
magnification
eyestrain
proofreading
transparencies
slides
low-resolution printer
pocket-size
squint print
magstep

true

60 Chapter 10: Dimensions

bp, cm, mm, dd, cc, and sp. This unmagnifies the units, so that the subsequent magni- dvi
fication will cancel out. For example, ‘\vskip.5truecm’ is equivalent to ‘\vskip.25cm’ at
if you have previously said ‘\magnification=2000’. Plain TEX uses this feature in the ;ﬁijlg;‘ﬁed fonts
\magnification command itself: Appendix B includes the instruction mag
em

\hsize = 6.5 true in grad
. x-height
just after a new magnification has taken effect. This adjusts the line width so that the digits
material on each page will be 6% inches wide when it is finally printed, regardless of the cmrl10
magnification factor. There will be an inch of margin at both left and right, assuming 22}::1100

that the paper is 8% inches wide.

@ If you use no ‘true’ dimensions, TEX’s internal computations are not affected

by the presence or absence of magnification; line breaks and page breaks will
be the same, and the dvi file will change in only two places. TEX simply tells the
printing routine that you want a certain magnification, and the printing routine will
do the actual enlargement when it reads the dvi file.

@ » EXERCISE 10.6

Chapter 4 mentions that fonts of different magnifications can be used in the
same job, by loading them ‘at’ different sizes. Explain what fonts will be used when
you give the commands

\magnification=\magstepl
\font\first=cmr10 scaled\magstepl
\font\second=cmr10 at 12truept

@ Magnification is actually governed by TEX’s \mag primitive, which is an integer

parameter that should be positive and at most 32768. The value of \mag is
examined in three cases: (1) just before the first page is shipped to the dvi file; (2) when
computing a true dimension; (3) when the dvi file is being closed. Alternatively, some
implementations of TEX produce non-dvi output; they examine \mag in case (2) and
also when shipping out each page. Since each document has only one magnification,
the value of \mag must not change after it has first been examined.

TEX also recognizes two units of measure that are relative rather than absolute;
i.e., they depend on the current context:

em is the width of a “quad” in the current font;
ex is the “x-height” of the current font.

Each font defines its own em and ex values. In olden days, an “em” was the width
of an ‘M’, but this is no longer true; ems are simply arbitrary units that come with a
font, and so are exes. The Computer Modern fonts have the property that an em-dash
is one em wide, each of the digits 0 to 9 is half an em wide, and lowercase ‘x’ is one ex
high; but these are not hard-and-fast rules for all fonts. The \rm font (cmr10) of plain
TEX has 1em = 10 pt and 1ex & 4.3 pt; the \bf font (cmbx10) has 1em = 11.5pt and
lex &~ 4.44pt; and the \tt font (cmtt10) has lem = 10.5pt and lex &~ 4.3 pt. All of
these are “10-point” fonts, yet they have different em and ex values. It is generally best
to use em for horizontal measurements and ex for vertical measurements that depend
on the current font.

Chapter 10: Dimensions

@ A (dimen) can also refer to TEX’s internal registers or parameters. We shall

discuss registers later, and a complete definition of everything that a (dimen)
can be will be given in Chapter 24. For now it will suffice to give some hints about
what is to come: ‘\hsize’ stands for the current horizontal line size, and ‘.5\hsize’
is half that amount; ‘2\wd3’ denotes twice the width of register \box3; ‘-~\dimen100’ is
the negative of register \dimen100.

@ Notice that the unit names in dimensions are not preceded by backslashes. The

same is true of other so-called keywords of the TEX language. Keywords can be
given in uppercase letters or in a mixture of upper and lower case; e.g., ‘Pt’ is equivalent
to ‘pt’. The category codes of these letters are irrelevant; you may, for example, be
using a p of category 12 (other) that was generated by expanding ‘\the\hsize’ as
explained in Chapter 20. TEX gives a special interpretation to keywords only when
they appear in certain very restricted contexts. For example, ‘pt’ is a keyword only
when it appears after a number in a (dimen); ‘at’ is a keyword only when it appears
after the external name of a font in a \font declaration. Here is a complete list of
TEX’s keywords, in case you are wondering about the full set: at, bp, by, cc, cm, dd,
depth, em, ex, £il, height, in, 1, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to,
true, width. (See Appendix I for references to the contexts in which each of these is
recognized as a keyword.)

The methods that have hitherto been taken

to discover the measure of the Roman foot,

will, upon examination, be found so unsatisfactory, that

it is no wonder the learned are not yet agreed on that point.

9 London inches are equal to 8,447 Paris inches.
— MATTHEW RAPER, in Philosophical Transactions (1760)

Without the letter U,
units would be nits.

— SESAME STREET (1970)

61

dimen

keywords

reserved words

RAPER

SESAME STREET

Children’s Television Workshop

Boxes

Chapter 11: Boxes

TEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still larger
units, and so on. Conceptually, it’s a big paste-up job. The TgXnical terms used
to describe such page construction are boxes and glue.

Boxes in TEX are two-dimensional things with a rectangular shape, hav-
ing three associated measurements called height, width, and depth. Here is a
picture of a typical box, showing its so-called reference point and baseline:

height

Baseli J
Reference point asefine T

depth
i

«— width —

From TgEX’s viewpoint, a single character from a font is a box; it’s one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and depth of the character are, and what the symbol will look like when it is in
the box; TEX uses these dimensions to paste boxes together, and ultimately to
determine the locations of the reference points for all characters on a page. In
plain TEX’s \rm font (cmr10), for example, the letter ‘h’ has a height of 6.9444
points, a width of 5.5555 points, and a depth of zero; the letter ‘g’ has a height
of 4.3055 points, a width of 5 points, and a depth of 1.9444 points. Only certain
special characters like parentheses have height plus depth actually equal to 10
points, although cmri10 is said to be a “10-point” font. You needn’t bother to
learn these measurements yourself, but it’s good to be aware of the fact that TEX
deals with such information; then you can better understand what the computer
does to your manuscript.

The character shape need not fit inside the boundaries of its box. For
example, some characters that are used to build up larger math symbols like
matrix brackets intentionally protrude a little bit, so that they overlap properly
with the rest of the symbol. Slanted letters frequently extend a little to the right
of the box, as if the box were skewed right at the top and left at the bottom,
keeping its baseline fixed. For example, compare the letter ‘g’ in the cmr10 and
cms110 fonts (\rm and \sl):

(A figure will be inserted here; too bad you can’t see it now.
It shows two g’s, as claimed.)

In both cases TEX thinks that the box is 5 points wide, so both letters get exactly
the same treatment. TEX doesn’t have any idea where the ink will go—only the
output device knows this. But the slanted letters will be spaced properly in spite
of TEX’s lack of knowledge, because the baselines will match up.

63

boxes

glue

height

width

depth
reference point
baseline

cmrl0

cmsl10

64

Chapter 11: Boxes

Actually the font designer also tells TEX one other thing, the so-called
italic correction: A number is specified for each character, telling roughly how
far that character extends to the right of its box boundary, plus a little to spare.
For example, the italic correction for ‘g’ in cmr10 is 0.1389 pt, while in cms110
it is 0.8565 pt. Chapter 4 points out that this correction is added to the normal
width if you type ‘\/’ just after the character. You should remember to use \/
when shifting from a slanted font to an unslanted one, especially in cases like

the so-called {\sl italic correction\/}:

since no space intervenes here to compensate for the loss of slant.

TEX also deals with another simple kind of box, which might be called
a “black box,” namely, a rectangle like ‘B’ that is to be entirely filled with ink
at printing time. You can specify any height, width, and depth you like for such
boxes—but they had better not have too much area, or the printer might get
upset. (Printers generally prefer white space to black space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal
rules” and “vertical rules,” so the terms TEX uses to stand for black boxes are
\hrule and \vrule. Even when the box is square, as in ‘m’, you must call it
either an \hrule or a \vrule. We shall discuss the use of rule boxes in greater
detail later. (See Chapter 21.)

Everything on a page that has been typeset by TEX is made up of simple
character boxes or rule boxes, pasted together in combination. TEX pastes boxes
together in two ways, either horizontally or vertically. When TEX builds a
horizontal list of boxes, it lines them up so that their reference points appear
in the same horizontal row; therefore the baselines of adjacent characters will
match up as they should. Similarly, when TEX builds a vertical list of boxes, it
lines them up so that their reference points appear in the same vertical column.

Let’s take a look at what TEX does behind the scenes, by comparing
the computer’s methods with what you would do if you were setting metal type
by hand. In the time-tested traditional method, you choose the letters that
you need out of a type case—the uppercase letters are in the upper case—and
you put them into a “composing stick.” When a line is complete, you adjust
the spacing and transfer the result to the “chase,” where it joins the other rows
of type. Eventually you lock the type up tightly by adjusting external wedges
called “quoins.” This isn’t much different from what TEX does, except that
different words are used; when TEX locks up a line, it creates what is called an
“hbox” (horizontal box), because the components of the line are pieced together
horizontally. You can give an instruction like

\hbox{A line of type.}

in a TEX manuscript; this tells the computer to take boxes for the appropriate
letters in the current font and to lock them up in an hbox. As far as TEX is

italic correction

/

black box
horizontal rules
vertical rules
hrule

vrule

rule boxes
horizontal list
vertical list
upper case
composing stick
hbox
horizontal box

Chapter 11: Boxes 65

concerned, the letter ‘A’ is a box ‘0’ and the letter ‘p’ is a box ‘Qg’. So the vbox
: : : vertical box
given instruction causes TEX to form the hbox hon
vbox
] o ol O Franklin

representing ‘A line of type.” The hboxes for individual lines of type are eventu-
ally joined together by putting them into a “vbox” (vertical box). For example,
you can say

\vbox{\hbox{Two lines}\hbox{of type.l}}
and TEX will convert this into

| . Two lines
ie.,
of type.

The principal difference between TEX’s method and the old way is that metal
types are generally cast so that each character has the same height and depth;
this makes it easy to line them up by hand. TEX’s types have variable height
and depth, because the computer has no trouble lining characters up by their
baselines, and because the extra information about height and depth helps in
the positioning of accents and mathematical symbols.

Another important difference between TEX setting and hand setting is, of
course, that TEX will choose line divisions automatically; you don’t have to insert
\hbox and \vbox instructions unless you want to retain complete control over
where each letter goes. On the other hand, if you do use \hbox and \vbox, you
can make TEX do almost everything that Ben Franklin could do in his printer’s
shop. You're only giving up the ability to make the letters come out charmingly
crooked or badly inked; for such effects you need to make a new font. (And
of course you lose the tactile and olfactory sensations, and the thrill of doing
everything by yourself. TEX will never completely replace the good old ways.)

A page of text like the one you're reading is itself a box, in TEX’s view:
It is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have boxes within boxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simple way; all that you
and TEX have to worry about is one list of boxes at a time. In fact, when you’re
typing straight text, you don’t have to think about boxes at all, since TEX will
automatically take responsibility for assembling the character boxes into words
and the words into lines and the lines into pages. You need to be aware of the
box concept only when you want to do something out of the ordinary, e.g., when
you want to center a heading.

@ From the standpoint of TEX’s digestive processes, a manuscript comes in as a
sequence of tokens, and the tokens are to be transformed into a sequence of
boxes. Each token of input is essentially an instruction or a piece of an instruction; for

66 Chapter 11: Bozes

example, the token ‘A;;’ normally means, “put a character box for the letter A at the

end of the current hbox, using the current font”; the token " normally means,
“skip vertically in the current vbox by the (dimen) specified in the following tokens.”

@ The height, width, or depth of a box might be negative, in which case it is a

“shadow box” that is somewhat hard to draw. TEX doesn’t balk at negative
dimensions; it just does arithmetic as usual. For example, the combined width of two
adjacent boxes is the sum of their widths, whether or not the widths are positive. A
font designer can declare a character’s width to be negative, in which case the character
acts like a backspace. (Languages that read from right to left could be handled in this
way, but only to a limited extent, since TEX’s line-breaking algorithm is based on the
assumption that words don’t have negative widths.)

@ TEX can raise or lower the individual boxes in a horizontal list; such adjust-

ments take care of mathematical subscripts and superscripts, as well as the
heights of accents and a few other things. For example, here is a way to make a box
that contains the TEX logo, putting it into TEX’s internal register \box0:

\setbox0=\hbox{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125em X}

Here ‘\kern-.1667em’ means to insert blank space of —.1667 ems in the current font,
i.e., to back up a bit; and ‘\lower.5ex’ means that the box \hbox{E} is to be lowered
by half of the current x-height, thus offsetting that box with respect to the others.
Instead of ‘\lower.5ex’ one could also say ‘\raise-.5ex’. Chapters 12 and 21 discuss
the details of how to construct boxes for special effects; our goal in the present chapter
is merely to get a taste of the possibilities.

TEX will exhibit the contents of any box register, if you ask it to. For example,
if you type ‘\showbox0’ after setting \box0 to the TEX logo as above, your log
file will contain the following mumbo jumbo:

\hbox (6.83331+2.15277)x18.6108

\tenrm T

.\kern -1.66702

.\hbox (6.83331+0.0)x6.80557, shifted 2.15277
..\tenrm E

.\kern -1.25

.\tenrm X

The first line means that \box0 is an hbox whose height, depth, and width are re-
spectively 6.83331 pt, 2.15277 pt, and 18.6108 pt. Subsequent lines beginning with *.’
indicate that they are inside of a box. The first thing in this particular box is the
letter T in font \tenrm; then comes a kern. The next item is an hbox that contains
only the letter E; this box has the height, depth, and width of an E, and it has been
shifted downward by 2.15277 pt (thereby accounting for the depth of the larger box).

@ » EXERCISE 11.1
Why are there two dots in the ‘. .\tenrm E’ line here?

@ Such displays of box contents will be discussed further in Chapters 12 and 17.
They are used primarily for diagnostic purposes, when you are trying to figure
out exactly what TEX thinks it’s doing. The main reason for bringing them up in the

shadow box
negative dimensions
backspace
Hebrew

Arabic

setbox

kern

lower

raise

box register
showbox

log file

TeX logo
diagnostic format

internal box-and-glue representation

box displays

Chapter 11: Boxes

present chapter is simply to provide a glimpse of how TEX represents boxes in its
guts. A computer program doesn’t really move boxes around; it fiddles with lists of
representations of boxes.

@ » EXERCISE 11.2
By running TEX, figure out how it actually handles italic corrections to char-
acters: How are the corrections represented inside a box?

g% » EXERCISE 11.3
The “opposite” of TEX’s logo—namely, T EX—is produced by

\setbox1=\hbox{T\kern+.1667em\raise.5ex\hbox{E}\kern+.125em X}
What would \showbox1 show now? (Try to guess, without running the machine.)

@ » EXERCISE 11.4

Why do you think the author of TEX didn’t make boxes more symmetrical
between horizontal and vertical, by allowing reference points to be inside the boundary
instead of insisting that the reference point must appear at the left edge of each box?

g%@» EXERCISE 11.5
Construct a \demobox macro for use in writing manuals like this, so that an
author can write ‘\demobox{Tough exercise.}’ in order to typeset

@@» EXERCISE 11.6
Construct a \frac macro such that ‘\frac1/2’ yields ‘1/2’.

| have several boxes in my memory
in which | will keep them all very safe,
there shall not a one of them be lost.

— IZAAK WALTON, The Compleat Angler (1653)

How very little does the amateur, dwelling at home at ease,
comprehend the labours and perils of the author.

— R. L. STEVENSON and L. OSBOURNE, The Wrong Box (1889)

67

WALTON
STEVENSON
OSBOURNE

Glue

Chapter 12: Glue

But there’s more to the story than just boxes: There’s also some magic mortar
called glue that TEX uses to paste boxes together. For example, there is a little
space between the lines of text in this manual; it has been calculated so that
the baselines of consecutive lines within a paragraph are exactly 12 points apart.
And there is space between words too; such space is not an “empty” box, it
is part of the glue between boxes. This glue can stretch or shrink so that the
right-hand margin of each page comes out looking straight.

When TEX makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example
of four boxes in a horizontal list separated by three globs of glue:

width 5 width 3
width 6 width 8
space 9 space 9 space 12
stretch 3 stretch 6 stretch 0
shrink 1 shrink 2 shrink 0
width 52

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next
one also has 9 units of space, but 6 units of stretch and 2 of shrink; the last one
has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considering only the
space components of the glue, is 5+ 9+ 6 +9 4+ 3 4+ 12 + 8 = 52 units. This
is called the natural width of the horizontal list; it’s the preferred way to paste
the boxes together. Suppose, however, that TEX is told to make the horizontal
list into a box that is 58 units wide; then the glue has to stretch by 6 units.
Well, there are 3 + 6 + 0 = 9 units of stretchability present, so TEX multiplies
each unit of stretchability by 6/9 in order to obtain the extra 6 units needed.
The first glob of glue becomes 9+ (6/9) x 3 = 11 units wide, the next becomes
9+ (6/9) x 6 = 13 units wide, the last remains 12 units wide, and we obtain the
desired box looking like this:

width 58

On the other hand, if TEX is supposed to make a box 51 units wide from
the given list, it is necessary for the glue to shrink by a total of one unit. There
are three units of shrinkability present, so the first glob of glue would shrink by
1/3 and the second by 2/3.

69

glue

leading, see baselineskip
skipping space, see glue
stretch

shrink

natural width

70

Chapter 12: Glue

The process of determining glue thickness when a box is being made
from a horizontal or vertical list is called setting the glue. Once glue has been
set, it becomes rigid; it won’t stretch or shrink any more, and the resulting box
is essentially indecomposable.

Glue will never shrink more than its stated shrinkability. For example,
the first glob of glue in our illustration will never be allowed to become narrower
than 8 units wide, and TEX will never shrink the given horizontal list to make
its total width less than 49 units. But glue is allowed to stretch arbitrarily far,
whenever it has a positive stretch component.

» EXERCISE 12.1
How wide would the glue globs be if the horizontal list in the illustration were
to be made 100 units wide?

Once you understand TEX’s concept of glue, you may well decide that
it was misnamed; real glue doesn’t stretch or shrink in such ways, nor does it
contribute much space between boxes that it welds together. Another word like
“spring” would be much closer to the essential idea, since springs have a nat-
ural width, and since different springs compress and expand at different rates
under tension. But whenever the author has suggested changing TEX’s termi-
nology, numerous people have said that they like the word “glue” in spite of its
inappropriateness; so the original name has stuck.

TEX is somewhat reluctant to stretch glue more than the stated stretchability;

therefore you can decide how big to make each aspect of the glue by using the
following rules: (a) The natural glue space should be the amount of space that looks
best. (b) The glue stretch should be the maximum amount of space that can be
added to the natural spacing before the layout begins to look bad. (c¢) The glue shrink
should be the maximum amount of space that can be subtracted from the natural
spacing before the layout begins to look bad.

In most cases the designer of a book layout will have specified all the
kinds of glue that are to be used, so a typist will not need to decide how big
any glue attributes should be. For example, users of the plain TEX format of
Appendix B can type ‘\smallskip’ when they want a little extra space between
paragraphs; a \smallskip turns out to be 3 pt worth of vertical glue that can
stretch or shrink by an additional 1pt. Here is a \smallskip:

Instead of sprinkling various amounts of glue throughout a manuscript, express-
ing each of them explicitly in terms of points, you will find it much better
to explain your intentions more clearly by typing something like ‘\smallskip’
when you want abnormal spacing. The definition of \smallskip can readily
be changed later, in case you want such spaces to be smaller or larger. Plain
TEX also provides you with ‘\medskip’, which is worth two smallskips, and
“\bigskip’, which is worth two medskips.

@ A plain TEX \medskip appears before and after each “dangerous bend” section
of this manual, so you have already seen numerous examples of such spacing

setting the glue

springs

space between paragraphs
smallskip

medskip

bigskip

dangerous bend

Chapter 12: Glue

before you knew what it was called. Vertical glue is created by writing ‘\vskip(glue)’,
where (glue) is any glue specification. The usual way to specify (glue) to TEX is

(dimen) plus(dimen) minus(dimen)

where the ‘plus(dimen)’ and ‘minus(dimen)’ are optional and assumed to be zero if not
present; ‘plus’ introduces the amount of stretchability, ‘minus’ introduces the amount
of shrinkability. For example, Appendix B defines \medskip to be an abbreviation for
‘\vskip6pt plus2pt minus2pt’. The normal-space component of glue must always be
given as an explicit (dimen), even when it is zero.

@ Horizontal glue is created in the same way, but with \hskip instead of \vskip.

For example, plain TEX defines \enskip as an abbreviation for the command
‘\hskip.b5em\relax’; this skips horizontally by one “en,” i.e., by exactly half of an em
in the current font. There is no stretching or shrinking in an \enskip. The control
sequence \relax after ‘.5em’ prevents TEX from thinking that a keyword is present, in
case the text following \enskip just happens to begin with ‘plus’ or ‘minus’.

One of the interesting things that happens when glue stretches and
shrinks at different rates is that there might be glue with infinite stretchabil-
ity. For example, consider again the four boxes we had at the beginning of this
chapter, with the same glue as before except that the glue in the middle can
stretch infinitely far. Now the total stretchability is infinite; and when the line
has to grow, all of the additional space is put into the middle glue. If, for ex-
ample, a box of width 58 is desired, the middle glue expands from 9 to 15 units,
and the other spacing remains unchanged.

If such infinitely stretchable glue is placed at the left of a row of boxes,
the effect is to place them “flush right,” i.e., to move them over to the rightmost
boundary of the constructed box. And if you take two globs of infinitely stretch-
able glue, putting one at the left and one at the right, the effect is to center the
list of boxes within a larger box. This in fact is how the \centerline instruction
works in plain TEX: It places infinite glue at both ends, then makes a box whose
width is the current value of \hsize.

The short story example of Chapter 6 used infinite glue not only for
centering, but also in the \vfill instruction at the end; ‘\vfill’ essentially
means “skip vertically by zero, but with infinite stretchability.” In other words,
\vfill fills up the rest of the current page with blank space.

TEX actually recognizes several kinds of infinity, some of which are “more

infinite” than others. You can say both \vfil and \vfill; the second is
stronger than the first. In other words, if no other infinite stretchability is present,
\vfil will expand to fill the remaining space; but if both \vfil and \v£fill are present
simultaneously, the \vfill effectively prevents \vfil from stretching. You can think
of it as if \vfil has one mile of stretchability, while \vfill has a trillion miles.

@ Besides \vfil and \vfill, TEX has \hfil and \hfill, for stretching indefi-

nitely in the horizontal direction. You can also say \hss or \vss, in order to
get glue that is infinitely shrinkable as well as infinitely stretchable. (The name ‘\hss’
stands for “horizontal stretch or shrink”; ‘\vss’ is its vertical counterpart.) Finally, the

71

glue
dimen
plus
minus
hskip
vskip
enskip

en

relax
keyword
infinite
right justification
centering
flush right
centerline
vfill

vfil

hfil

hfill

hss

VSss

72

Chapter 12: Glue

primitives \hfilneg and \vfilneg will cancel the stretchability of \hfil and \vfil;
we shall discuss applications of these curious glues later.

@ Here are some examples of \hfil, using the \1ine macro of plain TEX, which
creates an hbox whose width is the current \hsize:

\line{This text will be flush left.\hfil}

\line{\hfil This text will be flush right.}

\line{\hfil This text will be centered.\hfil}

\line{Some text flush left\hfil and some flush right.}
\line{Alpha\hfil centered between Alpha and Omega\hfil Omegal}
\line{Five\hfil words\hfil equally\hfil spaced\hfil out.}

§? » EXERCISE 12.2
Describe the result of
\line{\hfil\hfil What happens now?\hfil}
\line{\hfill\hfil and now?\hfil}

§P§P>EXERCBE123
How do the following three macros behave differently?

\def\centerlinea#1{\line{\hfil#1\hfil}}
\def\centerlineb#1{\line{\hfill#1\hfilll}}
\def\centerlinec#1{\line{\hss#1\hss}}

@ In order to specify such infinities, you are allowed to use the special units ‘£il’,
‘£i11’, and ‘filll’ in the (dimen) parts of a stretchability or shrinkability

component. For example, \vfil, \vfill, \vss, and \vfilneg are essentially equivalent
to the glue specifications

\vskip Opt plus 1fil

\vskip Opt plus 1fill

\vskip Opt plus 1fil minus 1fil

\vskip Opt plus -1fil

respectively. It’s usually best to stick to the first order infinity (fil) as much as you can,
resorting to second order (fill) only when you really need something extremely infinite.
Then the ultimate order (filll) is always available as a last resort in emergencies. (TEX
does not provide a ‘\vfilll’ primitive, since the use of this highest infinity is not
encouraged.) You can use fractional multiples of infinity like ‘3.25fil’, as long as
you stick to fewer than 16384 fil units. TEX actually does its calculations with integer
multiples of 271 il (or fill or filll); so 0.000007£i111 turns out to be indistinguishable
from Opt, but 0.00001fil111 is infinitely greater than 16383.99999fi11.

Now here’s something important for all TEXnical typists to know: Plain
TEX puts extra space at the end of a sentence; furthermore, it automatically
increases the stretchability (and decreases the shrinkability) after punctuation
marks. The reason is that it’s usually better to put more space after punctua-
tion than between two ordinary words, when spreading a line out to reach the
desired margins. Consider, for example, the following sentences from a classic
kindergarten pre-primer:

‘‘Oh, oh!’’ cried Baby Sally. Dick and Jane laughed.

hfilneg
vfilneg

line

flush left

fil

fill

filll

vfilll
sentence
punctuation
Dick and Jane

Chapter 12: Glue T3

If TEX sets this at its natural width, all the spaces will be the same, except after comma
the quote and after ‘Baby Sally.”: period

exclamation point
question mark

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. ellipsis
three dots, see ellipsis
But if the line needs to be expanded by 5 points, 10 points, 15 points, or more, dot dot dot, see ellipsis
TF)(will set it as fﬁ]ﬁ"eviations
. . Drofnats

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. full stop

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. E?fde

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. control space

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after the comma stretches at 1.25 times the rate of the glue between
adjacent words; the glue after the period and after the !’ stretches at 3 times
the rate. There is no glue between adjacent letters, so individual words will
always look the same. If TEX had to shrink this line to its minimum width, the
result would be

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 percent as much as ordinary inter-word
glue, and after a period or exclamation point or question mark it shrinks by only
one third as much.

This all makes for nice-looking output, but it unfortunately adds a bit
of a burden to your job as a typist, because TEX’s rule for determining the end of
a sentence doesn’t always work. The problem is that a period sometimes comes
in the middle of a sentence ... like when it is used (as here) to make an “ellipsis”
of three dots.

Moreover, if you try to specify ‘...” by typing three periods in a row,
you get ‘... —the dots are too close together. One way to handle this is to go
into mathematics mode, using the \1dots control sequence defined in plain TEX
format. For example, if you type

Hmmm \ldots I wonder why?

the result is ‘Hmmm ... I wonder why?’. This works because math formulas are
exempt from the normal text spacing rules. Chapter 18 has more to say about
\ldots and related topics.

Abbreviations present problems too. For example, the short story in
Chapter 6 referred to ‘Mr. Drofnats’; TEX must be told somehow that the period
after ‘Mr.” or ‘Mrs.” or ‘Ms.” or ‘Prof.” or ‘Dr.” or ‘Rt. Hon.’, etc., doesn’t count
as a sentence-ending full stop.

We avoided that embarrassment in Chapter 6 by typing ‘Mr. “Drofnats’;
the “tie” mark ~ tells plain TEX to insert a normal space, and to refrain from
breaking between lines at that space. Another way to get TEX to put out a
normal space is to type ‘\.J (control space); e.g., ‘Mr.\ Drofnats’ would be
almost the same as ‘Mr. “Drofnats’, except that a line might end after the ‘Mr.’.

74

Chapter 12: Glue

The tie mark is best for abbreviations within a name, and after several
other common abbreviations like ‘Fig.” and ‘cf.” and ‘vs.” and ‘resp.’; you will
find that it’s easy to train yourself to type ‘cf.”Fig.~5’. In fact, it’s usually
wise to type ~ (instead of a space) just after a common abbreviation that occurs
in the middle of a sentence. Manuals of style will tell you that the abbreviations
‘e.g.” and ‘i.e.” should always be followed by commas, never by spaces, so those
particular cases shouldn’t need any special treatment.

The only remaining abbreviations that arise with significant frequency
occur in bibliographic references; control spaces are appropriate here. If, for
example, you are typing a manuscript that refers to ‘Proc. Amer. Math. Soc.’,
you should say

Proc.\ Amer.\ Math.\ Soc.

Granted that this input looks a bit ugly, it makes the output look right. It’s one
of the things we occasionally must do when dealing with a computer that tries
to be smart.

» EXERCISE 12.4
Explain how to type the following sentence: “Mr. & Mrs. User were married by
Rev. Drofnats, who preached on Matt. 19:3-9.”

» EXERCISE 12.5

Put the following bibliographic reference into plain TEX language: Donald E.
Knuth, “Mathematical typography,” Bull. Amer. Math. Soc. 1 (1979), 337-372.

On the other hand, if you don’t care about such refinements of spacing
you can tell plain TEX to make all spaces the same, regardless of punctuation
marks, by simply typing ‘\frenchspacing’ at the beginning of your manuscript.
French spacing looks like this:

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

You can also shift back and forth between the two styles, either by saying
‘\nonfrenchspacing’ to establish sophisticated spacing, or by making your use
of \frenchspacing local to some group. For example, you might want to use
French spacing only when typing the bibliography of some document.

@ TEX doesn’t consider a period or question mark or exclamation point to be

the end of a sentence if the preceding character is an uppercase letter, since
TEX assumes that such uppercase letters are most likely somebody’s initials. Thus, for
example, the ‘\’ is unnecessary after the ‘I.’ in ‘Dr. Livingstone~I.\ Presume’; that
particular period is not assumed to be a full stop.

@ » EXERCISE 12.6
What can you do to make TEX recognize the ends of sentences that do end with
uppercase letters (e.g., ‘... launched by NASA. or ‘Did I?’ or ‘... see Appendix A.")?

control spaces
interword spacing
User

Drofnats

Knuth

frenchspacing
nonfrenchspacing
sophisticated spacing
Presume

Chapter 12: Glue

@ You can see the glue that TEX puts between words by looking at the contents

of hboxes in the internal diagnostic format that we discussed briefly in Chap-
ter 11. For example, Baby Sally’s exclamation begins as follows, after TEX has digested
it and put it into a box, assuming \nonfrenchspacing:

\tenrm \ (ligature ‘)

.\tenrm O

.\tenrm h

.\tenrm ,

.\glue 3.33333 plus 2.08331 minus 0.88889
.\tenrm o

.\tenrm h

.\tenrm !

.\tenrm " (ligature ’’)

.\glue 4.44444 plus 4.99997 minus 0.37036
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenrm B

.\tenrm a

.\tenrm b

.\kern-0.27779

.\tenrm y

.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\kern-0.83334

.\tenrm .

.\glue 4.44444 plus 4.99997 minus 0.37036

Qa o H KR O

< HHP O

The normal interword glue in font \tenrm is 3.33333 pt, plus 1.66666 pt of stretchability,
minus 1.11111 pt of shrinkability. Notice that the interword \glue in this list stretches
more, and shrinks less, after the punctuation marks; and the natural space is in fact
larger at the end of each sentence. This example also shows several other things that
TEX does while it processes the sample line of text: It converts ¢ and ’’ into single
characters, i.e., ligatures; and it inserts small kerns in two places to improve the spacing.
A \kern is similar to glue, but it is not the same, because kerns cannot stretch or shrink;
furthermore, TEX will never break a line at a kern, unless that kern is immediately
followed by glue.

@ You may be wondering what TEX’s rules for interword glue really are, exactly.
For example, how did TEX remember the effect of Baby Sally’s exclamation
point, when quotation marks intervened before the next space? The details are slightly

75

diagnostic format

internal box-and-glue representation
interword glue

ligatures

kerns

kern

76 Chapter 12: Glue

tricky, but not incomprehensible. When TEX is processing a horizontal list of boxes space factor
and glue, it keeps track of a positive integer called the current “space factor.” The cmrl0

. . . fontdimen
space factor is normally 1000, which means that the interword glue should not be spaceskip
modified. If the space factor f is different from 1000, the interword glue is computed xspaceskip
as follows: Take the normal space glue for the current font, and add the extra space ;ngevrﬁghipacc
if f > 2000. (Each font specifies a normal space, normal stretch, normal shrink, spacefactor
and extra space; for example, these quantities are 3.33333 pt, 1.66666 pt, 1.11111 pt, space factor code
and 1.11111 pt, respectively, in cmr10. We’ll discuss such font parameters in greater ilf\gggx
detail later.) Then the stretch component is multiplied by f/1000, while the shrink char

component is multiplied by 1000/ f.

@ However, TEX has two parameters \spaceskip and \xspaceskip that allow

you to override the normal spacing of the current font. If f > 2000 and if
\xspaceskip is nonzero, the \xspaceskip glue is used for an interword space. Other-
wise if \spaceskip is nonzero, the \spaceskip glue is used, with stretch and shrink
components multiplied by f/1000 and 1000/ f. For example, the \raggedright macro
of plain TEX uses \spaceskip and \xspaceskip to suppress all stretching and shrinking
of interword spaces.

@@ The space factor f is 1000 at the beginning of a horizontal list, and it is set to
1000 just after a non-character box or a math formula has been put onto the
current horizontal list. You can say ‘\spacefactor={(number)’ to assign any particular
value to the space factor; but ordinarily, f gets set to a number other than 1000 only
when a simple character box goes on the list. Each character has a space factor code,
and when a character whose space factor code is g enters the current list the normal
procedure is simply to assign g as the new space factor. However, if g is zero, f is not
changed; and if f < 1000 < g, the space factor is set to 1000. (In other words, f
doesn’t jump from a value less than 1000 to a value greater than 1000 in a single step.)
The maximum space factor is 32767 (which is much higher than anybody would ever
want to use).

?2 When INITEX creates a brand new TEX, all characters have a space factor code

of 1000, except that the uppercase letters ‘A’ through ‘Z’ have code 999. (This
slight difference is what makes punctuation act differently after an uppercase letter; do
you see why?) Plain TEX redefines a few of these codes using the \sfcode primitive,
which is similar to \catcode (see Appendix B); for example, the instructions

\sfcode‘)=0 \sfcode‘.=3000

make right parentheses “transparent” to the space factor, while tripling the stretcha-
bility after periods. The \frenchspacing operation resets \sfcode‘. to 1000.

@ When ligatures are formed, or when a special character is specified via \char,

the space factor code is computed from the individual characters that gener-
ated the ligature. For example, plain TEX sets the space factor code for single-right-
quote to zero, so that the effects of punctuation will be propagated. Two adjacent
characters ’’ combine to form a ligature that is in character position 042; but the
space factor code of this double-right-quote ligature is never examined by TEX, so plain
TEX does not assign any value to \sfcode’042.

@@» EXERCISE 12.7
What are the space factors after each token of the Dick-and-Jane example?

Chapter 12: Glue

@ Here’s the way TEX goes about setting the glue when an hbox is being wrapped

up: The natural width, x, of the box contents is determined by adding up the
widths of the boxes and kerns inside, together with the natural widths of all the glue
inside. Furthermore the total amount of glue stretchability and shrinkability in the
box is computed; let’s say that there’s a total of yo + y1 fil + y2 fill + ys filll available
for stretching and zo + z1 fil 4+ 22 fill 4+ z3 filll available for shrinking. Now the natural
width z is compared to the desired width w. If x = w, all glue gets its natural width.
Otherwise the glue will be modified, by computing a “glue set ratio” r and a “glue set
order” 7 in the following way: (a) If x < w, TEX attempts to stretch the contents of
the box; the glue order is the highest subscript ¢ such that y; is nonzero, and the glue
ratio is r = (w — z)/y;. (If yo = y1 = y2 = y3 = 0, there’s no stretchability; both ¢
and r are set to zero.) (b) If z > w, TEX attempts to shrink the contents of the box
in a similar way; the glue order is the highest subscript ¢ such that z; # 0, and the
glue ratio is normally r = (z — w)/z;. However, r is set to 1.0 in the case ¢ = 0 and
T —w > zp, because the maximum shrinkability must not be exceeded. (c) Finally,
every glob of glue in the horizontal list being boxed is modified. Suppose the glue has
natural width wu, stretchability y, and shrinkability z, where y is a jth order infinity
and z is a kth order infinity. Then if z < w (stretching), this glue takes the new width
u+ ry if j = 4; it keeps its natural width w if 5 # ¢. If z > w (shrinking), this glue
takes the new width u — rz if k = i; it keeps its natural width u if k # ¢. Notice that
stretching or shrinking occurs only when the glue has the highest order of infinity that
doesn’t cancel out.

@ TEX will construct an hbox that has a given width w if you issue the command

“\hbox to (dimen){(contents of box)}’, where w is the value of the (dimen).
For example, the \1ine macro discussed earlier in this chapter is simply an abbreviation
for ‘\hbox to\hsize’. TEX also allows you to specify the exact amount of stretching
or shrinking; the command ‘\hbox spread(dimen){(contents of box)}’ creates a box
whose width w is a given amount more than the natural width of the contents. For
example, one of the boxes displayed earlier in this chapter was generated by

\hbox spread 5pt{‘‘0Oh, oh!’’ ... laughed.}

In the simplest case, when you just want a box to have its natural width, you don’t
have to write ‘\hbox spread Opt’; you can simply say ‘\hbox{(contents of box)}’.

@ The baseline of a constructed hbox is the common baseline of the boxes inside.

(More precisely, it’s the common baseline that they would share if they weren’t
raised or lowered.) The height and depth of a constructed hbox are determined by the
maximum distances by which the interior boxes reach above and below the baseline,
respectively. The result of \hbox never has negative height or negative depth, but the
width can be negative.

@ » EXERCISE 12.8
Assume that \box1 is 1pt high, 1pt deep, and 1pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide. A third box is formed by saying

\setbox3=\hbox to3pt{\hfil\lower3pt\box1\hskip-3pt plus3fil\box2}

What are the height, depth, and width of \box37 Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

77

setting the glue
glue set ratio
glue set order
line

to

hbox

spread

baseline

setbox

78 Chapter 12: Glue

@ The process of setting glue for vboxes is similar to that for hboxes; but before baselineskip
we study the \vbox operation, we need to discuss how TEX stacks boxes up i?n:i}pl_ it

1m 1plimi
vertically so that their baselines tend to be a fixed distance apart. The boxes in a interlife elue

horizontal list often touch each other, but it’s usually wrong to do this in a vertical list; smallskip
imagine how awful a page would look if its lines of type were brought closer together

whenever they didn’t contain tall letters, or whenever they didn’t contain any letters

that descended below the baseline.

@ TEX’s solution to this problem involves three primitives called \baselineskip,
\lineskip, and \lineskiplimit. A format designer chooses values of these
three quantities by writing

\baselineskip=(glue)
\lineskip=(glue)
\lineskiplimit=(dimen)

and the interpretation is essentially this: Whenever a box is added to a vertical list, TEX
inserts “interline glue” intended to make the distance between the baseline of the new
box and the baseline of the previous box exactly equal to the value of \baselineskip.
But if the interline glue calculated by this rule would cause the top edge of the new
box to be closer than \lineskiplimit to the bottom edge of the previous box, then
\lineskip is used as the interline glue. In other words, the distance between adjacent
baselines will be the \baselineskip setting, unless that would bring the boxes too
close together; the \1ineskip glue will separate adjacent boxes in the latter case.

@ The rules for interline glue in the previous paragraph are carried out without

regard to other kinds of glue that might be present; all vertical spacing due
to explicit appearances of \vskip and \kern acts independently of the interline glue.
Thus, for example, a \smallskip between two lines always makes their baselines further
apart than usual, by the amount of a \smallskip; it does not affect the decision about
whether \1ineskip glue is used between those lines.

@ For example, let’s suppose that \baselineskip=12pt plus 2pt, \lineskip=

3pt minus 1pt, and \lineskiplimit=2pt. (These values aren’t particularly
useful; they have simply been chosen to illustrate the rules.) Suppose further that a
box whose depth is 3 pt was most recently added to the current vertical list; we are
about to add a new box whose height is h. If h = 5pt, the interline glue will be
4 pt plus 2 pt, since this will make the baselines 12 pt plus 2 pt apart when we add h
and the previous depth to the interline glue. But if h = 8 pt, the interline glue will
be 3 pt minus 1pt, since \lineskip will be chosen in order to keep from violating the
given \lineskiplimit when stretching and shrinking are ignored.

@ When you are typesetting a document that spans several pages, it’s generally
best to define the \baselineskip so that it cannot stretch or shrink, because
this will give more uniformity to the pages. A small variation in the distance between
baselines—say only half a point—can make a substantial difference in the appearance
of the type, since it significantly affects the proportion of white to black. On the
other hand, if you are preparing a one-page document, you might want to give the
baselineskip some stretchability, so that TEX will help you fit the copy on the page.

@ » EXERCISE 12.9
What settings of \baselineskip, \lineskip, and \lineskiplimit will cause

Chapter 12: Glue

the interline glue to be a “continuous” function of the next box height (i.e., the interline
glue will never change a lot when the box height changes only a little)?

@ A study of TEX’s internal box-and-glue representation should help to firm
up some of these ideas. Here is an excerpt from the vertical list that TEX
constructed when it was typesetting this very paragraph:

\glue 6.0 plus 2.0 minus 2.0

\glue (\parskip) 0.0 plus 1.0

\glue (\baselineskip) 1.25

\hbox (7.5+1.93748)x312.0, glue set 0.80154, shifted 36.0 []
\penalty 10000

\glue (\baselineskip) 2.81252

\hbox (6.25+1.93748)x312.0, glue set 0.5816, shifted 36.0 []
\penalty 50

\glue (\baselineskip) 2.81252

\hbox (6.25+1.75)x348.0, glue set 116.70227fil []

\penalty 10000

\glue (\abovedisplayskip) 6.0 plus 3.0 minus 1.0

\glue (\lineskip) 1.0

\hbox (149.25+0.74998)x348.0 []

The first \glue in this example is the \medskip that precedes each dangerous-bend
paragraph. Then comes the \parskip glue, which is automatically supplied before
the first line of a new paragraph. Then comes some interline glue of 1.25pt; it was
calculated to make a total of 11 pt when the height of the next box (7.5pt) and the
depth of the previous box were added. (The previous box is not shown—it’s the
bottom line of exercise 12.9—but we can deduce that its depth was 2.25pt.) The
\hbox that follows is the first line of this paragraph; it has been shifted right 36 pt
because of hanging indentation. The glue set ratio for this hbox is 0.80154; i.e., the
glue inside is stretched by 80.154% of its stretchability. (In the case of shrinking,
the ratio following ‘glue set’ would have been preceded by ‘- ’; hence we know that
stretching is involved here.) TgEX has put ‘[1’ at the end of each hbox line to indicate
that there’s something in the box that isn’t shown. (The box contents would have
been displayed completely, if \showboxdepth had been set higher.) The \penalty
indications are used to discourage bad breaks between pages, as we will see later. The
third hbox has a glue ratio of 116.70227, which applies to first-order-infinite stretching
(i.e., fil); this results from an \hfil that was implicitly inserted just before the displayed
material, to fill up the third line of the paragraph. Finally the big hbox whose height
is 149.25 pt causes \lineskip to be the interline glue. This large box contains the
individual lines of typewriter type that are displayed; they have been packaged into a
single box so that they cannot be split between pages. Careful study of this example
will teach you a lot about TEX’s inner workings.

@ Exception: No interline glue is inserted before or after a rule box. You can
also inhibit interline glue by saying \nointerlineskip between boxes.

@@ TEX’s implementation of interline glue involves another primitive quantity
called \prevdepth, which usually contains the depth of the most recent box
on the current vertical list. However, \prevdepth is set to the sentinel value —1000 pt

79

internal box-and-glue representation
medskip

parskip

hanging indentation

glue set

showboxdepth

penalty

nointerlineskip

prevdepth

80 Chapter 12: Glue

at the beginning of a vertical list, or just after a rule box; this serves to suppress the User
next interline glue. The user can change the value of \prevdepth at any time when Zsofh of bo
X
building a vertical list; thus, for example, the \nointerlineskip macro of Appendix B heipght of box
simply expands to ‘\prevdepth=-1000pt’. moveright
moveleft

@@ Here are the exact rules by which TEX calculates the interline glue between raise
boxes: Assume that a new box of height h (not a rule box) is about to lower
be appended to the bottom of the current vertical list, and let \prevdepth = p,
\lineskiplimit = [, \baselineskip = (b plus y minus z). If p < —1000pt, no in-

terline glue is added. Otherwise if b — p — h > [, the interline glue ‘(b — p — h) plus y

minus 2z’ will be appended just above the new box. Otherwise the \lineskip glue will

be appended. Finally, \prevdepth is set to the depth of the new box.

@@» EXERCISE 12.10

Mr. B. L. User had an application in which he wanted to put a number of
boxes together in a vertical list, with no space between them. He didn’t want to say
\nointerlineskip after each box; so he decided to set \baselineskip, \1ineskip, and
\lineskiplimit all equal to Opt. Did this work?

@ The vertical analog of \hbox is \vbox, and TEX will obey the commands ‘\vbox

to(dimen)’ and ‘\vbox spread(dimen)’ in about the way you would expect,
by analogy with the horizontal case. However, there’s a slight complication because
boxes have both height and depth in the vertical direction, while they have only width
in the horizontal direction. The dimension in a \vbox command refers to the final
height of the vbox, so that, for example, ‘\vbox to 50pt{...} produces a box that
is 50 pt high; this is appropriate because everything that can stretch or shrink inside a
vbox appears in the part that contributes to the height, while the depth is unaffected
by glue setting.

@ The depth of a constructed \vbox is best thought of as the depth of the bottom

box inside. Thus, a vbox is conceptually built by taking a bunch of boxes and
arranging them so that their reference points are lined up vertically; then the reference
point of the lowest box is taken as the reference point of the whole, and the glue is set
so that the final height has some desired value.

@ However, this description of vboxes glosses over some technicalities that come

up when you consider unusual cases. For example, TEX allows you to shift
boxes in a vertical list to the right or to the left by saying ‘\moveright(dimen)(box)’
or ‘\moveleft(dimen)(box)’; this is like the ability to \raise or \lower boxes in a
horizontal list, and it implies that the reference points inside a vbox need not always
lie in a vertical line. Furthermore, it is necessary to guard against boxes that have
too much depth, lest they extend too far into the bottom margin of a page; and later
chapters will point out that vertical lists can contain other things like penalties and
marks, in addition to boxes and glue.

@ Therefore, the actual rules for the depth of a constructed vbox are somewhat

TgXnical. Here they are: Given a vertical list that is being wrapped up via
\vbox, the problem is to determine its natural depth. (1) If the vertical list contains no
boxes, the depth is zero. (2) If there’s at least one box, but if the final box is followed
by kerning or glue, possibly with intervening penalties or other things, the depth is zero.
(3) If there’s at least one box, and if the final box is not followed by kerning or glue,

Chapter 12: Glue

the depth is the depth of that box. (4) However, if the depth computed by rules (1),
(2), or (3) exceeds \boxmaxdepth, the depth will be the current value of \boxmaxdepth.
(Plain TEX sets \boxmaxdepth to the largest possible dimension; therefore rule (4)
won’t apply unless you specify a smaller value. When rule (4) does decrease the depth,
TEX adds the excess depth to the box’s natural height, essentially moving the reference
point down until the depth has been reduced to the stated maximum.)

@ The glue is set in a vbox just as in an hbox, by determining a glue set ratio

and a glue set order, based on the difference between the natural height x and
the desired height w, and based on the amounts of stretchability and shrinkability that
happen to be present.

@ The width of a computed \vbox is the maximum distance by which an enclosed
box extends to the right of the reference point, taking possible shifting into
account. This width is always nonnegative.

@ » EXERCISE 12.11

Assume that \box1 is 1pt high, 1pt deep, and 1pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide; the baselineskip, lineskip, and lineskiplimit are all zero; and
the \boxmaxdepth is very large. A third box is formed by saying

\setbox3=\vbox to3pt{\moveright3pt\box1\vskip-3pt plus3fil\box2}

What are the height, depth, and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

@@» EXERCISE 12.12
Under the assumptions of the previous exercise, but with \baselineskip=9pt
minus3fil, describe \box4 after

\setbox4=\vbox to4dpt{\vss\boxl\moveleftdpt\box2\vss}

@@» EXERCISE 12.13
Solve the previous problem but with \boxmaxdepth=-4pt.

@ We have observed that \vbox combines a bunch of boxes into a larger box that

has the same baseline as the bottom box inside. TEX has another operation
called \vtop, which gives you a box like \vbox but with the same baseline as the top
box inside. For example,

\hbox{Here are \vtop{\hbox{two lines}\hbox{of text.}}}
produces

Here are two lines
of text.

?2 You can say ‘\vtop to(dimen)’ and ‘\vtop spread(dimen)’ just as with \vbox,

but you should realize what such a construction means. TEX implements \vtop
as follows: (1) First a vertical box is formed as if \vtop had been \vbox, using all of
the rules for \vbox as given above. (2) The final height x is defined to be zero unless
the very first item inside the new vbox is a box; in the latter case, = is the height of
that box. (3) Let h and d be the height and depth of the vbox in step (1). TEX
completes the \vtop by moving the reference point up or down, if necessary, so that
the box has height x and depth h + d — .

81

boxmaxdepth
glue set ratio
glue set order
vtop

82

Chapter 12: Glue

@@» EXERCISE 12.14
Describe the empty boxes that you get from ‘\vbox to(dimen){}’” and ‘\vtop
to(dimen){}’. What are their heights, depths, and widths?

@@» EXERCISE 12.15

Define a macro \nullbox#1#2#3 that produces a box whose height, depth, and
width are given by the three parameters. The box should contain nothing that will
show up in print.

@ The \vbox operation tends to produce boxes with large height and small depth,

while \vtop tends to produce small height and large depth. If you're trying
to make a vertical list out of big vboxes, however, you may not be satisfied with either
\vbox or \vtop; you might well wish that a box had two reference points simultaneously,
one for the top and one for the bottom. If such a dual-reference-point scheme were in
use, one could define interline glue based on the distance between the lower reference
point of one box and the upper reference point of its successor in a vertical list. But
alas, TEX gives you only one reference point per box.

@ There’s a way out of this dilemma, using an important idea called a “strut.”

Plain TEX defines \strut to be an invisible box of width zero that extends
just enough above and below the baseline so that you would need no interline glue at
all if every line contained a strut. (Baselines are 12pt apart in plain TEX; it turns
out that \strut is a vertical rule, 8.5 pt high and 3.5 pt deep and 0pt wide.) If you
contrive to put a